ICOT Technical Report: TR-046

TR-046

DIALOGUE MANAGEMENT IN THE
PERSONAL SEQUENTIAL INFERENCE MACHINE(PSI)
by
Junichiro Tsujy, Toshiaks kurokawa
(ICoT)

Laroshi Tojo
(Mitsubishi Rescarch Institute)

Yutaka [ima, Osamu Makarawa
(Oki Elecrric Industry Company. Lid.}

Shoyp Faounolo
{Marsushita Elecirie Industrial Co., Lrd)

February, 1984

Mita Kokusai Bldg 21F (03) 456-3151~ 5
H :[j | 1-28 Mita 1-Chome Telex ICOT J37964
Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Fage i

DIALOGUE MANAGEMENT IN THE
PERSONAL SEQUENTIAL INFERENCE MACHINE(PSI)

Junichire Tsuji*, Toshiaki Kurokawa*, Saioshi Tojo**
Yutaka lima***, Osamu Nakazawa***, and Shoji Enomoto****

+ Institute for New Generation Computer Technology (ICOT)
= Mitsubishi Research Institute
#+ Oki Electric Industry Company, Ltd
*#++ Matsushita Electric Industrial co., Ltd

ABSTRACT

PSI (Personal Sequential Inference Machine) is being developed as a research tool for the FGCS
(Fifth Generation Computer Systems) project, and SIMPOS (Sequential Inference Machine’s
Programming and Operating System) is also under development.

In this paper, we present the dialogue management component of SIMPOS. We describe and
discuss the background, design, implementation, and future at our work. The window gystem and the
Coordinator, along with the bitmapped display and mouse cursor controls, are the primary meaos of
managing the dialogue between the user and SIMPOS.

As PSI is a workstation for the next phase of FGCS, users are assumed to be computer
professionals, and dialogue management is being designed accordingly. High performance, low
overhead, and allowances for customization and expapsion are among our design and implementation
goals. The entire system is implemented in ESP, an enhanced logic programming language
incorporating un object /class methodalogy similar to that of Smalltalk-80.

[INTRODUCTION

There is increasing interest in man-muachine interfaces for computer systems. Evidence for this is
the increass in the number of published pupers, related conferences, and new products

[HFCS 827 [Sime 83].

This paper is submitted to the ACM 19B4 ANNUAL CONFERENCE.

Page 2

The major reasons for this increased interest are reductions in hardware cost and the availability
of advanced equipment for man-machine communication. For example, 32-bit microprocessors
equipped with megabyte-memories, 2 high-resolution bitmapped displays and mouse cursor controls are
available in a reasonable cost

However, the problem facing the development of a natural, efficient interface lies in the
system /software design. Management of the dialogue between user and system is a key problem
[Gaines B3]

This is # challenge for the future. In fact, Japan® Fifth Generation Computer Systems (FGCS)
Project aims at producing more intelligent and user-friendly computer systems. We are in the first
stage of building such & system, and are now developing a Personal Sequential Inference Machine (PSI)
which will be the pilot model for fifth generation machines {Uchida 83). PS1 is a high-performance
personal machine and will be used as a research tool for the next stage of the FGCS project.

The Programming and Operating System for PSI, called SIMPOS (Sequential Inference Machine
Programming and Operating System)[Takagi 84], is also under development. It is written entirely
in ESP ({Extended Self-contained Prolog) 8 PROLOG-like logic programming language
[Chikayama 84].

Here, we present the dialogue management component of SIMPOS. Although it has not been
completed as of this date (February, 1984), we describe and discuss the background, design,
implementation, and future of our work., SIMPOS will be functional by the end of this year, and will

serve as the environment for future FGCS research.

IL. BACKGROUND OF OUR WORK

Before joining ICOT in June, 1982, we had limized experience in man-machine interface research.
We therefore tried to learn as much as possible about the principles of implementation and design
from existing literature and from hands-on experience. In this chapter, we briefly review our findings

and critigue a few of the systems currently available.

1. Criteria {or evaluating dialogue management

We scarched for criteria by which to evaluate dislogue management by surveying 2 number of
papers. These criteria are expected to serve both as design guidelines and as product evaluation
standards. We realize that they may be rather experiential at this point and that we must wait for

user evaluations before drawing any conclusions as to the witdmate vsefulness of our product.

Fage 3

The criteria can be grouped into three categories: those concerning design principles, principal
elements, and advanced functions. The design principle expresses the attitude underlying the dialogue
management design stage. It is an abstract guideline. The principal elements are the logical blocks of
the dialogue management system. There is room for dispute as to how these elements should be
related to each other, The purpose of the advanced functions is to asssist users with dialogue
management. The latter two criteria are concrete guidelines,

We found a number of papers dealing with c¢riteria for dialogue management. Their conclusions
are not always the same. We have summarized the criteria in Table 1, according to the above

grouping. We will discuss these criteria in the following chapters.

