ICOT Technical Report: TR- 059

TRAD59

The Concepts and Facilities of SIMPOS File System

by
Takashi Hattori and Toshio Y okoi

April, 1984

01984, ICOT

Mita Kokusai Didg. 21F (03} 456-3191 -5

||| :D | 4-28 Mita 1-Chome Telex 1COT J32064
Minato-ku Tolvo 108 Japan

Institute for New Generation Computer Techriologf

The Concepts and Facilities of SIMPOS File System

Takashi HATTORI and Teoshio YOEOT
Tnstitute for New Ceneration Cemputer Technology
Mitz Folkusai Building 21F

1-4-28, Mita, Minato-ku, Tokyo 108, JAPAN
dbstract

This report describes the file system of SIMPOS, a prograoming and cperating
system for STM (Sequential Inference Machine). The file system, one of the
input/output medium systems, will provide permanent storages for data and

objectz in disk veolumes.

Table of Contents
1. Irntroduction
2. Volume Structure

2.1 Volume
2.2 Hegion

T

3. Data Storage
Az a File

1
.2 Specific Files

el Lad

4, Object Etorage
4,1 Instance File
b,2 Directory File
4,3 Directory System
File Manapger
£.1 Customer Interface
L.2 Deviee Interface
5.3 Process Structure

f. Further Discuszsion

1. Introduction

SIMPOS is a programming and operating system for SIM (Sequential Inference
Machine). It provides researchers with software development tools for lopic
programming. The operating systeo part of 3IMPOS has three layers: the

kernel, the supervizor, and the input/output medium syztems.

The file system is one of the ipput/output medium systems. It manages disk
storage. This report describes the conceptz and facilities of the SIMPOS file
system. The file system of SIMPOS has been designed to provide permanent
storages for data, cbjects, and knowledge. By permanent storapes we mean that
even if the system goes down, data in the storages will remain intact and will

be retrievable when the system iz brought up next tine.

{1) Data storage

The file system provides permanent storages for data, called file=, as in a
conventional file system. & file consists of records, which are the units of
i/o operation of the file system. Deta in main pegory i= written inte 2 record
in & file. Later the same datz cen be read from the record in the file into

main memory.

{2) Object storage

The file system also provides object storapes. Beczuese SINMFQS is based on an
object-oriented s=cheme, users may want to store objects they nave corested in
disk storage so thet they can be retrieved later. Fxamples of aobject starspe

uze include the fellowing:

o file

In a conventional file system, a file object (or a file descriptor)
is stored in a VTOC (Volume Table Of Contents} which the file
system deals with as a special file., In ocur scheme, the VTOC is
treated as an object storage for file objects, that is, a special

case of peneral cobject storages.

o user

Even in a personal computer, user information is necessary to set
up the system in a manner suitable to each user. 3uch information
iz described by user cobjects which must be permanent. With an
object storage for user objects, when a new user is catalogued, we
simply create a new user object, initialize it with given
information, and store it in the object sterage. Later when this
user logs in, the system retrieve this user object from the object

storage.

a node

When a computer is connected in a computer network, information
about each node is necessary. A3 with user objects, when a system
connects to another node, it can retrieve a node object describing

the remote node.

A5 these cxamples show, object storages are guite useful. Our file system

provides a general mechanism for storing and restoring many classes of objects.

A permanent storage for objeets is called an instance file. A progrzm can

store and restore an object in an instance file.

4 stored object may be identified by its name, as well as by its recording

position,

The directory file system is constructed so as to allow retrieval of

2

a stored object with its name.

{31) Enowledge storage

The file system will also support the construction of data and knowledge bases.
Since these are important in many application programs, especially within the
FGCS project, a file system is expected to support some of the =storape
management features reguired for their implementaticn. Although we are well
aware of this requirement, we will not fully incorporate it inte the file
system, because we have to keep the file systenm simple enouph to be developed
within the limitationz of cur time scale znd man-pewer. Given these
conztraeints; we feel it adequate for cur purposes to concentrate on the storage

and retrieval of data representing knowledge.

