ICOT Technical Report: TR- 058

TR-058

Prolog-based Expert System for Logic Design

by
Fumihiro Maruyama, Tamio Mano, Kazushi Hayashi,
Tacko Kakuda, Nobuaki Kawato, and Takao Uehara
(FUJITSU Lid.)

April, 1984

1984, 1COT

Mite Kokusar Hidg. 2LF (4] 436-21G0 =5

H :{:] [4-28% Mita t-Chome Feles 1COT J32964
Minato-ky Tekvo 108 Japan

instifuté for _New Generation Comput'er Technology

Proleg-based Expert System for Logic Design

Fumihire Maruyama, Tamic Manc, Kazushi Hayashi, Taeke Kakuda,
Nobuakl Kawatoc, and Takac Uehara

FUJITSU Ltd.

Abastract

Building an expert system tc assist in hardware logic design
is one of the activities undertaken in the Fifth Generaticn Com-
puter Systems (FGCS3) Prcject. This paper describes the current
status of such an 2¥pert system.

Legie design invelves a varliety of aspects ranging frem
purely algorithmic processing te tasks that are heavily dependent
on designers' expertise., This system sxplores those aspecits by
incorporating desigrers' expertise, for instance.

Given a concurrent algorithm descriped in QOCCAM, the system
designs a CMO3 vcircult to aid the designer in the leogic design
process, OCCAM is a programming language cheracterized by its
Lreatment of concurrency. It enables the user Lo specify con-
current algerithms with great easze. The result of furcticnal
design, fthe [first half ¢f the lcgic design process, is a finite
state machine descripticn 1in DDL, =& nardware deseripticn
language. This is the first level at which the ccrrespcndence to
nardware ecncepts ceomes coubt., Circuit design, followed by CHDR3
design, the second half of the logic design process, transforms
the finite state machine deseripticn inte a CMOS circuit.

A prototype has been implemented in Prolcg. In the cocurse of
implementaticn, we evaluated Prcleg for its effectiveness as an

implementaticn language for a new generaticn cf CAD systems.

. Intreduction

The Fifih Generation Computer Systems (FGC5) Preject,
gaims at implementing wmore

Wwhich
intelligcent

cemputer systems, has
undertaken research in areas such as kncowledge-based systems and
knowledge representaticon. We ©believe that the results of this
rasearch will provide the basis for the future FGCS scftware sys-
tem.

Hardware lcgic

desigr was chosen as arn applivaticn argea Tor
“he following thnree reascns. First of all, the spplicaticn must
be in an area in wnich pumarn expertise plavs a sigrific
In r

e

S2cendly,

3

g zart rola,
gardware lcgie desigrn, only experienced desigrers can acnieve
good resuplts. our

target 1s a design system rather
diagncsis system. While

thersa
kncewledge-based diagnesis

systams

Lhan
are

a number ¢f successful
systems, few knowledge-Dased design
are in prastical use. This fact pcses the challenge cof
sxploring the many unkrown factors that such a2 system invelves,
Lastly, hardware logic design sncompasses a variety of aspects;
many typess of knowledge contributes to egxpertise in this
aus, it i3 possible for us

domairn.
te explore the wuse of sxpert
from varisus angles
Tne impleasnisticr lanzuasz is Prolcg. It is alsc being ussd
s the urderlvineg larnguage for kKnowledge
KErowledzs reprassnvatiosn Lz an

representaticr.
A sirgle multi-

surpsse framseworw for rvatior would be simpl=ast.

Howsver, =25 describ=d above,

cus winds cof

=
il
=
.

nardware lcogic design emplcoys vaEri=-
wrcwledge, and d2sign data must be reprasented 25
Irn edditicr, human desigrnars switch frem cne repressrntation
¢ ancther in the ccurse of their work,

Foer these reasons, we

have nct adepted any particular existing tecl fer knowledge
represencaticn. We hope that our appreach will result in an

affective new Knowledge representation framework.

2. Overview
The system covers design processes all the way from specifi-
cations deseribed in OCCAM [Taylor 23] te complete CMO3 circuilts.

