ICOT Technical Report: TH'D%.

- TR-035

SIMPOS: An Operating System for a Personal Prolog
Machine PSI

by

Takashi Hattori, Junichiro Tsuji, and Toshio Yaokoi

Apnl, 1984

1984, ICOT

Mita Kokusa: Hidg. 21F (03 456-3191 -5

EC: DT 4-28 Mita 1-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Gé;'n_ératiun Computer Technology

SIMPOS: An Operating System for a Personal Frolog Machine PSI

Takashi HATTORI, Junichire TSUJI, and Toshio YOEOI
Institute for New Generation Computer Technology
Mita Kokusail Building 21F

1-4-28, Mita, Minato-ku, Tokyo 108, JAPAN

Abzatract

SIMPOS (Sequential Inference Machine Programming and Operating System) for a
Prolog based super personal computer P51 {Persomnal Seguential Inference

Machine), which will be a workstation for Japan's Fifth Generstion Computer
project, is discussed, being focused around basic concepts of its operating

system part.

The cperating system has a three layer structure consisting of hardware
rescurce management, basic constructs mapagement, and i/o medium management.
Hardware resource management is the kernel of 2IMFQS, which manages a
processor, memory, and ifo devices. Basic constructs management supports the
supervisor facilities to provide @ pregram execution environment by system
defined classes, such as poecl, stream, process, and world., I/o medium
management has three subsystems -- file, window, and network subsystems -- to

interface with the ocutside world,

& brief coverview of both the hardware configuration of the P37 and the

programming system part is alse given.

Table of Contents

Backgrounds
Hardware Overview
Software Qverview

3.1 Operating System
3.2 Programming System

. Basie Constructs

Objects and Classes
Pools

Streams

Processes

Worlds

Charnels and Ports

=g T - WY I o % I

I/0 MHedium Systems

£.1 File Subsystem
5.2 Window Subsystem
5.3 Network Subsystem

Conclusions

1. Backgrounds

SIMPDS (Sequential Inference Machine Programming and Operating System) is an
operating system for the first version of S5IM, which is named PSI {Perszonal

Sequential Inference Machine). P3I will be 2 workstation for researchers of
Japan's Fifth Generation Computer project, and is currently under development

at ICOT (Institute for New Generation Computer Technology).

The project has been organized to develop Knowledge Information Processing
Systems (KIPS) within 10 years. FKIPS will be the system which combines
technologies in inference and problem selving, knowledge base systems, and
intelligent man-machine interfaces. From this peint of view, PSI is also
considered as a KIPS pilet machirne and it iz expected that many application

programs will be implemented on PSls.

2. Hardware Overview

P5I is & Prolog oriented personal computer [1]. We have already defined itse
machine level language, named Kernel Language version 0 (shortly ELO} [2],
which is essentially an erxtended Prolog. PSI will execute directly the
internal code of HELD. FExcept for Proleg's executlon mechanism, that i3, &
predicate call which is executed by the unification and resclutien of Horn
clauses, KLD specifies mainly the built-in predicates (instruections) which

manipulate hardware specific features.

The hardware configuration of PST will be as [ollows:

o a2 stack-based micro-progremmed processor with cache memory

o main mezory of 2 mega words, each word being 40 bits {32 bits for data

and § bits for tag)

o a large bit-mapped display with a keyboard and a mouze {a peinting
device)

o hard disks and floppy disks

o a loecal arez network interface

o a console microprocesser to suppert the main processor in initial loading

and diagnostics

The processor has a logieal=te-physical address translation mechanism, though
it does not support a virtual address space. The main memory is divided inta
256 areas of 16 mega words. Fach area is used as a heap or a stack. The
execution of KLO programs requires four stacks (a control stack, a local stack,
a global stack, and & trail stack). Progrems may coccupy severzl heap areas.
Therefore, PSI can have a maximum of 63 contexts executing at the same time.