The method of storage depends on how the knowledge is poprescnted. It may be
represented as data, programs, or both. Objects give & good way to represent
knowiedge, becauze they can have both data and programs. For this purpose the

file system has cbliect =torapes.

With regard to efficient retrieval, databases usuzlly have orveellent
capahilities, whereas file systepms may not. A database system can only gilve a
user necessary information by creating a new relation {a virtueal file) from
existing relations. To provide this fzeility, 2 database must be equipped with
data dietionaries. It pust also have & indexing mechanism in order o
facilitate fast data retprieval., Our file system will provide a3 binder
mechaniam for this purpese. Using this nechanism, the user can construct
virtual files from pultiple files. It gives a kind of user view on Files, as

well az flexible record structures and accesszing modes. The binder mechanism

will not be deseribed in this report, as its design has not yel been completed.

2. Velume Etructure

Files are stored in a disk volume. In this sectien, the physical structure of
a volume is described. In designing the volume structure, flexibility, was

given priority over efficiency.

2,1 Volume

L volume (object) is defined to manage and access a physical disk volume. A
disk device is represented by a disk (object), which accepts physical ife
operations and controls the disk device. The definition of disks is

responsible to the device management of the kernel.

{1} Volume descriptor

aph disk velume has in its fixed area a volume deseriptor that contains
information desoribing the volume. It includes the volume jdentification, a
VIOC (Volume Table of Contents), a root directery file, and a free page pool .
Refore any i/o operation is issved to a velume, this volume descriptor must be
pretrieved to initialize the volume (object). This procedure 15 called mounting
2 volume on & disk. Also when a volume is no longer needed, it may be

dismounted. Class 'volure' has the following operations:

o To mount a volume on a disk
smount { Volume, Disk)
o To dismount a volune

:dismount({ Volume)

The logical structure of a wvolume is illustrated in Figure 2.1.

volume descriptor

e i e
F r
I i
- R
yToC ! root i
{(file file)| directory |
| File
I
1

S T S R

file

-

I
1
|
I
I
{
|
I
i
1
i
I
|
|
|
i
|
[
|
1
i
i
|
1
[
I
[

i ———

e e e e .

Figure 2.1 Velume Structure

{2) Page allocation

Disk storage is divided into disk papes ol fixed length. Scme of these pages
are uszed, and otherz are free fo use., A velume zllocates and de-zllocates disk

pages. Class "volume' has predicates such as:

o Te allocate 2 free page
tallocate{Volume, Page)
o To de-allocate a page

:dealloczte{ Volume, Page)

where 'Page' is a diszsk page address in the volume.

(3) Accessing

A volume delines read/write operations for the physical veolume., & block af

Lhd

data is transfered between main memeory and disk volumes. Only direct access to
a diszk volume is supported; a disk pape address nust be specified at each
sopess, Tt is not assumed that volume access is used by user processes. Only

the file manager (described later) uses it.

7.2 Region

4 region is an area of a velume that stores records. It consists of disk pages
2llscated to it from the volume, A& region object is defined to represent a
physical region ef a volume., Note that melti-volume regions (files) are not

supported,

{1) Region desepiptar

Each region in a velume is described by a region descriptor which includes
information such as page table and region size. The regilon deseriptor is
stored in an entry of the VTDC, as part of the file descriptor. The file
descriptor contains information such as the file type and record size, in
zdditien te the region descriptor. MNote that the VTOU ia constructed as an
instance file of file objects, and the first entry of the VIOC de=scribes

itzell.

entryd VIOC (file file)

| region des. | file des. !
] I

o e e - o S 1

0

1 i

o e . e e e e e e T T

1 = f ==
(P

1
|
|
1

Figure 2.2 VTOC (file file)

When 2 new region is ecreated on a velume, a new entry describing this region is
added tc the VTOC. When an existing region is opened, its region descriptor is

read to initialize a pegion object.

{2) Page table

Each region has a page table which maps the leogical page address space relative
to the region into a physical papge address space relative to the volume. A
page table itself occupie=s a2 page. 4n crdinary page table entry contains a
phy=zical page addres3 associated with it. But the last few entries contain the
addresses of the next level page tables, s0 that & reglon can be as large as
the user pleases, Figure 2.3 shows the logiczl structure of 2 page table. The
page size af a region is not fixed at creation, rather it can be increased

dynamically by allocating new pages.

page table = -

] !