OCCAM is a programming language cherastarized by its treatment cof

asrmourTancy., fstrictly speaking, we use OCC M-S, the "s-
axpressicn" version of (OCCAM, fzr interral expressions.) It

aranlas tne wuser Lo =asily specify concurrent algorithes. How-

sver, specificaticrs are not necessarily nardware-criented. In

iy

ather words, the user is nst reguired to dasoribs specificaticons
baszed ¢on hardware concepts.
Betwsen the stages of OCCAM specificaticns and CMOS circuits

is finite state machine descripuisn in DDL, & nardware descrip-

tisn languasge used in the intermediate design stage. It 1is at
this sStaze tnat tne correspondence with hardware concepts first

ccmes wo light. The system's Tiral cutput 1s CMOS basic cells,
wretieral ecells, and the corrections between ithem.
The svstem ccnrnsists of tan subsystems.

igure 1 =hows how

1% SUTSYELAETS

gl
L}
i
5
4
i
]
ch
|

ct
b)
1]
]
[
L8]
4]
P
L]
{I
]
i
]
Wi
1
L&
P
7]

furcticral desigr subsystem determines the applicatisr cf

narjware ooncepss ir implementing the concurrent slgeorithms, and

T1]. The state machire cptimizaiicr subsystenm inmspects the firn=-

ite state machire descripticr and makss madificaticrs to improve

it.

The finite state machine description in DDL 1s Bbehavioral,
not structural. (3trictly speaking, we wuse DDL-3, the "s-
expression" wversion of DDL, for internal expressicns.) In order
to design circuits, we need information eoncerning hardware
structure; this means that behavioral descriptions must be
transformed intoe structural descriptions. Here, the translator
subsystem plays its part. It generates two kinds of design infor-

A
Fod

Tl

matior: that eorcerning data paths and that concarrning oon
~ircuits,

sigr subsystem implaments automata,

[]1]

- . - . PO
e ocaniresdl SlrTulse 1

T

ir stetes, using flip-flops. It desigrs a czor-

o

aceording to th
trcl circuit arcund these flip=-flops acceording te informaticorn on

ate trarsition supplied by the translator subsystam. The dats

(%3

s
22tn design subsystem sllocsies data paths arcund functisral com-
perants, such as registers, memories, adders, arnd deccdars.

HBothn the data path design subsystem and the ocoritrcl ecirecuis
desizn subsystem generate lcogical sexpressians, whish are ther

implemented as combinatorial ecirecuits wsing CHMOS fureticrnsl

-2lls, It 1s not always possible to implemernt a given combirna-
terizl oirculy using 2 sirgle furcticrsl cell, bacause larzs
rells fail te meet the reguirements foar nign performance. 1ne

circuit deccmpositisn subsystem takes a logical =2xpressiosr =

or=2zgs it dswn into subexpressicns in such 2 way

prassicrn rcar be implemsnted by 2 singls o211l satisfyips ths par-
formzaros reguirzments, These subszipressicrns ars passsd —s tha

furcticral cell design subsystem, which creates a fursticral c=ll

for 2ach subexpression.

On the other hand, funeticnal components, such as registers,
memeries, adders, decoders, and I1/0 pins, are designed by the
hasie cell assignment subsystem. The subsystem searches Lhe basic
cell library for the appropriate cell to as5s5ign to the hardware
comporent. If cne is found, it is assigned to the hardware com-
ponent, pessibly with slight modification. Otherwise, the sub-
system either assembles a cell using basiec cells in the library
as comporents, or it attempts te deslgn one frem scratch.

Tne system provides z facility that optimizes the entire
CMOS circuit after the basic cells and tne functicnal cells have
=ssr zzssmblad, It =lsc provides & user irterface facility,

whnich is used throughout the design process under centrel of the

1r the gesigr proecess the system expleres 3 variety of
design aspects. In the course of this exploration, the techrniquses
applied range from algorithmic appreoaches to krnowledge-based
apprcaches. We describs several of thess techriques in the fol-

swing secticns.