To reduce the overhead of context switching, the processor has £3 sets of the
internal registers for process control. Interrupts and trazps cause direct
context switching at the hardware level, but process dispatching must be

cantroelled by software,

3., Software Overview

SIMPOS is a programming and operating system designed for researchers who can
alsoc work as programmers. Our design principle of SIMPOS 1s simplicity both in
poncept and implementation, whieh leads to versatility of the system. Such
features are desirable for systems like ours which require rapid prototyping,

freguent modifications, and implementations of vapious application programs.

fnother desigh eriteriz is fo comstruct cur s=ystem bazed on logic programming.

We have not had any experience in writing an operating system in a logic
programming language, Therefore, our first and most important job was to

decide what kinds of basie constructs are to be chosen to fulfil this eriteria.

3.1 Operating System

The operating system part of SIMPOS conszists of three layers:

0 hardware resource management
o basic constructs management

o ifo medium management

The hardware rescurce management, which may be called the kerncl, fills a pap
between the PSI hardware and the basic constructs management, which corresponds
to the supervisor in conventional opersting systems. It covers up hardware

dependency and provides software-defined resources. Tt includes:

o processor management which rezlizes a multiple processing envircnment
o memory management which zllocates and deallocates memory space, including
gerbage collection

o input/output device nanagement which contrels the ifo devices

Basie construets management provides the besic execution environment of
programs, based on a class system enhancement made on KLO. Whnen designing
these basic constructs, we can teke advantages of the faet that SIMPOS is a2
single language system, which mesns that we do not have to have various
sonstructs applicable to each of many progrzmming languages as a ususl systen

does, We have =selected several basic conceptual constructs, such as:

o pools and stireams

Lat

o processes and worlds

¢ channela and ports

These will be explained in detail later.

I/c nedium management takes care of the interfaces to the outside world. This

inciudes:

0 a file subsysten which manages the file system on disk devices

o 2 window subsystem which interacts with & user, using a display, a

keyboard, and a mouse

o a network subsystem which communicates with other computers via local

retworks

These will be briefly explained later.

3.2 Programming System

The programming system part is organized from & collection of several

progregming expert processes, each of whiech help=s programmers to develop and

maintain their programs. They are called

what programmers want to do at each stage

include:

o listeners {command interpreters)

a

editors

compilers

debugging interpreters
librarians

analyzers

experts, in that they zhould know

of progremming. These experts

Coordination among these experts is necessary te provide an integrated
programming system, where all the experts must cooperate. It is managed by
another expert, & coordinator. What each expert does in the programming system
ia fairly olear, but how it does with each other's cooperations is not trivial.
Though the programming system part is another big issue in designing SIMPOS, we

will not discuss it further.

4, Basie Constructs

The basic constructs of the SIMPOS operating system will be discussed. A
partion of the SIMPOS design may be thought as language design in the
conventional system, However, since SIMPOE is a single language system, there
iz not a eclear distinction between what a pregramming language should provide
as its facilities and what an operating system should do. Those concepts which
will be introduced in this section should be =supported as an integrated system

of the both.

4,1 Objects and Classes

Hardware resource manaéement defines processes and areas whose use is not
structured. A commeon practice in software to enhance productivity is to
structure programs and data. Some currently available technigues are procedure
nriented programming with abstract data types and objeect oriented programming
(4], [5]. Although they are quite different in underlying concept of
programming, what programmers get in progremming seems similar in the sense
that each data is defined as its structure and the operationz z2llowed on it.
S0, two choices are open to uz in extending Prolog as a systeln progrooming

language.

Prolog is a procedure oriented, type-less programming languape which interprets
declarative Horn clauses as procedural programs. Hence, we may take the [ormer

approach as a naturzl choice. However, Prolog has & problem to be considered.