_____ e i | [— I

| e e »1 dis’s page |

e == ! (used) |

i []] I

[| [1

- - 1 1

] I

e | ! disk pzge I

tm— | | {not used)} |

! ! i

I page table b

! — : i

) T - -
1 dm—

Figure 2.3 Page Table

(3] Accessing

A region (object) defines read and write operations for the physieal region. A
block of data in a region is directly accessed with a relative position in it.
A given position is mapped to & physical position in the volume, and a read or

write operation is issued on the velume with the mapped position.

3. Data Storage

% basiec data storage is provided as a file. A file is viewed as an ordered
collection of records; a record consists of many fields, each of which stores
an item of data. The file system provides a means for storing and retrieving

records in files, but it does not deal with fields in a record.

3.1 As a File

b file is an object which defines record access to a physicel file stored in a
region of a disk volume. The file system provides three bazsiec types of files
—— birnary files, table files, and heap files -- which have different record
formats, Fach file type has two accessing modes; direct access mode and
sequential access mode, both with positional and indexed accessing. The
general features of these files are defined as a class named 'as_file', which

iz inherited by all types of file classes,

(1) Creating and opening a file

When a file object is instantiated, it is not yel assgeiated with a physical
file on & volume. An open operation associates a file with an existing
physiczl file, and 2 create cperation creates a new physical file and

associztes the file with it. When all accesses Lo an opened or created file

have been completed, the file must be cleosed. When a physicel file i3 no
longer necessary, it can be removed to release its regilon pages. These

operations defined on a file are:

o To open a file
;open{#ifile,File,File Name}
o To create a file
rereate(#file,File,File Mame)
o To close a2 file
tclose(File)
¢ To remove a file

sremove(File)

'File_Name' is & string identifyving a file on a volume. The specification of

file names will be explained later.

(2} File puffer

A record in a physical file is read intc 2 buffer in main merory, and a record
data in 2 buffer is written into a physical file. A file buffer is zn cbject
eenteining an integer vector or & string (defined in KLO) for input/ ocutput
data. The rezson why we define 2 buffer chiect pather thapn use 2 vectar ar &
string directly, is that a buffer object hides how 2 record is constructed znd
gives the same interflace for all file eclasses. & buffer is defined so as to

heve the following cperaticns:

¢ To pet the record datz in a vector/string
rrecord_dota(Boffor, Rocord Data)

o To gpet or set the data size

:data_size(Buffer,Data_Size)

:zet_data_size(Buffer,Data_Size)

Other coperations will be defined depending on the specific file record.

{3} File marker

L record is identified either by the record position or by a key associated
with & record. The definitien of a record positicon depends on the type of
file, but in any case it corresponds directly to the loecation of the record in
a file, File accessing using a record position will be called & positional
access, and that using a key is called an index access. A file that allows an

index access is classified as an index file.

& file marker is an object pointing to or identifying a record in a file. When
accessing 2 file, a file marker is specified to indicate the record to be

acceszed, A file marker has two operations:

o To get the record position of the file marker
:poation{File Marker,Position)
o To set the specified record position te the file marker

:set_position(File Marker,Position}

Operations on a file involving a [ile marker include:

o To pet the beginning of Cile lile marker
rstart_marker{File,File_HMarker)
o To get the end of file file marker

;end_marker(File,File Marker)

10

Hote that the file marker is not updated even after the end_of file has been

changed.

(4) Direct acoess

Having defined a file buffer and 2 file marker, we can now introduce the
operations for accessing a file., A file accepts direct-access read and write

operations with a file marker such as:

o To read a record at the file marker
rread(File, Buffer,File Marker)
o To write & record at the file marker

iwrite(File, Bulfer,File Marker)
Some other operations on a file include:

o To add a record 2t the end of the file
;add{File,Buffer)
o To delete & record a2t the file marker

idelete(File,Buffer,File Marker)

In general, writing a record to a file requires the following sequence:

srecord_datalBulfer, Becord_Data),
2 Take out a record data vector or string to store the output
{ record data.
:set_data_size(Buffer,Deta_size),
¥ Specify the aize of the output data.
:set_position(Flle Marker,Position),
T 3¢t the output position.
iwrite(File,Buffer,File Marker).
§ Finally issue & write operstion on the file.

