ICOT Technical Report: TR-057

TR-057
OVERALL DESIGN OF SIMPOS

(Sequential Inference Machine
Programming and Operating System)

by
Shigevuki Takagi, Toshio Yoko,
Shunichi Uchida, Toshiaki Kurokawa,

Takashi Hattori, Takashi Chikayama,
Ko Sakai and Junichira Tsuji

April , 1984

© ICOT.1984

Mita Kokuzar Bldg. 21F {040 456410 ~ 7

“ :D I 4-28 Mita 1-Cheome Todes TULKT _|."'_..2'!-'rl'-i-{

Minato-ku Tokve 108 Japan

OVERALL DESIGN OF SIMPOS
(Sequential Inference Machine Programming and Operating System)

Shigeyuli Takagi, Toshio Yokoi, Shunichi Uchida, Toshiaki Kurolawa
Takaehi Hattori, Takashi Chikayama, Ko Sakai, Junichire Truji

ICOT

(Institute for New Generation Computer Technology)
Mita Kokurai Bullding, 21F.
4-28, Mita 1-Chomas, Minate-ku, Tokyo 108 JAPAN

ABSTRACT

As the first major product of Japanese
FGCS (Fifth Generation Computer Systems) pro-
ject, Personal Sequential Inference Machine
(Psi or %) is under development. Here we
describe the design of the ¢'s programming
system and operating system simeos, its
major language ESP (Extended Sell-contalned
Prolog), and the development tools.

The major research theme of ¢ iz to
develop a logic programming based pro-
gramming environment including system
programs.

The basic design philosophy of siMPos
is to build a super persvnal computer with
database features and Japanese natural lan-
guage processing under a uniform frame-
work (logic programming) based system
design.

At the end of March 1985, we will be able
to thow that the logic prosramming based
operating /programming system is working
well and has a good human interface.

1 Preface

As the first major product of Japanese
FGCS praject, ¥ i3 under development. Here
we describe the overall design of #'s Pro-
gramming System and Operating System
called smPOsS, its mejor language EsP, and
some development tools.

The major ¢ research themes are to de-
velop:

0 System programs in logic programming,
¢ A programming environment for logic

programining.

% is the pilot model of the FoC5 soft-
ware development. It is a high-performance
personal machine and will be used as the
research tool for the FGCs project.

The hardware and firmware design of ¢
was completed at 1cOT, and the first pilot
model has already been manufactured. Its
firmware debugging has been finished in
March 1984. Installation of SIMPDS was
started in February.

SiMPOS has 5 basic design principles.
They are;

@ Uniform framework-based system design

A single uniform PROLODG-like logic pro-
gramming based framework covers all
of the machine architecture, language
system, operating system, and pro-
gramming system.
¢ Personal iuteractive system

We hope ¢ will be one kind of per-
sonal and very highly interactive com-
puters similar to many super personal
computars,

o Database features

PROLODG has database [acilities that can
easily conform to relationzl database
systems. We hope to construct a new
programming system and a new operat-
ing system that fully uses the database
features,

o Window features

In order to facilitate high level inter.
action, ¢ uses a bitmapped display and

a pointing device.
o Japanese language processing

All computers until now have been
based on Western cultures. This is a
major disadvantage for peoples of other
cultures when they want to use com-
puters. Everyone should be able to use
computers in his own tongue. So, the
Japanese should be able to use com-
puters in Japanese.

siMPOS consists of a programming sys-
tem (Ps) and an operating rystem (0S). OS
consists of & kernel, a supervisor, and I/O
media subsystems. PS consists of subsys-
tems called experts. PS subsystems are con-
trolled by users, but there is a need to coor-
dinate the subsystems or processes. This
task is accomplished by the coordinator
subsystem.
All the other subsystems are:
Window (0S),
File (os),
Network (0S),
Debugger /Interpreter (PS),
Editor/Transducer (PS),

Library (PS).
: EBP
2.1 Overview

smPos is described in & user pro-
gramming language called ESP. Programs
written in ESP are compiled into KLO. KLO is
the machine language of ¢ and is & PROLOG-
like logic based language with several ex-
tensions.