Since Prolog does not allew destructive assigmment to a logical variable, we
pannot deseribe state changes as changes in the value of a varible in the
ordinery sense., On way to solve this problem is to create a new variable
whenever the state has been changed. This is what we generally do when writing
a program in Proleog. But as far as constructing an operating system where
state chanpge is essential to manage the resourcesz in a system, we do not think
this solution as effective because it reguires much memory and it obscures
identification of the resources. Instead we will introduce the concept of
objects and classes inta Proleg, which solves the problems of structured

progremming extensien and state changes at the same time,

{1) Objects

Ain object reprezents and simulates something from the rezal world. It has a
certain state which is changed as a result of some cperations on it. An object
in programming languzges is defined by specifying its data structure and the
operations available te it. The general mechanism for defining objects and
executing the operations on them should be given by a system, but it is lelft to
the programmers what should be objects ard what operations should be defined

for them.

Tn SIMPOS, each cobject is represented by a vecteor defined in KLO, and 15
identified by itz location which is= ealled an object pointer. Values which

describe the state of an object are stored in the elements of the vector and

can be changed by destructive assignments. An cobject pointer 1is allocated when
the object is created and remains es & constant. This means that a logical
variable of Prolog ecan hold an object pointer just as an integer or a symbol.

In this way, we can introduce objects which have internal states, yet which can

be manipulated in Prolog.

{2} Claszses

The definition of an object requires specifying its data structure and the
operations on it. However, there often exi=t many objects of the same kind,
apd it is upwise te define each of such objects. Classes are introduced &5 a
ponvenient way to define these objects as a whole. After defining a class,

every object of that class 1s created as an instance of the elass.

In 3IMPOS, the data structure of an instance is given as a template vector which

nay be represented as

{<code>,<attributel>,<attribute2>,...},

where <coder is the code for the instance predicates and <{attributeN> iz a =lot
te hold 2 value of the internal state. Fach attribute has its identifier which
in umed 25 the neme of an accessing predicate. For exapple, if 'x' iz the name

of an x cocrdinste of a point,; the predicate

¥ = Pointlx

will give zn x coordinste of Point te X.

in opereticn is defined a= a set of Horn clauses. The form of & head is

:<action name>(<object1>,<object2>,...),

7

where <action _name® is a predicate name whieh selects what cperation should be
taken on those objects <objectN>». Since an action name is generie, which
plauses =hould be executed is determined conceptually by those classes of all
the argument objects, but actually by the class of the first argument object.

The form of a goal in a predicate body is

t<aption name>(<object!?,<object2>,...),

where <action_name> and <objectN> are as defined above.

{3) Inheritance

Tnheritance is & mechanism useful with class systems to enhance program
modularity and extensionability. With multiple inheritance of classes, a
programmer is allowed to define a new class from existing classes, so that it
has the attributes and the cperations defined in those classes, and if

necessary, to add and/or change its specification as suitable.

Tf an instance of the new class needs additional attributes together with those
of the inherited olasses, it is sufficient to specify only these attributes in

its definition.

Without redefining the inherited operations, an instance of the new class can
accept them. When some new operations are necessary, they can be defined as
usual. When an inherited operation is to be changed, a new definition of the
operation can be given in this class, yet preserving the overridden definition.
811 the clauses which are defined in this class and which are inherited from

its super classes are OR'ed.

The programming language ESP [3] which iz a system description language for

8

SIMPOS will be specified on KLO, incorporating these class features,

k.2 Pools

We have introduced objects and classes. MNow we will introduce the concept of
places to store these objects., Objects may be stored in a place which we call
a pocl. & pool is thought of as a container for cobjects and objects of any

class can be kept in a pool. Many pools can coexist in the system,

4 pool it=melf is an instance of the class 'pool'. Operations aliowed on

pools are:

o to insert an ohject inte a pool
o to extract an object from a pool

o to find an object in a2 pool

4.3 Streams

Socmetimes it is npecessary to move an objeéct from one place to the other.
Stream= provide & means to transport objects. A stream can be thought as a
pipe through which objects flow. At one end of a stream is an input head and
at the other is an output head, Objects which are put into a stream at the
input head are to be petrieved 2t the output head in first-in first-out order.
When there is no object in the stream, retrieve operationz will be suspended
until some cbject is put intec the stream. In this way, streams can be used as
a synchronization mechanism. SIHPOS uses streams o5 the only besic construct

for synchronization and communication between processes,

A stream is an instance of the class "stream' which defines the operations

including:

o to insert (put) an object inta & str:

LoLu 2aiTECL L) an object from a stream

An instance of the class '"tap' makes a stream out of a pool. Using a tap, it

iz possible to retrieve objectz seguentially from a pool.