Heading a record requires the following sequence:
st _positien{File Marker,Pasitdion),

11

¢ Specify the input position.
:read(File,Bulfer,File_Marker},

g Tszue a read operation on the file.
srecord_data({Buffer,Record Data),

% Take out the record data.
:data_size(Buffer,Data_Size).

4 If necessary, get the data size.

{5) Sequential access

Sequential access is provided by a file tap. A4 file tap is an object which
maintaine the current access position in a file and accepts the read and write
operations at this current position. A file tap is created by requesting a

file in the following operation:

o To creste & tap on a file

:tap({File,Tap)

The tap is initially pesitioned at the beginning of the file. Internally, 2
file tap has a file object and a file marker. After a file tap has been

created, seguential access is requested by operations on the tap, such as

o To read or write a record st the current position
iread(Tap, Buf fer)

write(Tap,Buffer)

Each time & read or write operatien is performed, the current position of the
file tap is advanced to the next record position. It is also possible to read

or write 2 record without moving the file tap.

Tn addition te these read/write operations, a file tap provides several

predicates to contrel the current pesition:

12

o To note the current position
:marker(Tap,File_Marker}
:beginning(Tap)
rend(Tap)

o To point to a new record position
:move(Tap,File Marker)
:move_to_beginning(Tap)

:meve_to_end(Tap)

A file tap is illustrated in Figure 3.1.

file tap File (object) rile {physical)

trmmm =] l==z=z==2

v
file marker

= [u‘—..-.-..._......____:_______:::}

I o mm m mm mm mm e ——

Figure 3.1 File Tap

3.2 Specific Files

In this section we explain several file types provided by the file system.

Faeh is defined as a sub-class of a general file by inheriting class 'as_file’,

(1) Binary File

£ bimary file is a long string of fixed-lenpsth (usually one- or two-byte-long)
records., Each record iz identified by a record position within a file. If

records are byte {two-byies) leng, the record position is a byte (two-byte)

13

of fset within the file. & binary file allows consecutive records to be read or

written in a single access.

record
position 0 1 2 3

| data | I i i
I [} I [¥
] [I] i

Figure 3.2 Binary File

& smegquential access to a binary file is performed using a binary file tap. A
binary file tap differs frem an cordinary file tap in that it advances by as
many record positions as are accessed, rather than only by one record peosition

at a time,

[(2) Table File

4 table file is an ordered collection of fixed-length records. Since all the
records in a table file are of the same size, the [ile itselfl can have a record
zize information. When a file is created, the record size must be apecified.
Wnen an existing table file is opened, the data size of the file is given to
the table [file object. The physical record size is the same as the data size,
that is; each record contains only user=provided data. FEach record is

identified by a record position, as usual.

T4

record
position

0 | data !
[] I

1

Figure 3.3 Table File
A seguentiel access is performed using a2 table Tile tap.

{3) Heap File

A heap file is an ordered collection of variableelength records. A physical
record consists of & type field which specifies the type of the record (string
or vecter), a length lield which specifies the length of the record, and a dzta

field. The generzl structure of a heap file iz shown in Figure 31.2.

a®

record
position
0 | type | length | data !
[e e et i e e
1 ! ! ; i
| J— o m——————— L ————
2 | i |
TR B B
i |

= f =

Figure 3.4 Heap File

Since the records in a heap File are of variable-length, it is not casy to
locate & record simply Ly its pesition. When & pesition is given, the
speciflied record must be searched for sequentially fram the Reginning of the
file. Therefore, direct access to & heap file iz not preobable if it is

15

specified by the record pesition alone. We define a heap file marker as having
a byte offset, in addition to a record pesition. This byte offset is given in
a file marker when a record is created (appended). Then, making use of this

file marker, direct access to the record is really "directh.

A heap file tap is used to sequentially access a heap file. MNote that moving a

heap [ile tap to a desired position requires sequential =search.