=

3. Fumcticral Design

Funeticnal design can be thought of 2s the phase of desizn
tpat dspsrmines thne type of nDardwars COmMpenents required ard
f

4qesarisss thaeir irteractive pehavisr. The primary funciisrs 2

urcticral desigrn subsystem are as foliows:

By

Lne
1} Implemerting variables jescribed in OCCAM-5 using hardwars
slemerts (registers, gte.}.

2y Dasigrning harduware corntrel mecnanisms far AGLELIUCTS
desoribed 4irn 0CCAM-3 (SER for sequertlal Drofessss, PAR Tor

parallel processzs, sto,]

3) Implementing communicaticn between processes described in
QCCAM=3, {7 for inputting a value from a channel, ! for output-
ting a value Ltz a channel)

The epd result of the functional design subsystem 1is a finite
state machine description, whieh is further improved by the state
machine optimization subsystem.

The functional design subsystem is orne of the most
kncwledge-intensive parts of the system, Figure 2 shows its four
design lavels agrnd the feour processas thsat link them,

1} Cogrnitive Prcocress

Tnis process takes the entire specifiestisns lesvel intc
aecgunt, makes dedustions cconcerning the inhersnt pature of the

lens 1n the Working

1
¥
"1
1
e
ot

nt glgsrithm, and stores Lpess deduc
vemsry in the form of high-level concepts deseribsed in Pralez.
2) Cnecking Process
Tne deducticns menticned above are generic in that the oog-
nitive process takes place in no particular corntext. The checking
process makes a cornjecture in reference Lo Lhe wWorking memory,
goes back Lo the specificaticns level, and checks whether it is

rus. If sc, the checking process puts it intc the workirg

T oo g = - r -
3} Trstarsiztisr Srarass

(92
-
i

Inls preeess irstantiates the high-level concept in

Prirg memcry ard puts partial DDL-S deseripticrs into the

=
¥

k) Ceornstruectisr Pracess
Tne partial DDL-3 descriptiors in the draft are finally

ciea,

assemblad inte DUL-S

fa

The fellewing is a reough sketch of how this subsystem works.
As an example, we use thne pattern-matchlng chip proposed by M. J.
Foster and H. T. Kung [Foster 79], Figure 3 shows part of 1its
algorithm. Here, concenirate on a part cf it:
[par, /% following input processes are exacuted in parallel */
{input,pin,pl, /* from the channel pin to the variable p */

[input,sin,s]] /% frem the channel sin to the variable s */

L)

™k

1]
i3

ccgritive process takes The whole structurs of the =21g
f

rithm into sccount from a hardware perspective. It deduces, lor

irstarce, that {1) ought to be implemsarted 2s a state. In due

eourse, input, pin, pl] is recognized as an 1nput operaticr, and
furthar, as a passive cpzratiorn, 2s is finput, =irn, sl. The fol-

lswing two deductions are put intc the Wor King memeory:
passivg_cperatinh({itput, pir, pl,...0.
passive cperaticn(linput, sir, s1,...0.
By "passive operation" we mean an cperation that is net called
innarrally.
On the other hand, the chscking process makes the conjecture
1at {1) may be an idle statz, by which we mean a state in whizch
the asutomaton waits for 2 sizral from the cutside every time it

ssmes DETH tiars, wWish thn2 xnowlsdge Th=l

foar & sari=s o7

n

= e
-

5 state can be an idle state if it is the only passive state, the
cnzaking process checks whather (1) i3 & passive state in refar-
arge te the follcowing knowlsdgze:

passive_state([par ,Xi¥],...):-

passive cperaticn(X,...), 1.

passive stave(lpar,Xi¥Y],...0:-

passive state(lpari¥],...).
In this way, the checking prccess finds +that (1) is an idle
state:
idls_state([par, [input, pin, pl, [input, sin, s13,...).