.4 Processes

So far, we have not explained what an active entity in SIMPOS is. Object-
ariented systems assume that each obiect is active in the sense that it has an
internal state and responds to an incoming message by executing a method. This
formalism has the feature that each object is unifeormly treated of as an
entity. But if we a2llow each object te act independently, which is necessery
to some extent to roaslize conourrent executioen, the overhead of managing these
objects iz prohibitive in conventicnal segquential machines. Hence, our
approach is to introduce processes as only the active entities; and to treat

objects as passive entities.

A process in SIMPOS is an entity to solve 2 guestion with 2 given progrem
(rules and faets) and data (objects). A question is given as a predicate call.
b procesz is created as an instance of the class 'process' and is manipulated

by the operations which includes:

o to suspend a process
o to posume & process

o to terminate a process

i0

tl-q.':-.' Worlda

The scope of global object references which a process can make is called 2
world. There may exist many worlds in a system (sometimes czlled 2 universe)
and different processes may exist in different worlds. & weorld is a sequence
of directories which are constructed as a pool of asscociations of objecis and
their names, & world can be crested and changed dynamically, in order for a
process to be able to acquire some new knowledge or te exchange 2 collection of

knowledge with another.

£ world can be shared by many processes. In that case, if a process changes
the contents of a world, svch changes z2re obzervable from another process which

resides in the same world.

As a special kind of directory, we define permanent directories. A permanent
directory is a directory which has a directory file (explained later in the
file subsystem) as permanent storege of the included objects. Once 2n object
is ineluded, it iz stored in g2 directory [ile zt the same time. Therefore,

thiz object can be retrieved, even after the sysztem is rebooted.

Y,6 Channels and Portas

Streams are the very basic meens to implement inter-=process comnunication. On
top of streams, SIMPOS defines a higher=level communication construct, paoely a
channel, A channel allows message compunicstion between tWwo proccsses, even in
different rachines, by transperting an object packaped in 2 message of 3

cartain protocol.

b port is where messapes are put to send and &re taken out to receive. Two

11

channels connect twe ports, so that a port can be used as a two-way
communication message box. A port can be connected to many ports. In =uch a
case, messages which are sent through the port will arrive at the ports

connected to it, and wessages sent [rom these ports will arrive at this port.

A special kind of port is called an ifo port. An ifo port is eopened through
i/e channels to the outer world, where a2 user, another machine, or a file is
thought to exist., After creating an ifo port, a process can compunicate with
the outer world by sending or receiving messages, Just as it does with another

process through an ordinary port.

5. I/0 Medium Systems

I/0 nedium systems take care of the interfaces with the outer world., We have
three subsystems, which are file, window, and network subsystems. Froem the
user program's point of view, they provide i/o ports with which user proccsses
can communicate in order to input and ocutput data. What each subsystem does
for ifo aperations is not relevant to these user proceases, In some ¢ases, an
i/o subsystem does not perflorm any i/o operationz, but =zipulates them in main
memory. For example, a pool can be accessed asz if it were an iSo deviece. Such

detail realizations are concezled from user processes,

Fach: subsystem has a main process, which is called & manaper. It holds a
manager port which is connected te an i/o port held by a user processz., The
manager receives a user program i/o request and returnz a reply through the
manager port, What and how to do in response to ifo regquests depends on each

subsysten,

iz2

5.1 File Subsystem

The file subsystem provide permanent storages for data and objects.