{4) Index File

AR index file is a table file in which each record is associated with a key ard
it is specified by the key. Keys may be duplicated, that is, records having
the same key can be stored in an index file. 3ince duplicated keys are
zllowed, a key is not enough toc specify a record. The relative record number
among the records having the same key is 2180 necessary te identify a specific

record.

p physical index record, whiech is a physical record in an index file, consists
of a key field, a data lield, and link pointer fields. The link pointer fields
are used internally to chain records in a file. The size of these fields is
fixed so that index records can be stored in a tezble file. The physical record
size iz the sum of these fields, The internal format of an index file is shown

in Figure 3.3.

16

Cmmmmmm= pPegord 3ize —-———aa-3

! data H
------- o ————————
i [
I I
;

T [}
I [

Fipure 3.5 Index File

An index buffer has additionzl predicates which deal with the key field:

o To get the record key
rrecord_key({ Buf fer, Key)
o To set the record Lkey

:set_record_key({Buffer,Key)

An index file marker is an cbject that indicztes a record in an index file. Tt

eontains the current key as well as the current record position, Operations on

an index file marker include:

o To s=t & key
tkey(File_Marker ,Key)
o To mpet a key

rset_key{File_Marker,Key)

The behavior of a sequential acceas to zn index file depends on whether we
2llow key ordering. If keys are cordered, records cen be retrieved in either an
inecreasing or decrezsing order. For instance, te zllow key ordering, we have
to implenent index files as a BE=tree file=s. Howevepr, as it is fairly diffjicult
to implement B=trees, the file system does not support key ordering. On the

other hand, if kevs are not ordered, only records havine the same key can be

17

sequentially retrieved. Such an index [ile can be fairly easily implemented

with a hashing mechanism, and it will be provided in the [ile system.

L. Object Storage

This section describes the object storage facilities provided by the file

system. We will explain how to store and restore objects in dizk =storage.

4.1 Instance File

Ain instance file is a file for storing objects. Each object iz stored as an

instance record in an instance file.

(1) Instance record

4n instance record is & record containing suffieient information to restore an

object. An instance file is a collection of these instance records.

if all the objects ean be represented in fixed-length records, a table file can
be used to implement an instance file. We call such an instance file a table
instanece file. On the other hand, if the instance records in an instance file
must be of variable-length, a heap instance file is necessary to store them.
Since there are many classes in the system, the instance records for these
objects cannot be of the same size. FEven the objects of the same class may be
of different sizes. It is possible to store these objects in a heap instance
file, but as it is not easy to manage such files efficiently, we have avoided
their use, DBy placing some restrictions on objects to be stored, we can use

instence table files instead. These restrictions are:

18

o Each eclass whose instznees are to be stored in a2 file has an instance

file.

o All the objects of that class must be represented in fixed-length

instance records.

Operations for conversion batween an instance record of fixed-length P'crmat and

an object in main memory must be defined in each class. The [ile system,
assuming these conversion operationsz are defined, cells them when storing or

restaring an ebjeet. If they are not defined in a class, a store or restore

operation causez an error,

En instance record is identified by a record pointer, just as an object is

identified by an object pointer. & record pointer is itsell an object

containing & file where the instance record is included and & [ile marker where

this record is positioned, so that an instance record can be uniquely

identified in the system.

instance file

I record —+-———cesmeee=l]
| pointer —+=ca--s '
| | 1 i
! i
i

B B T e
instance
record

o e o

Figpure 4.1 Instance Record

(2) Storing and restering objects

& store predicate, which is an instance predicate, stores an object and relurns

the record pointer to the instance record of the object. A coding exanple 1=

19

given below.

:store({bject,Hecord_Pointer) :-
:decode(0Object, Instance_Record],
2 Convert Object inte Instance_Record.
sinstance file(Object,Inztance_File),
9 Get the instance file of the class of 0Object.
:add(Instance_File, Instance_ Record,File Marker},
g2 Write out Instance Record., The position of the written
f record is returned in File Marker.
:creata{#reeord,pointer,Heecrd_Pninter,Instance_File.Filq_HarkerJ.
¢ Create a record pointer identifying the instance record.