Once the working memory is completed, the instantiation pro-
ce2s55 begins to generate partial DDPL-3 deseriptions., (1)} is
transfsrmed intc a partial DDL-5 deseription, the definition cf a
state, using the folleowing instantiation knowledge:

idle_state_instantiation{X,...):-
idling ecndition(X,Y,...},
acticn(X,2,...),
assert(state([idle,Y,2],...)).
The ecorstructiosn proocess zssembles Lhe partisl U

descripticns stored in the draft arnd produces the firal DDL=S

b, Circuit Design
Circuit desiegn stands petween functiornal design and CHOS
dezsigr, arnd provides gll the information recessary [or designirng

cHMl% Puncticnzl cells and assigning basic cells. This section

-2plects this oy citing a few examples.

Trne crarslator sunsystem transforms tne DDL-% finite state
marnire descripiliosrn ints desigrn informatisrn for the circuit
igr process. It gatners and edits cornditicons for terminal con-
nectior, register transfer and state trarsition cparaticrs: it
then orgerlzes this data irn a freame-like structure,

The translatcr subsystem, which was implemented in Prolse,

generates this information while parsing the DDL-S code. If we
had used a language like PL/I instead of Prolog, a translator
generator would have been indispensable. Using Prolcg as Lhe
implementation language saved a considerable amount of work.
Roughly speaking, 2all we had to do was to write Hormn clauses in
keeping with the DDL-5 grammar. The extracted information 13
olassified into eight categories of hardware components, arith-
metiec data, and data about logical expressions.

811 legicsl expressisnps zre givern unique rames Lo prevent
their arbitrary duplication by combinatorial circuils. The
sopurrances of each logical sxpressicn are counted apd used s
datermine which 1logical expressisn to implament as =2 CTHMOS fune-

tichal cell.

4,2 Contrsl Circuit Design

In this secticon, we discuss tne lmplamentation of automata,

We use 3 very simpls comput2r as an example, The DDL
description of this machine is sheown in Figure 4, Figurs 5 1s 2
skeleton state diagram for an automaton CPU.

There are saverzl appraachss ts implemerting this f-state
mashine, 4t least thrs=e flip-flcops are reguired, although this
poirt is also subjesct vo discussisr, as wWwe Will se2. AT The
athar sxtrema, w2 might use sight flip-flops, cre for each state.
Tnis state assignment greatly simplifies the desigr process, but
this approach is probably uneconomiczal.

i second approach mighit be t2 codz zight states Lric Larae

R
T Lig=

iy

lzps. This zpprsach might »roduce tne most dasiraplie Con-
trecl cheracteristiss. Figure & snows zn instarce Cof sucn a oon-

Lrsl cirveuit.

3till apother approach recognizes that the setting of the
high=-¢rder =six bits of instruction register (IR) reflect a
specific value for each instructicon type and thus can be used Lo
distinguish the executicn states of the CPU. We might build a
Y-state 2-flip-flop machine with state ADS, IFT, DEC, and a new
state EXC, When this 2-flip-flop machine is in the EXC state,
the actual state of CPU is determined by the setting of the
high-order six Dbits of the IRE. In this case, the state diagram
is modified as shown in Figure 7 and the control circuit is modi-

fizd @as shown in Figure B. This approach, described in "Leogie

vezigr of Digital Systems® by Dieuvmeyer [Dietmever Ti1], is cofcern
vary effective, Circuit desigrers deal with a great desl of
suth Binds of ygrowlesdzs

This knewledge, however, is nst alwsys appliczbls, For

cxarple, the last apprcach is applicable if ard orly if fellowirg

I'sur gornaicticrns are satisfi=d:

i} If a2 state branches, the transiticn betwesn 1t ard the
Subsequs2ni state is indicated by the valus ip the ragister
(here, IR).
2) The subsequent state has ne cther predecessor.
3) Whern state transition cecurs, the register valiue is wupafi-
factad,
£} In the subssguent state, s2lf-recursive transition

whnich charnges Lhe contents cf register is not exist,

A Prcleg implementaticon ¢f the last aoprsach 13 shown irn

rigurz 9. Tne pragram has a structure similar L2 the abcve cor-
dizizrn, =25 indicated by the cerrespondirg rumbers. Ik ths oDro-

gram, "for" 1is a predicate like a "map funetion" in LISP, which
allows us to legibly express processing on all the elements of a

list.