As based on a PROLDG-like execution
mechanism, ESP naturally hes many of
the features available in FROLDG. The im-
portant ones among them are the use of
unification in parameter passing and a tree-
search mechanism based on backtracking.

The main features of the ESP language,
except for those in common with PROLOG-
like languages, are:

o Objects with states,
o Object classes and inheritance mecha-
nigms, and

o Macro expansion.

The assertion and atom name database
features {assert, name, etc.) are not directly
available, though lower level features (array
access, string manipulation, ete.) for imple-
menting them are provided.

1.1 Objects and Classes

The control structure of ESP is basically
that of PROLDG: AND-OR tree search by back-
tracking. However, from another point of
view, an €SP program is constructed in an
object oriented manner.

An object in ESP represents an axiom
set, which is basically the same concept
as worlds in some PRAOLDG systems (M. Van
Cageghem 1982). The same predicate call
may have different semantics when applied
in different axiom sets. The axiom set to
be used in & call is specified by pasting an
object as the first argument of a call and
prefixing the call with & colen ().

An object may have time dependent state
variables called objeet slots. Values of slots
can be examined by certain predicates using
their names. In other words, the slot values
define a part of the axiom set. The slot
values can also be changed by certain pred-
icate calls. This corresponds to altering the
axiom set represented by the object. This
is similar to assert and retract of DEC-10
PROLOG, but the way of alteration is limited.

It seemed to be difficult to us, if not im-
ponsible, to describe an entire operating sys-
tem in pure logic without any built-in no-
tion of time dependency. As many of the
currently available ideas for the building
blocks of an operating system are based on
the notion of state, much more investiga-
tion is required before starting to write
an entire operating system in pure logic
(this approach is being tried by Shapire (B.
Shapiro 1984)). This is why object oriented
features with side effects are introduced into
ESP.

An ESP program consistt of one or more
class definitions. An object class, or simply
a class, defines the characteristics common
in a group of similar objects, i.e., objects

which differ only in their slot values (only
values; slot names are common to the ob-
jects belonging to the same class). An ob-
ject belonging to a class is said to be an
instance of that class. A class itsell is an
object which represents a certain axiom set.

2.3 Inheritance Mechanlim

A multiple inheritance mechanism similar
to that of the Flavor system (D. Welnreb and
D. Moon 1081), rather than the siongle in-
heritance seen in Smalitalk-80 (A Geldberg
and D). Robson 1083), is provided in ESP. A
class definition can have a nature definition,
which defines one or more super classes.
When = class is & super elass of another
class, all the axioms in the axiom sget of
the former class are also introduced into the
axiom set of the latter class, as well as the
original axioms given in the definition of the
latter class. By this inheritance mechanism,
clazses form a network of fs-a hierarchy.

Some of the super classes and the sub-
class which inherits them may have axioms
for the same predicate name., Since basi-
cally the axiom sets of the super classes
are simply merged, such axioms are ORed
together. Though the order in the oORed
axioms has no significance as long as pure
logic is concerned, it can be specifled in ESP
for hand optimisation and to control euts
and ride effects.

Clauzes called demon elauses define de-
mon predicates, which are anoed, rather
than ored, either before or afier, as
specified, the disjunction of usual axioms.
They are used to add non-memotonic
axioms. For example, a door with a lock has
a demon for the predicate open for makins
sure it is already unlocked. In this way, a
class with_a_loek can be defined separately
from the class door a3 a class that contains
non-monotonic knowledge.

Part-of hierarchy can also be imple
mented using the fs-a hierarchy and object
slots. Assume that we want to make io-
gtances of class A to be a part ¢f an instance
of clase B. First, the definition of A should
be given. Then, a class with_A should be

defined so that instances of the class with_A
has & slot which holds an instance of class
with_A. Finally, clags B iz defined to be a
subclass of with_A: in other words, the class
B is-a class with_A.

3.4 Maerms

Macros are for writing meta programs
which specify that programs with so and
o structures should be translated into such
and such programs. Macros can be defined
in the form of an ESP program, fully utilis-
ing the pattern matching and logical infer-
ence capability of the logic programming
language.