L restore operation is defined as a class predicate. IU takes a record pointer
and returns a restored object. A coding example is given below.

rrestore(Class,0bject, Record Polnter) :-

:file{Record_Pointer,Instance File],

9 Qet Instance_File.
:file_marker{Record_Pointer,File Marker),

4 Oet File HMerker,
sread(Instance File,In=tance_Record,File Marker),

£ Read in Instance_Hecord.
:object_class(Instance File,Class),

% Get Class of the objects in Instance File.
:new(Class,Objeck),

4 Create a new instance.
iencode(Object, Instance_Record).

2 Convert Instance Record te Object.

These two predicates are defined in class 'as permapnent_object'. A new class
whose instances are permanent can be defined by inheriting this class and

defining its own encode/decods predicates,

instance file

! record —4-—mm=—m=——- >

I
I
I pointer etesm==s !
I ¥ i "

[I £

L PSR, % S — !
| object l¢zzzz=====>] instance |
! | store/ | record i
restore |m—mm—————— ————

|

I

Figure 4,2 Staoring and Restering Objects

20

4.2 Directory File

An instapce record representing an object in 2 file is identified by a record
pointer, az mentioned above, However, it is not probable that a user would
remember this record pointer. Therefore, an instance record (an object) will
be able to be identified by its neme instead. A directory file system provides
a means for storing and retrieving objectz in files uzing their names

{represented as character strings).

(1) Directery file

& directeory file iz an index file that assceiates the names of objects with
record pointers. After an object is stored with its name, it can be retrieved
with the name, instead of with its record pointer. Class 'directery_file’

defines several operations, such as;

o To bind & record pointer with a neme
sbind{Directory_File,Record_Pointer,Hame)

o To find a record peointer with a given name
ifind{Directory_File,Record_Pointer,Hame)

o To replace an old record pointer with & new one
sreplace{Directory_File,Hecord Fointer,lame)

o To rename 3 name associated with a record pointer

:rename(Directory_File,Name,Hew_Name)

For example, to retrieve an cbject with 2 piven nzme:

ifind{Directory_File, Record_Pointer,Name),
% Find Record_Pointer with MName.
rrestore{fas_permanent_object,0bject,Record_Pointer).
% HResteore Object from Recorpd Pointer.

21

The directory file is {llustrated in Figure 4.73.

directory file

| name | record pointer
v ol - -

I
|

|
I
R ——
!

|
|
i

Figure 4.3 Directory File

{2) Directory file tree

Az any class of objects can be bound in a directory file, ancther directory
file may be bound. & directory file tree is, therefore, constructed. To
identify an object {(insztance record) from the root of this tree, a pathname is

used instead of a simple neme. & pathname is of the form, for examnple,

Udiplxdir2 *nane"

where "d4iri1" is the name of 2 sub-directory [ile of the root, "dir2" is the
name of a sub-directory of the directory file "dir1", and "name™ is the name of

the object specified, The objeet (instance record) specified by this pathname

iz i{llustrated in Figure H.4.

22

directory file [current)

! i | directory file {diri}
J— |

Pdirl] 4m==D i i directory file (dir2}
—] e et e . R instance file
H H i {dir2 | #=-=2 : !
- - - | =———— e | |mmmmmmdmma |]
! oo | name | #===dlemecmeeans]
- = - | [——. S| inst.reac. |
F
I

L
-

Figure 4.4 Directcory File Tree

A directory file knows the pathname convention and provides the fellowing

operations:

o To retrieve a record pointer with a pathrame
:find{Dircctory File,Record_Pointer,Pathname)
¢ To bind & record pointer with a pathname

thind{Directory_File, Pecard_Pointer,Pathname)

{3) Volume root directory [ile

Each volume has a root directory file. A1l the directory files on the seme
velume are undar this root directory file. When a velume is mounted, itz root
directory file is given. Using this root directory file, we can retrieve any

object in the volume with Lheir pathnzmes.

4.3 Directory System

In SIMPOS, the directory file syvstem is part of 2 peneral directory systenm,
which i= provided by the superviszor. This means that objects in liles can be

apecified with with pathnames just as iz done for objects in main memory. This

23

section gives a brief description of how the file system is incorporated into

the directory system.