4,3 Design of Functional Components

There are two extreme automatic alleocators for functional
compsnents: a distributed allocator and a central allocator [Thoe-
mas 83)]. The former adds a new functional component for each
urique reference in the behavioral description. The design that
it givas is expsrsive. The latter tries to map all rafarances

rte a structure with 2z single functiernal component. While such

s structure mizht be adequate for a simple computer system, it 1s
rct rescassarily the optimal one for any digital system, espe-
cially 3 large one.

Thnis system is capable of judging whether to add a new func-
tisral component or to map onto a structure with & single func-
tizral componsnt on a case-bpy-case basls, by shecking whathear 2
comporent can be requested from more than one cperaticn at Lhe
same time.

N=w, we describe design cf a functicnal componen itself,

takirg a decoder as an example. The specifications for a decoder

ra

L]
:'1
La
s
e
[

of Lwo items: irput ard the walues inte whlen 1t 1s

L
K]
is
L]
L
i
P
&
o

zenerzl, an r=bit decoder reeds ar r-irput zate for

2320 zutput line, and the size of a full r-blt decoder is prepor-
tizral ta 20, Whether we design ar rn-bpit decoder using n-input

stes, or assign a basiec cell to it, it is ofter much larger than

i

jrdier nertain corditicrs, we can make it considerably

T
il
Py
b
]
u
1]
e
.

The fzllowing rule deals with such a case., The idea nere isg

- 10 -

that, if the number of wvalues into whieh the input is to be
descoded is limited to a small number and the other wvalues need

net be taken into account, those walues need only be dis-

o
tinguished from cone ancther.

IF

The number of the values to be taken inte account doces not
excaed the number of bits in the input,

THEN

1) For =ach value that is the only values with the ith bit o=
(fzr scme 1), conneect its sutpubt line with the ith input line,

£2) For the cthers, ceonnect their cutput lires with gatazs sz
that they can be distinguished from the cthers.

Figure 3 gives an gssmple. An IH deocgcder {8 2aswh a2t Lhe

botcow of the figure. Step 1), abcve, i3 applisd to the values,

4, 8, 15, ard 33; step 2} is applied to 32.

5. MO3 Design

This sectisn discusses the implemerntaticn of a random lazice
furetiern or arn array of CMOS transistors. 4 heuristic algorithm

nat mirimizes the array size is presented.

The basic laysut of a funetiorel cell is illustrated in Figure
10, starting {rom the AND/OR {(sum of praducts) lszic specifica-
tisr. AND/OR gates ir the 1lgogie disgram correspond 4o Lhs
geries/parallel connectisns in the circuit diagram, Tt is quite
elzzr tnat for 2very AND/OR spacificatior of a Bozlearn functizr,
tre cal cbhLalr a s2ries-parallel Ilmplementation in CMOS tschncl-
SEZy, in wnlen whe p-MUS side and r-MOS side are eacn ctners dual.

Pnysically sdjacent gates can be connected by a diffusisn

[FE]

arez. Tne layout can be further improved by judicisus pairing sf

1Lk

sources and drairs. A separation is required when there 153 no
connection between physically adjascent transistors, as shown in
Figure 11. However, the bDest results are obtained wusing the
alternative circuit shown in Figure 12(b). This circuit is logi-
cally equivalent to the one shown in Figure 10(b). Since both the
cell height and the basic grid size are functicrns of the technol-
ogy employed, an optimal layout is obtained by minimizing the
number of separaticns. Firally, ¢the lavout o2f the functional
=ell can be optimized as shown in Flzure 120d). Tne size = <his
array is smaller tharn that ¢f the basic layout by almost 50%.