In various languages with macro ex-
panzion capability, a macro invocation is
pimply replaced by its expanded form.
Though this simple macro expansion mech-
anism may be powerful enough for LiSP-like
functional languages, it is never enough for
a PROLOG-like logic based language. For ex-
ample, a macro which expanda

pla, f(X +Y))
to a sequence
add{X,Y,Z), pla, f(Z))

cannot be defined with a simple expansion
mechanism. '

Macros of ESP are not only expanded at
the place of the macro invocation. Certain
additional goals can be spliced in before or
after the goal in which the macro invocation
is given. If the macro is invoked in the head,
these goals will be added at the top or the
end of the body.

The same macro definition:

X +Y =>Z whean add(X,Y, Z)
can be used in two ways. The clause
*add1{M,M -+ 1)" is expanded into
the clause "addI{M,6 N)-add({M, 1,N).",
while the body goal “p{ M +-1)" is expanded
into a goal sequence “add{M, 1, N), p(M}".

1.5 Implementation

Currently {in March 1984), a cross com-
piler of ESP into kLD is available.

The implementation of the object oriented
calling mechanism is rather straightforward:

each object has a slot containing a database
of codes corresponding to the axiom set as-
sociated with the object.

The current implementation uses slot
pame atoms for accessing object slots. Such
pceess has been found to be very fast thanks
to the built-in hashing mechanism of KLD.
Certain other firmware supporta for ac-
celerating the execution are also planned.

3 Operating System

The operating system part of SIMPDS con-
sists of 3 layers; kernel, supervisor, and I/O
media subsystems.

3.1 Kernel

The kernel manages the hardware re-
sources and fills a gap between the ¢ hard-
ware and the supervisor. It includes the
processor manager which realizes multiple
process environments, the memory manager
which sllocates and deallocates memory
tpace and performs garbage collection, and
the 1/0 device manager which controls the
input/output devices.

3.2 Supervisor

The supervisor provides the basic facilities
wseful for program execution, such as ob-
ject gtorages, inter process interactions, and
execution environments. For details, refer
to (Yokel and Hattorl 1983). Note that a user
may extend and modify these facilities as
he chooses,

A pool is a container, which is also an
object, of chjects of any class. A list and
an array are examples of pools. An object
can be put into or taken from a pool.

A directory is a pool of objects which are
associated with a name. An object can be
bound and retrieved with a name in a direc-
tory. Since & directory can contain another
ditectory as well, a tree of directories is
formed, where an object is identifled with
a pathname.

A stream is a pipe through which objects
flow. An object which is put intc one end
of a stream, will be retrieved at the other
end. When no object is in the stream, &

retrieve operation is suspended until some
object is put into the stream. A stream is
uszed for synchroniszation and communica-
tion between processes.

A channel is defined on the top of &
stream to allow message communication be-
tween two processes. A port is a8 message
box for two-way communication, connected
to other ports. A message sent through the
port will arrive at these connected ports,
and a message sent from one of these ports
will arrive at thiz port.

A process executes a given program,
which is an instance of a program class.
The main goal of the program is defined
as an instance predicate, and the siots of a
program instance hold objects local to the
program.

A process has several environments: a
program, & library, a world, and a universe.
They can be referred to at any point of
the program. A world iz & sequence of
directories held by a process as its working
world, A universe is a system directory tree
held in a class slot of class direetory.

33 1/0 Medis Subsystems

I/O media subsyetems manage the inter-
faces with the outer worlds. This subsystem
consists of 3 subsystems: window, file, and
network.

331 Window Subsyriem

The window subsystem iz the main part
of high level man-machine interface of ¢
(Kurokawa et al. 1084). It supplies multiple
logical displays for processes in ¢ oo 8 single
physical display. The Lisp Machine devel-
oped at MIT also supplies such an environ-
ment. The Lisp Machine window subsys-
tem meanages the major part of the man-
machine ipterface. But our window subsys-
tem manages only the primitive functions.
Other functions like echoing are done by
other subsystems, transducer, coordinator,
etc. This concept increases the modularity
of the whole system, and make each sub-
gystem simpler.