(1) Files and hegions

A file is a econtainer of records in a disk velume. The internzl structure of a
file depends on what kind of records are stored in it. We will support three

types of files:

¢ a binary file which does not assume any internal structure and can be
uzed to store text or program code

© & table file which stores fixed=length records

0 & heap lile which stores veriable-=length records and 1s thought as a

permanent heap area which resides on a disk volume

i region is an arez in a volume, which physzically stores a file. & region
consists of disk pages which are zllocated to it as it expands, A disk page
has a physical address in a volume and a logical address which is identified by
the region number to which it is allocated and an offset within the region,

The address translation between these two addresscs is done by using & page map

gesociated with each region,

(2) Accessing & File

There are =zeveral file accessing modes:

o randon {or direct) accessing node
o seguential accessing mode
o indexed acecessing mode

13

In rendom accessing mode, eack access is requested with a file marker which
indicates the record position within a file. To access a [ile in seguential
mode, a file tap is defined so that it should keep a file marker indicating the
current record positien. Tn indexed =zceessing mede, 2 record is identified by

its associated key, rather than its position.

{3) Directory Files

Each file has itz identifier, which a user specifies when finding it in a
volume, If only one name space is allowed for file identifiers, name conflicts
ocour, To aveid these confliets, a multi-level directery system is provided,
where a file is identified with a pathname. A pathname is represented as, for

exanple:

"rdirtrdir20ilel"

& directory file is a file which associates files with their names. For
example, the file specified zbeve iz identified by first finding 2 directory
file with the peme "diri1" in the root directory file, then finding = directory
file witn the nape "dir2" in the directeory file "dir1"®, and finally [finding a

file with the name "filel".

{4} Instance Files

An instanece file is 2 table file to store objecls. It is assumed that each
class knows how to store and restore its instances in this file. A& so-called

vTOO (volume table of contents) is built as an instencc file for file objects.

d directery file can alse associate a record of this file with its name. The

14

object "object® in the directory file "»dirl>dir2® is specified by

">dir1>dir2>object®

just as a file i=s.

5.2 Window Subsystem

A man-machine interface based on multiple windows seems to be useful. It is
now becoming prevalent in many new machines and we follow this approach in
SIMPCE., & window is thought as a virtusl terminzl which has a screen, a2
keyboard, end & mousze. Fach window reprezents an intersctive session between a
user and a process in the system. This means that multiple windows allow

nultiple concurrent =zezsions.

The window subsystem of SIMPOS will construct multiple window mechanism on its
class system, as the LISP Machine does on its Flaver systen [S)]. The window
subsystem provides both bazic window classes and other classes which give a
window sonme additional features, such as sorolling, labelling, and Framing. A

uzer cen arbitrarily define a new kind of window uzing these claszes,

(1) States of Windows

Logically there can be as wmany windows on a diaplay device as necessary, but
physically we cannol have these windows independent [ron each other beczuse of
the hardware limitation of the deviece. Therefore, te control and manspge

pultiple windows, we deline the statez of a2 wipdow:

o A shown window iz fully exposed on the screen., Tt allows output and
input frem a mouse at anytime, but input from a keybecard ney net always be

15

allowed. Only one of the shown windows is called a selected window, which
accepts input from the keyboard.

o A de-exposed window is a window which is partially exposed or fully
covered by other windows. It cannot accepl any input, but does allow
output with certain restrictions.

o A de-activated window is nct currently managed by the window asystem, so

it iz not shown on the screen.

The state transitions amorg these are controlled by user or program request.

(2} Subwindows

& process can create seversl subwindows within a window, each of which may show
a different aspect of program execution information and states. Far exanple,
zn editor may have subwindows, for text, command input, a command menu, and
information about the current editing state. Note that since 2 window is
regarded as a full screen to the subwindew, it cannot outarow the parent

window.

{3) Tepporary Windows

L temporary window appears on demand, and disappears when it is no lenger
needed., It i used to show a message or menw. For example, & messzge has only
to zppear when a process wants Lo deliver it to a user, and it had better

disappesr when the user is done with it.