(1) Directory

A directory is an index pool that associates objects with names in main memory.
A dircectory tree can be CFormed by placing sub-directories under a directory. A

pathname is uszed to specify an object in a directery tree.

The directory system maintains a system root directory and 2 process rcot

directory for each process. A pathname has two fornats:

o To specify an objeet from the system roct directory
g.g., "»ir1>dir2>nane”
a To specify an object from the process root directory

e.g. "dirt>dir2>name™

4 globzl object has the fellowing operations:

¢ Te bind an object with 2 pathneme
thind{Object,Pathnane)
o To refrieve an object with a2 pathname

iretrieve(ftas_global_object,Object, Pathname)

where glass 'as_glaobsl_object' is defined to provide an objecl with the
pathneme convention. A=z we see here, 2 directory object does not appear
explicitly; an object is identified only with its pathneme.

(2} Linking a wveolune

24

nen a volume is mounted, itz root directory file is restored. This volume

raoot directory file can be inserted into the directory system by a predicate:

o To link 2 volume intec a2 directory systenm

:link({Volume,Pathname}
For example, the operation
tlinki{Volume, ">diskis>volumel™)

associates the root directory file of "Velume' with the pathname

msdiskl»velumel®. Then, a file with the neme "diri»filenapel™ en this volume

is rebtrieved by
iretpieve(0bject, "adiskidvelunel>divi>filenanal)

Just a= a global object is.

{3) Permanent directory

When a directory file trec is inserted as a sub-tree of the directory tree,
permanent cbjects cén be specified with their pathmepes 1n the zape way as

globzal ohjects are, However, this appreoach has two problems:

o File access iz required every time an object in a directery file i=
retrioved,
o The zzme object may be retrieved more than once through 2 directory

file. This jeopardiges object consiatency.

L permanent directory is defined teo solve these problems. A permanent

directory hes a directory file as its permancnt storage. Wnen being retrieved

rd
LE]

through a permanent directory for the first time, an object is retrieved from
the accompanying directory file, and, at the same time, it is itsell inserted
inte a directory. Then the same object is retrieved from the directory, not

from the directory file. This technique circumvents unnecessary file access,

and also it prevents object duplication in the system.

permanent direciory ==---+
directory file

! name | obj.poeinter i v —
P ! mame | reec.pointer :
1 I (] []
f I - [s mm—dmsas s msm———
: I I R ——— : = : . :
! | i i f—m—— o e e i
- - | - i i 1 1
] 1] I 1
I - -] -
I b
v restore i
! perm.object |fz====s==z= v
! #mmmmmmm—we=| inpst,record !

i I

Figure 4.5 Permanent Directory

Generally, eazch directory file will be associated with a permanent directery.
When a directory file owned by a permanent directory has a sub-directory,
retrieving the sub-directory file through the permanent directory cresles a

permanent zub-directory.

5. File Manager

in this seection, we explain how the file system is implemented. The file
system is under the control of a process, czlled s file manager, whose main
task is te dispateh ifo requestsz from the customers to the deviee handlers, and
ifo replies from the device handlers tec the requesting customers. The file

manager has two interfaces, the customer interface and the device interface.

26

5.1 Customer Interface

4 customer is a process which reguests i/o operaticns on files. Fron the
customer's view point, all the ifo operations are performed on a file object.
However, internally, an operation sends a2 request message to the file manager

and receives a reply message from it when the i/o operation has been completed.

{1} Manager channel

The file manager has a channel, called 2 manager chanrel, for receiving
messages from customers. This chanrel is erpated and kept in a class slot when

the file manager 1ls instantiated.