For each process, one window is dedi-

cated for its own display and it need not
mind other windows. In the window sub-
system, each window is defined as an in-
stance of the window class and each predi-
cate for the window is written as methods of
the class, 5o the window manager need not
consider the interaction among the windows
and each process can consider its window as
its own display. Each window is a rectan-
gular area which is a part of the physical
screen, and is the communication channel
to the process,

In the window tubsystem, windows con-
struct a hierarchy. The most superior win-
dow is the logical screen, and normal win-
dows (editor window, ete) are inferior
windows of the logical screen. Fach win-
dow may have inferior windows (called sub-
windows) within it, and each inferior win-
dow can have its own inferior windows. For
example, an editor window has command
sub-window, text sub-window, etc. Sub-
windows can neither have a size that ex-
ceeds their superior window's size, nor go
out from the superior window. They must
be inside of the superior window.

Each window may have one of the follow-
ing 5 states:

selected: Connected to the keyboard., Only
one window can have this status at a
time.

shown: Completely displayed on the physi-
cal screen, and the mouse button click in
this window is interpreted using the key-
command definition of this window.

exposed: Completely displayed on its su-
perior window. However, when the su-
perior window does not have the shown
status, even if the window iz completely
displayed on the screen, it does not have
shown status, but exposzed status.

overlapped: Partly or completely hidden by
its superior window. This window is hid-
den by another inferior window of its zu-
perior window.

deaetivated: Not menaged by the window
subsystem. Windews in this status will
never be thown on the physical screen un-

til activated. However, its memory image
is not destroyed.

These states are managed by the window
manager. The I/O function is determined
by these states. The relation between the
window states and the I/O functions are
shown in table 3-1.

Table 3-1. Window Status

Status key-in | mouse } output
Selected done done done
Shown ~ wait done done
Exposed | wait wait wait
Deexposed wait wait wait |
Deactivated fail fail fail

Whenever there is a keyboard input, the
window subsystem has to decide which win-
dow the input should be sent to. The win-
dow manager has the instance slot selected_
window which keeps the seleeted window.
As another input device, ¢ has a point-
ing device moute. The mouse can move
anywhere on the display screen, and the
window manager can recognize the window,
which the mouse click is sent to, by the
position of the mouse. The mouse click is
treated by the window's definition in only
the shown window, It iz because if the
mouse click changes the window'’s output
image, the user may not see it since he can-
not see the whole of the not shown window,
and the window manager cannot recognize
which part of the window is hidden,

3.3.2 File Subhsystem

The file subsystem provides permanent
storage both for data and objects.

A permanent storage of data (records) is
a flle. Three types of flles are available; bi-
nary files, table (fixed length record) files,
and heap (variable length record) files. A
record is identified with its stored position
and/or its associated key through an in-
dex flle. A binder mechanism will be sup-
ported so that a user can define a virtual
file with many data and index filles. A rela-
tional database management may be built
on these facilities.

A permanent storage of objects is an in-
stance file. It iz the main feature of the file
subsystem not provided by other machines’
ordinary file systems.

A directory file is a file which associates
an instance record with a name. A per-
manent directory is a directory which has
& directory file as its permanent storage.
When included in a permanent directory,
a permanent object is stored as an instance
record in an instance file and included in the
directory file with & pathname. Therefore,
it can be restored even after the system is
rebooted.

3.3.3 Network Subsystem

The network subaystem provides three
types of interfaces to communicate with
other machines.

Inter-machine communication is sup-
ported to connect one ¢ with another ¢
or other different machines. The network
subsystem defines the classes node, socket,
eable, and plug to implement the com-
munication.

Inter-process communication allows two
processes on different 4 nodes to communi-
cate with each other, just as if they ex-
ist on the same node. A remote channel
is defined to represent an criginal chanpel
on the other node. A process can send a
message to the remote channel and another
process on the remote node can receive it
from the corresponding original channel.