(4} Menu Windows

b menu provides a meanz for input by @ mouse. A menu window shows o list aof

16

items, from which a user selects one item with a mouse. In general, a menu, if
temporary one, is shown on a elick of a specific button on the mouze, and when
B us=er moves the mouse cursor to an item to be selected and c¢licks 2 button,
the selected item is input through the window te the proeess. Then the menu
disappears, If tﬁe user moves the mouse curseor out of the menu window, it

disappears without any input.

5.% Network Subsystem

Although super personal computers are powerful tools, it is difficult to share
resources apong researchers if these conputers stand alone. 4 computer network
is a solution to echieve & cooperstive research envircnments with these

computers, PSI will have a3 local netweork interfeace for this purpose.

The network subsystem provides the interface bo communicatc with other

machines. Three levels of comounication will be supported.

{1} Inter-nmachine Communication

Inter-machine conmuniczticn is supperted to connect a PSI with znother PST or a

nmachine of another type. The network subsystem defines the fcllowing objocts:

o & node whieh represents each site in network
o z socket whieh represents 2 connection point in a node
o a ocable which connects twoe socckets

o 2 plug which i= an access point to a cable

Far inter-machine communicstion, a user program first crestes a plug on an

existing socket and connects it to ancther socket, usually on a different site,

17

then reads or writes data toe the plug.

(2} Inter-proceszs Comnunication

Inter—process communicetion allows two processes on different nodes to
communicate with each other as If they existed on the same node. The network
subsystem defines remote channels for this purpose. A repcte channel
represents a channel on a remote node. & process cen send 2 message to this
remote channel, and another process op the remote node can receive it from the

channel represented by this remote channel.

{3) Femote Object Operations

e believe that an opersting systen, which supports 2 computer network and
object-oriented framework in progremming, should provide a means te deal with
an object in the system of a remote site, & solution which SIMPOS takes is an

introduction of remote objects,

I remote object iz 2n object which represents an object in a remote node. The
operctions on @ remote object have the same interface as the operations on an
ardinary cobject in a self node, but the implementaticn of then are gquite
different. An cperation on a remote object is encoded inte & messape, the
network subsystem in 2 =elf node sends it to the one in a remote node, &nd tho

messzge i@ decoded intc an cperation on the specified object,

Currently we agsume that esch class knows how to encode and decode the
operaticns snd the messzpges. The networlk subsystenm uses it to transfer and

perfore the pperations on 2 remote object.

18

f. Conclusions

8o far, we have described a briefl cverview of STMPOS and the design approaches
we have taken. There may be still many concepts left to be clearly specified,
and we do not expect the current design and implementation to be fipal. Rather
we will refine it further and develop other system and gpplicztion progrems, =0

thet we can achieve a pilot system of KIPS with PSI and SIHFPOS.

Ve have finished the phase of functional design of SIHPOS development and have
started coding and debugging SIMPOS in ISP on a developrent system. Az the
first protolLype version of PSls is now available, we will transfer the programs
developed on the development system to PSIs and release the [irst version by

the end of the 196& fiscal year.

Aeknowledgements

He would like te thank all the members of TCOT who have been working with us te
desipgn the operating systemn port of STNFOS. Some of Lhem are T.FKurohkaws,

E.Sekai, T.Chikayama, S.Takagl, and &, Tapuchi.

References

[1] i.Vishikawa, et al., "The Perzonsl Inference lachine (PEI}: Itz deslen
philosophy and machine srchitecture™, TCOT TR-013 (June 19E3).

[2] T.Chikeyama, et al., "Fiftk penerstion kerrel Janpuape verzion 0Y, ICGT
internal doecument (June 1983).

[3] T.Chikayama, "ESP Reference Manual®, ICOT TR-0L4 (Feb. 19847,

[4} &.Goldberg, D.Rohsen, Smalltalk-80: The languape and its implepentation,
hddisen-Wesley (1983}.

19

[E] D.Weinreb, D.Moon, "Flavors: Message passing in the lisp machine™, MIT

A.I.Memo lo.602 {November 1980).

20