Ir ordar to raduce the array size, it is necessary to firnd =
pair ¢f Huler paths (that is, an edge train which contains all
the edgaes of the graph model) or the dual graph madel, witn o2
same sequence of labels, because p-type =nd n=-Lype gabes
corrasponding to the same input signal have the same horizontal
pesiticon in the CHMOS array. Since the graph-tnecretical aslgo-
rithm te cbtain the best sclution is exhaustive, the fsllowing
neuristic algorithm has beern propesad [Ushara 271:

Step 1) To every gate with an sven nrumber cf irputs add 2

"pseude™ input,
.

tep 2) hdd this rew input to the gate sucn thnat the plarar

interlacing of "opseuds" and real irnputs. The wverticzl

theose at the Lop or bottom, corrsssend Lo separatish

arsas,
The mirimizatisn of the saparaticorn areas <can bes performed

- 12 =

using a legic diagram which clearly shows the structure of the
series/parallel graph.

4n algorithm for constructing a minimal interlace is imple-
mernted in Prelog, =as outlined in Figure 13. Figure 14(b) is a
conceptual model of the logic diagram shown in Figure 14(a). The
black and white triangles correspond to real and "pseudc" inputs,
rezpectively.

Triangles 1, 2 and pl in subtree T1 are rearranged by the
glgerithm, The result iz represented by a2 single triagngle with 2
white tcp and black bottom{"white-black") because the colar of
the tap triangle, pl, is white 2nd the color of the bottem trian-

gle, 2, i1s black. T2 is similarly represented by a new triangle.

in

A ngw model i3 then cotained as illusirasted in Figure 14(d). Th
grrangemanrt of subtree T3 is shown in Figure 18(e}., Hote that T3
iz represented by 3 white trizngle because the teop triangle, p3,
i5 white and s2 i= the bettom of triangle T2 in Figure 14{(2). Ths
final rearrargement of the Lree i1s represented in Figure 1H0T),
In the 2rnd, we sbtain a lpgic diagram with ar ircput ssguence
characterized by minimal interlacing, shown in Fizure 14(g)
T01,2,4,31 [2]]. This seguerce shows the separaticn detwa2r the

twe sublists.,

Fart f the mirimal irterlace glzsristhrn, whisn 13 ifxoplzzantes
ir Prolsg, is shown in Figure 15, The geal, minimal{L0OG Z¥P1,
Lo _=ZXP2, COLIR) ms=ans that applyirz the mirimal interlace =zlgcoc-

rithm to the given logical expressicn, LOG_EXP1, vislds the lsgi-
cal cutlput expressisn, LOG EXP2, and its cclor, COLOR. We usze
"out™ cperatsr to control bavkiravking ie the rule mirimal., BRulie

(2, (3) and (#4) are used to choose an element whose ozlar is

"wnite-black". The pgoal, minimal, in rule (3), checks whether
the color of an element is "wnite-black". If the color 1s not
"white-black", rule (4) is applied, selects a "white-black" ele-
ment from among the rest.

If the "cut" operator is not applied to the rule minimal, pro-
gram execution will be erratic when an glement's color is not
"white-black". This is because, the goal, ccler_set (which uni-
fies the variable, COLOR, and the constant, white black) fails,
the Prelcg system triss to resatisfy the previous goal,

rest black&wnite_select, that has already succeeded. Howsver,

by

in tnis csse, "cut" speration allows the entire set ¢ zoals inm

ririmal to fail at once and no attempt is made to resatisfly pre-
vicus goa.s. GConssquently, the Prolog system sslecis ine last
rule (4.

This jemcnstrates that Prolog, in addition to being 2 suitsble
language for knowledge description, can be effectively used to
dascribe heuristic algorithms.

We have presarted a systematic method of implementing random
logic functions using functional cells, Components sucn &s regis-

ars, memsries, decoders, adders, and I/0 pins are assemhled from
a librarv sf basic cells., 3Since these cells are of the same
q=ighi, =nd have ths sane power Conraciicons arnd s=ardardized con-
nectizn points, they can be readily ircerporated inte existing

autcmatad layou:t systems, as shawn irn Figure 16,

. Conclusicn
Using Prolog, we have implemanted a pratotype expart system
for lggic desigrn. From this expsriernce, wWe have learned that 1t

is psssivle to ecomstruct an intelligent CAD system using a

- 14 -

knowledge-based approach. Morecver, Prolog appears Lo have the

ability both te succinctly express algerithms and to effectively

represent knowledge.