The intreduction of remote objects is a
main feature of the network subsystem. A
remote object represents an object in a
remote mode. It can be manipulated just
ag an ordinary object.

4 Programming Sysiem

The programming system of SIMPOS ia
a collection of expert processes. An ex-
pert process is a process which has an in-
dependent communication window (called
e_window) with the user. It performs the
gpecial action upon the user's request.

This view is different from the views such
that the programming system is a collec-

tion of dumb software tools, nor is it a
collection of programs to support the pro-
gram production. Our view frees us from
the overhead of the controlling process to
manage the available tools or the informa-
tion between the programs.

From the user's viewpoint, he can invoke,
control, and terminate any expert through
the expert’s e_window, He need not
navigate the complicated process invocation
tree to accomplish his task. He need not
bother about the unexpected destruction of
his work through wrong navigation.

4.1 Coondinator

In SMPOS, there is no explicit supervising
process such as Shel in Unx. However,
there is a work-behind process named
Coordinator. Coordinater itself is not an
expert process but a process that manages
the set of experts.

As noted above, the user may think that
he controls the expert directly through the
window, but actually, coordinater helps the
user’s control via the window interface that
iz the associated key command table of the
window,

The priocipal functions of eoordinater
are as follows:

0 Send a user’s key command through the
window to an expert,

o Create, delete, and activate an expert via
fystem_menu,

o Get and process special commands from
an expert, and

o Help commupications between experts
via the whiteboard.

The whiteboard is just like a blackboard
where an expert puts a message to another
expert, who in turn picks up the message
by the user’s instruction.

The other way to selve thiz communica-
tion problem is %o fef a communication
chaznel with another expert. But, in this
case, the chanmel should be set between
the experts before the wuser decides the
partner of the expert. It iz not easy to tell

who talks to who before communication be-
comes Decessary.

The ultimate solution in this line would
be to set a communication channel between
any two experts, even though the cost be-
comes very high as the number of experts
grows. And still, a few problems remain.
The user may change the partoer after he
ordered the expert to put the message. It
may difficult to denote both the partner and
the message using only the mouse click.

Using the whiteboard, we can sel wvir-
tually complete communication channels
between experts. The user can select any
expert after he has ordered one to put the
message. This cperation will be realized
with one mouse click.

Each user has a directory to create ex-
perts. It contains the experts’ names and
the program names to create experts. The
uger can change the directory and the com-
mand table as he likes.

A user has his own directory which is
inherited from the system’s common direc-
tory, i.e., the standard set of experts.

An expert has its own set of key com-
mand table associated with its window.
However, Coordinator permits the user to
change the key command table of the win-
dow only when that window accepts the
change key command table command from
the user.

This freedom is achieved at the least cost
of execution. This minimum overhead and
the maximum provision of ueer control is
the main theme of Coordinator,

4.1 Debugger/Interpreter

This subsystem interprets programs and
provides information concerning the control
flow of the programs. The basic facilities
of the Debugger/Interpreter subsystem is
similar to the debugging facility of DEC-10
PROLOG (D. L. Bowen ¢t al 1981). New features
Are:

0 Procedure and clause box control flow
model,

o Calls between interpretive and compiled

codes, and
o Multi-window user interface.

DEC-10 PROLOG uses Boz Conirol Flow
Model for its debugger. It considers that
each predicate is the debugging unit. In
this view, each clause looks like a black-box
and cannot be traced whether the unifica-
tion of its head or body fails. The predicate
call simply fails in both cases. However,
it is often the case that the clause head is
correctly selected, but the definition of the
body is erroneous. When the Procedure and
Clawre Boz Control Flow Model iz used, it
is possible to check whether unification of
the head or that of the body fails (see fig.
4-1).