(2} I/0 pert

A File inherits class 'io_pert', which is a special type of port. When a file
i=m instantiated, a file is connectec to the manager chanmel of the file
manager. When a customer performs an operatien on a file object, the file

object assembles & messape and sends it to the file manager.

customer File manager
0 _ {request) I
N i B et T T S R L
i P (reply) : |
F A T B P
io port manager channel
(file)

Fipure 5.1 Customer Interface

F.2 Deviece Interface

27

The device interface is an inteprface between the file manager and a device

{disk) handler,

(1) Interrupt process

A physieal device is controled by a device handler, which is an interrupt
process, An interrupt process is dispatched differently frem ordinary

processes, as follows:

o When an interrupt takes place, an interrupt process assoclated with
it is dispatehed by hardware.

o When a message i= sent to a channel that an interrupt process is
waiting for, the channel raises a trap to activate the interrupt
process,

o When the interrupt process finishes the requested operation, it

releases the processor so as to re-dispatch the other processes,

A device handler is instantiated and activated during a system boot-up

procedure,

{2) Handler channel

Each device handler has a channel, called a handler channel, te receive
messages from the file manager. The file manager communicates with the device

handlers by sending messages through this channel.

{3) Device port

4 volume {cbject) is a device port connected to a handler channel of the device

28

handler. An ifo operation on a volume is converted to a message to the device

handler.
file manager device handler

0 _ (request) _ o

—— I I_-n----—---—-———————} r : -
I {reply) : i

Fn e e Y
device port handler channel
{volume}

Figure 5.2 Device Interface

5.3 Process Structure

The file manager is a processz that executes the fellowing procedure,

o It receives a message either from the manager channel or from one of
the volumes (device ports).

o If the received meszage is from the manager channel, it is an ifo
request from a customer., The manager interprets this message and
requests a physical ifo operation on the volume. The volume then sends
a meszage to the handler channel.

¢ If" the message is {row & volume, it indicates the completion of the
requested i/o operation. The file manager posts it to the requesting

customer.

The intersctions among the file manager, customers, and deviee handlers ape
illustrated in Figure 5.3. Though not shown in this figure, many customers can
exist, each of which can have an unlimited number of files, and device handlers

exizt as many as physieal disk devices,

custocmer file manager deviece handler

- -
*

0 . {request) - 0 _ (request) .]
el T it R e B B 2l ==
| P (reply) ' P (reply) : H
F A T - et N T R et T Y
io port manager device handler
{file) channel port channel

{volume)

Figure 5.3 File Manager

L file manager is instantiated {created) and activated during a asystem boot=-up

procedure.

6. Further Discussion

We have deseribed the oconcepts and facilities of the SIMPOS file =ystem. Based
oh these concepts, we have completed the functional specification and
implementation as eclass definitions. Our adeoption of the class mechanism as a
programming and specification teool enabled uz a flexible and extendable
construction of the file system for a fairly short time {one year). The total
zize of the coded ESP program is estimated to be 3K lines, We are now cross-

debugeging the file syatem on the development system.

Facilities which are not included in this report include:

o Floppy disk files
Floppy files are defined as to have only limited part of the
facilities of [iles explained above,

o System boot-up disk
& system disk hes a boot-up region that stores CSP (Console
Frocessor of P31, a personal version of SIM) programs, PSI firocware

30

programs, IPL (Initial Program Loader), and sc on. CSP reads in
these programs during system beot-up. The [ile system supports
access to this region, so that these programs can be updated within

SIMPOS.

Works remains to be done on design and implementation in the following areas:

o File olase coercion
4 created file of a certain class is always opened as of the =same
class. However, it is sometimes useful if we can open a file as of
another class. File class coercion will provide this facility.

o File manipulator
L file manipulator is an integreted utility to manipulate files
uging & window.

o Binder mechanism

4 binder eonstiructs 2 virtual file from ordinary files.

This work will be started when our current implementaticn has been completed,

beknowledgements

Ve would like to thank all the memberz of ICOT 3rd, Lab for their contribution
to the design of the file system, and the implementation group for the detail

design.

keferences

[1] T.Chikayama, "KLO Reference llanuzl", to appear 2s ICOT TH.

(2] T.Chikayama, "ESF Reference Manual®, ICOT TR-UL, Feb. 198k,

21

[3] T.flattori, et al., "SIMPOS: An Operating System for a Personal Preleg
Machine PSTI", to appear as ICOT TR.
[4] T.Hattori and T.Yokoi, "The Concepts and Facilities of SIMPOS Superviaorn,

to appear as ICOT TR.

iz