Aaknﬁwledgement

This work is based on the results of the R & D activities of
the Fifth Gensration Computer Systems Froject. The zuthors would
like to thank Dr. K. Furukawa of ICOT (Institute for New Genera=

tien Computer Technelogy) for leading them to carry out this

{Taylzsr 53] Taylor, R. arnd Wilsen, P. "OCCAM: Process-orierted

= oA L I L I | . - - - '
e =xmeesls Zemands of distributesd processing" Zlectronics,

i

Waow, 30 (1983,

[Diztmeyer 71] Distmeyer, D. L. "Logic Design of Digital Sys-
wams" Allyn arnd Baseon (1971},

_Fester 7931 Feoster, M. J. and Kurg, H. T. "Desizn of Speciazl-
Purpcse VLSL Chips: Examplz and Opinicns" CMU-CS5-79-147 (1§79).

[Tnomas 83) Tnemas, D. E. 2t al. "Automatic Data Path Synthesis"

-

[21

2 Computer, Vol.1%2, HNe.12 (192837,
_Uszhara 31] Uehara, T. and vanCleemput, W. M, "Optimal Lavout of

e - L

Ll TR - . P b — TETT = -1 3 . = : 2|
YOS Functignmal Arrevs"™ IEZZE Trarns, Vol,Ze3d, H2.35 019313,

Gopcuezeac algszizng (gooadd

—
Trmeminmal -esisn IuseTasis |
|
1
! -
£d deehica Zpiimigaziemm Zubgvoiiom

[s.
v 3ia
 E—

Figiea fercz Machdze (DDLD

PEAR gomp LLCHAN pin, s5in, poub. asut, Asuth =

i
| -
|
i J

Bagie Gail Assigmmest F_ : omal Cail Deaigs
JumETETES ! taz | : :
‘M.“ —//l
H‘\'\ e {pruc, eoap, [{enmn, pin, sin, PoUT, F9ue, 1aul, g,
\‘"\. — iLwar, p, sl.
0% Opeisi=zsciom L:Eq.
Fawaces Czar,
e "lagzizm, =, 20,
i [assign, s, Dl].
i Lwnile, Trus
i [saa3.
1 [a
lz .
2Ly
I = E i - s e .
Figass | Sazem Cansigenacion [Teaval, 5. 8111115

ithe f2r the Pattern=Yatzhing Chig

i Braign
Speeificaticng Vorking Hemeory o tealt __ lwealp
Crogniive [patantlakhom ot Constructlon
1:: @ Frocesd [I-ETLNRR LN Traceoss
| frocess | . — — 1 X S
e — - — |
OO h -5 High-Leval -
Cymncepi a
Checking
PL‘ICIE'E"S:S
:.-'—:_
—
Flhiguen 1 Cwipest Do ol Bl Fonelilunal Wealpn SubaysEem

. L <(1035,
staragar m{ 1024, 141,
regicnary acoy$AY), iruB), zecli0), lac{100.

e A apuizla:

O I -
T
BN
TAdw gl
N -
L=
ac=
#7Z
=55
. -
a - 223
oe Sl e, =1 LZE
a
L
Clmivma 3 Tlmm® s Ti=maim 20
[
T
[T
|4
i
)
it .
[l MENET]

RSN
SR
TR

b i

ITHEERIE |1..

TR T
-P'CLI-’IM-'J:U:-\.HE --'I-._,-I

next states{State, Hert statral,
far T{% in Hext states]

set_ol(Y, (transition_copndition(3tats, Hexl atales, Aegister),

unlgqus predecessor(X, Statel,
yralfected] Stace, ¥, Register),
uraflected(d, X, Registerl}),

¥ = (¥, Conditiondy,

),
update table(State, I).