In ¢, it is possible for interpretive and
compiled codes to mutually call each other.
Howaver, Debugger cannot trace in the
compiled code. Debugger treats the inve-
cation of compiled codea just like a simple
built-in predicate invocation. If interpretive
codes are invoked from compiled codes,

procedure
clause
head body
Unify — Plek . Exit
— ‘ i ""’ -
- — e -— < -
call Next Miex Redo Exit
— —
Unify — Plek —— Exit
<l (€ -
<~ <—
< | Next ' Mim Redo | €
Fail Hedo
Uniy Pick Exit
- - -— - -
Next Mis - Redo

Fig. 4-1. Procedure and Clause
Box Control Flow Model
for interpretive code

there is no way to pass the trace infor-
mation to the interpretive codes. In such
a case, Debugger restarts tracing with no
trace information.

¥ has a bitmapped display screen.
Debugger uses the window subsystem that
offers a multi-window user interface with
the mouse. A user can select one of the con-
trol options at break points, lock at ances-
tors or spy points, check the values of slots,
or see the class definitions using the library
subsystem. This information is shown in
sub-windows of Debugger and all the selec-
tions can be done using the mouse click.

4.3 FEditor

An editor is a typical component of a
programming system and an indispensable
software tool in using a computer system.
Though there can be editors to manipu-
late abstract structures completely different
from texts, here we limit our discussion to
the editors which edit texts or data ex-
pressed in texta.

Even text expressions usually have nested
structures. So the editor for ¢ {called Edipa)
is designed to be a general structure-editor.
But we do not believe that there can be a
general purpose editor which is convenient
for every structure. A good general editor is
one that is convenient for a specific purpose
and can be used for general purposes even
if less powerful. Under this criterion, Edipe
is designed to be especially convenient for
editing £5P programs and can manipulate
other structures. In addition, Edips has the
following features:

o Customization with macro definition,

0 A rmall number of commands easy to
memorite, and

o Failsoft with many recovery environ-
ments.

To make Edips general, we allow users to
define the syntax. Though other general
structure-editors usually use BNF, we do
not adopt it because usual editing opera-
tions are neither to trim a branch of
the syntax tree mor to traverse the tree,

Editing operations are more closely re
lated to the text expression of edited data.
So we adopted an operator precedence
grammar with user definable parentheses.
An operator precedence grammar is more
simple and has better correspondence to the
text expression.

Every token in the text expression of
edited data is classified into 6 categories:

o Atom,

o Prefix operator,

o Infix operator,

o Postfix operator,

o Lelt parenthesis, and
o Right parenthesis,

Each operator has a precedence. For edit-
ing purpose, however, too many precedence
levels should not be adopted, because prec-
edence introduces structures without direct
correspondence to the text structure. As
for an ESP editor, 2 or 3 levels are necessary
and sufficient. They are for:

o logical symbols such as

=, _ " - w -,
Porr

o function symbols such as
T

If necessary,

o predicate symhbols such as
fom wnm wn

will be added.

As explained above, the operator prec-
edence grammar is very simple, but has
enough expressive power to define the syn-
tax of almost all structured programming
languages.

It is desirable that the parser and the
pretty printer for the grammar can be used
by other programming tools such as com-
piler, interpreter and debugger. So, those
tools are made as separate utilities from the
editor. Edips consists of the editor kernel
and those utilities which are also used by
other tools.

4.4 Library

The library subsystem manages all the
classes and predicates on ¢. It controls
the registration of classes, loading program
files, compiling, and building class objects
by the analysis of inheritance.

Each class has a clags source file, & class
template file, and a class object file on some
secondary storage. Class templates and
clasa objects exist only in the main stor-
age, but are saved to and restored from the
secondary sterage.

Class source filles are text files coded by
the users. A class source flle can have
just one claszs definition. Like source files,
template flles and object files also have just
one class information in each.

A class template it built from a single
source file. It holds all the information
of that class except those from inheritance
analysis. The predicates of that class
are kept as interpretive codes when the
template is buill. They are compiled when
the wser requests. After the compilation,
both interpretive and compiled codes are
kept. Templates can be saved or restored
before compiling the predicates.

Class objects are built from some class
templates. In a class object, all the in-
heritances are analyzed and solved. It is
an executable image of an object orienled
program,

Another feature of the library subsystem
is to manage predicates. It conmtains the
features of referring to one predicate of a
class, i.e., object oriented invocation, and
the invocation from compiled codes to inter-
pretive codes or the converse. This mecha-
pism is implemented by indirect references.
All the invocation of predicates are done via
indirect references. When some interpretive
codes are invoked, that indirect word peoints
the entry of the interpreter. This mecha-
nism causes a uniform invocation scheme
even if both the interpretive and compiled
codes are mixzed,

For object oriented invocation, it is neces-
sary to find which method should be in-

voked during the execution time. Here, the
library has to distinguish those predicates
that have the same predicate name but are
defiped in different classes. In the com-
piled codes, all the references are processed
and changed to the direct invocation of the
specific predicate, but in the interpretive
codes, the library has to search the pred-
icates during the execution time.

The compiler is simply a subroutine of
the library subsystem. It compiles a single
predicate from interpretive codes. This
process is done only in main storage. After
the compilation, library holds both inter-
pretive and compiled codes. The user can
specily which code should be used for build-
ing up a new class cbject. The template file
is automatically rebuilt after the compila-
tion.

5 Development Tools

Almost all of the osS/PS programs are
written in EsP. Since they were designed
and coded before the ¢ machine becomes
available, we need a cross system of ese for
roftware development.

Most of the programs are written in
PROLOG. The programs are:

0 gSP crost simulator,
0 KLO cross compiler,

0 KLD cross assembler,
0 ¢ microprogram cross assembler,

© Cross linkage editar for both kL0 snd
Microprogram,

o Table generator for the microprogram.

Some programs, the execution speed of
which is eritieal for debugging {micropro-
gram simulator, ete} are developed in
PASCAL.

One of the powerful support tocls is Cus-
tomlzable Assembler (5. Takagi 1e83). [t
is the kernel of beoth the wiLo assembler
and the ¢ microprogram assembler. Only
the machine-dependent parts such as the
length of the object word, fleld definitions,
mpemonic definitiens, and checking con-
ditions are changed. Machine-dependent

parts are pre-processed and are compiled
with the assembler kernel into a machine-
dependent assembler.

The definition of kLD iz about 500 lines
while the definition of the ¢ microprogram
is approximately 1100 lines. About 80% of
them are conversion tables from muoemonics
to fleld walues. The kernel part is about
900 lines of PROLOG program. Compared
with many so-called generalized assemblers
or universal sesemblers, this assembler has
only 1/5 to 1/10 as many codes. Its assem-
bly speed iz, however, approximately com-
parable.

Using PROLOG's uniflcation and back-
tracking mechanism, it is possible to write
a sophisticated error-checking routine. If
one fleld overlaps another, the unificaticn
fails and the next alternative value setting
is tried. Setup conditions are processed in
the same way. [f an aszembler wvariable
X it unifiled to the value ease_1 while one
field is processed, the process for any other
field cannot unify ease_2 for X. So, the
unification fails and the process backtracks.
Finally, when all of the unification is sue-
cegsfully completed, the object bit-pattern
is generated and written out to the object
file.

& Conclualon

A logic programming based inference ma-
chine (¥) and its Programming/Operating
System (SiMP0S) is now under development.
The first pilot hardware has already been
manufactured and firmware debugging was
finished. Installation of SIMPOS was started
in February.

The firet release of ¢ aod smPos for
FeCs research and development will be at
the end of March 1985. We will continue
its improvements and enhancements. At
that time we will be able to show that the
logic programming based Operating/Fro-
gramming eystem is working well and has
a good human interface.

Many investigations and researches are
necessary for building logic programming
based programming and operating systems.