Flagwre 9 Mroiog prograe ”

Tigure

¥
)
s

ar
as
at

-Gk

(-t
N

[apreved 3tace

(A1)

e
En
ki

B

1=| F -

iRl
E 5 /K "‘. 1
’*ﬁ'qﬁ N i (LI L W | N— It
I '\ &r’l f l“E:;‘_‘E--: TN T T
r-l n | \‘."-h 1'(\1 .-"'; i d

1
|
== 2fa . =
a—p =P @ ‘ﬁ"ﬁ“l _ e
13 \/ Ef:—_frﬁiﬁ L
I - B, Tl =
Ippy T:I TR
s | =l || ll==) |
=n —n Yoz =~ =1 L = TR
| I+l il i i s i el
L inl

Figure 10. Basic lavout of the functional cell.
(a)Llogic diagram (b)Circuit (c)Eraph model (d)Llavout

T - K-«s
! 1 1 i

I
[«EH]

e
0 00 -

Tt miii

[T IT] [Rram—
D el .
il

rigure 11, QOetimization of lavout.
ﬂ.'
_ =

i {al
-

F1
1
I

"
3

=
I
g ﬂgi
1—“_?_-'—:?_ /.f “"\
[— I \T/ % i | e
| I’ 1 f
= _r____-_"_"_i in 11 1% bnoiy
i v o
\ S | —
Mg AW T s
55 Vi UL =1
— s{aiuisiuf=
3§ d tes ﬂ ‘E-' LT
N“ = H |'
7_“_'%;? o n! ']
T Il
4 b

Figure 12. An alternative circuit and optimal Tlayout,
(a)Logic diagram (b)Circuit (c)Graph model (d)Layout

minimal:-

white_select:

Select every white triangle
in the list,

nn&_hlaﬂk&whitc_sslett:-

Jelect
put 1t

en top.

black_selest:
Salect every hlack triangle and put it
the list.

rast_hlackiwhite_selecti=-

anly one Glackdwhite
in the list with the

and put it

An exatpielff list,

triangle and
white part

in

Add the reaaining triangles te the list ia
such 3 way that their top parts alteraats

{black,

color_set:-

Oeterpine the list colar froa
@ LOG-ZXP2,

Figure 13.

P1 =~
P% - !—:)—I_
P% ----- — -'-_-\"\
P —mm——————— - —_
{a)
Pli ;; 1
l
2
P2 2 N\ T2
3
&
73
T
5
P4
{d)

black.

wiita,

Hinimal

eic.).

(n)

P23
PL

1 T1
z

4 TZ
3
P2

{e)

T H-LIST.

itntarlacs

I3

>
>«
S [
;} G
< s
;?. &y
>
>
™.
r’
>
@ 4B-LI5T. & B-LIST and
algorithm,

Fo Eh\\x_q
Fp— =
(e)
Pi
Pi
1
=
2
&
3
P2

T3

T2

"'33 --_h__‘_l

s

Figure 14, Examplie of applying the minimal interlace algorithm,

minimal{ LOG_EXPI, LOG_RYP2, COLOE) :=
white_salect (Loc_gx?1, [1 . W_LIET , REST
one_hiackiwhite selest (REIT L
hlack_selecst (i
rest_blackiwhite_selest (RE373 ,
coler_set (W_LIST, WB_LIST. B_LIST, Lag_gIP2, %}. LR T TR U TR PR

one_blackiwhits selest { [J ., [J1., LIST . LIET). - - - {2
one_blackdwhitz_select ([¥ T3], LIST . HEW_LIST, T):-
ainigal{ 3, X _;{- . white_hiack},
sgead (LIST , (MEW_3» , NEW_LIET) me s s s e -3
one_Siackiwniczs_selecs (131 T:. LisT . NEW_LIST ,[#;Talli):-
gne 4izckkwaize ssiezz (T, LIZT . ¥3¥_LIZT .Talll., ——— - G

Figure 15. Prolog implementation of minimal intariacs algoritha,

F

b e

-

-

po-rerlfl.n:'nﬂw:nllll __I_llll
ik -

\FF 1=

I |

I L [

-

[

|

i

= =

e e

|
e

C

Figure 18. Example of a row-based layout scheme,