We hope this work will contribute to such
researches.
ACKNOWLEDGMENTS

The authors thank Mr. G. Hagio and Mr.
H. Ishibashi for their contribution to our
project,

APPENDIX I

Inference -
Funections
High-speed --=>
Computation
{ Symbol
Manipulation)
Modular -2
Programming

Distributed --2>
Processing

A large -3
Capacity

KEnowledge Base

Software -3

Development
Tool

Intelligent -=->

Man-machine
Interface
VLSI -3
Technology

Fig. I-1

Logie =-=D2

Frogramming

Parallel -l

and
Fipeline

Abstract =+
Data Type, |
Capability T-}
Concurrent-+
Frocesaing,
Meszage
Passing

Relational ==2>
Database

Personal -=-=>
Computer,
Local

Metwork

Speech I/0,==>
Picture I/0

VLEI-CAD, -==3>
Architecture
Design DE

Farallel =e=-+
inference
Model

i
|
Dataflow —---+
and i
Feduction +=
Machines i
!
|
Multiple-SIM |

System for ==+
FParallel Soft-

ware Development

based on KEL1

(Delta)

Sequential-—-+
Inference
Machine
for ELO

———

=

(P3I, SIM) !

]
i

Special
Furpose

——

Processort cecscccacsssmmas==d

Development
Support,

Hardware

Dezcription

» Parallel -+
Inference |
Machine

:v v —

-» FGCS
| Proto-
] type
| System
|
i |
| +=7 Knowledge—+
! Base '
| Machine]
!
!
Super ———=<)=» 1 chip
» Perszonal | Inference
Computer | Machine
i
i
|

——memmmm——===3 Intelligent

VLEI CAD
System

An Approach te the Fifth Generation Computer

REFERENCES

Bowen, D. L., Byrd, L., Pereira, F. C.
N., Pereira, L. M., Warren, D. H. D.
DECsystem-10 PROLOG User's Manual.
Dept. AL, Univ. of Edinburgh, p. 101,
1983.

Chiksyama, T. ESP - Extended Sell-
contained Prolog - as a Preliminary
Kernel Langusge of Fifth Generation
Computers. New Generation Computing
1, No. 1, 11-24, 1983,

Chikayama, T., Yokota, M., Hattor,
T. Fitth Generation Kernel Language:
Version-0. Proceedings of the logie pro-
gramming conference '83, 7.1 1-10, 1883.

Fuehi, K. The Direction of the FGC3
Project will Take. New Generation Com-
puting 1, No. 1, 3-9, 1083,

Goldberg, A., Robson, D. SMALLTALK-
80 — The Language and its Implementa-
tion. Xerox Palo Alto Hesearch Center,
p. T14, 1883,

Hattord, T., Yokol, T. Basic Constructs
of the SIM Operating System. New Gen-
eration Computing 1, No. 1, 81-85, 1983.

ICOT Report of the FGCS Project’s
Hesearch Activities 1982. ICOT Journal
1, No. 2, 19R3.

Krasper, G. SMALLTALK-80 - Bits of
History, Words of Advice. Xerox Palo
Alto Research Center, p. 344, 1983,

Kuroksws, T., Tsuji, J., Tojo, §., ima, Y.,
Nakasaws, O., Enomote, 8. Dialogue
Management in the Personal Sequen-
tial Inference Machine (PSI). ICOT
Technical Report TR-046, 1984,

Nishlkawe, H., Yokota, M., Yamamoto,
A., Takl, K., Uchlda, 8. Design
Philosophy and Architecture of the
Sequential Inference Machine P51 (In
Japanese). Proceedings of the logic pro-
gramming conference "83, 7.2 1-12, 1933,

Shapliro, E. System: Programming in
Concurrent Prolog. Eleventh Annual
Symposium on Principles of Programming
Languages (to appear).

Takngi, S.

Customisable microprogram

assembler. ICOT Technical Heport TR-
021 (In Japanese), p. 25, 1983.

Uchids, S., Yekota, M., Yamamoto, A.,
Taki, K., Nishilawa, H. Outline of
the Personal Sequential Inference Ma-
chine PSI. New Generation Computing 1
No. 1, 75-79, 1983,

Van Caneghem, M. PROLOG Il Manuel
D'Utilisation, Groupe Intelligence Artifi-
cielle, Faculté des Sciences de Luminy,
Marseille, 1982,

Welnreb, D., Moon, D. Lisp Machine
Manual, 4th ed., Symbolics, Inc. 1981,
Yokel, T., Hattorl, T. The concepts and
facilities of the SIMPOS supervisor (to

appear a3 an [COT Technical Report).