AAEEASNAENERNERRENERERERRERE RN R R E RN R R RN RN R AR RN

Table 1. should be inserted here.

113233 2 R RSN R R PR RN RRR RSN R U R TR RS R R0

2. Hands-on experience

We gained some experience with the Tools system developed at Yale University [E111s 83, and
the Symbolics' Lisp Machine programming systems [Symbolics 81]. We used ISTAR (Japanese
version of STAR [Smith 827]) from Fuji Xerox, and discussed its features with users. We also

worked with various Japanese word processors, and micro-computers.

3. Critigues
Although our experience was somewhat limited in scope, owing to considerations of time, we list

here the following critiques based on our experience:

1) Multi-window system with pointing device is indispensable.

Tools does supports neither the multi-window environment nor the pointing device. The
interface is very limited. In the Tools environment, a "Session Manager” is provided instead of
a multi-window function, so the wuser must uwpdate the entire screen to obtain the pecessary
information.

In systems equipped with a multi-window environment, the user can easily retrieve system
informartion, such as error messages and source programs, without suspending his job. It is
often said that by using the muld-window eovironment, the user can use the display screen as

if it were his desk on which papers and tools are spread,

Page 4

2) Program Communication (data transfer between processes) is important.

Here, we include users' programs in processes. In wery old systems, such as the batch
processing system, the user can only transfer data by way of 2 special program or manually
{(eg. input the data as an argument). Modern systems generally support
multi-programming/multi-processing, in which the user can run more than one processes
concurrently with considerable savings in time. However, there are still problems with data
transfer between processes. We call this the problem of program communication.

Tools has limited but uniform control over program communication. That is the user can
transfer data in the form of a character string between any processes on the system. The Lisp
Machine, however, does not have such wniform program communication control. Although
communication between the editor and the interpreter is very sophisticated, it must be

programmed in object code. No general method of process communication is provided.

3) Icon is not suited to computer specialists,

The JSTAR Icon system is attractive, However, its targeted user is the novice and its
usefulness is limited to the office work. The icon system uses a kind of menou in which each
item iz represented by a2 graphic image. This method is slower, for example in documents
editing, than simple menuo selection or key-code command systems. We also feel that our
application pregrams need more work before such 2 facility is provided to end-users.

Supporting the icon system even at a wvery basic system level does not appear to be

cost-effective.

4) Simplicity is very imporiani.

Although the Lisp Machine provides very sophisticated interfaces for several system
programs, it cannot be said to be simple. Discrepancies smong several programs appear to be
caused by this complicated interface design. The complexity of Tools results from basing the
interface design the DEC-20 command processor,

It seems that simplicity is very important for next stage of the development, although we

admit it may be difficult to make these sophisticated systems simple enough.

Page &

II1. Design of SIM dialogue Management

1. Materials and environment

To design an efficient system, materials and environment must be considered, and it has been well

said that we must not be bound by present-day (possibly ill-designed) environments.

1} Physical environment
Our principal tool is the PSI, a logic programming machine for personal use. It has 16 megawords
(%0 megabytes) main memory at maximum, a 1200 = 912 (or 1280 x B64) black and white bitmapped

display with mouse cursor control, and support Ethernet connection [Taguchi 84).

2} Human emvironment

Users of our system are surely not end-users, but programmers who will use it heavily at the
system level, rather than at the application level. The main interests of such users lie in the efficiency
of their programs, control over system facilities, and the transparency of the overall system.

Such users are, at least potentially, also the builders of our system. We do not envision system
security in the sense that the user would not be allowed access to the system region. Instead, the user

could access any résource including the system kernel source codes.

3) Programming environment

Our main hardware tool is a DEC2060 with more than 40 terminals. We hope to replace it with
the P8I network after we finish this SIMPOS implementation.

The machine language of PSI i called KLO, which stands for Kernel Language Version 0. The
system description language, on the other hand, is called ESP, standing for Extended Self-contained
Piolog. This is a logic programming language, using the class mechapism, ie, the so-called
object-oriented mechanism [Chikayama 847

The class mechanism incorporates facilities existing in Flavor [Cannon 827 and Smalltalk
[Goldberg 83). For example, it permits multiple inheritance and before/after demons, as in
Flavor. It also includes class slots which represent class variables in Smalltalk. Its component slot is
the original mechanism for the introduction of the socalled purt-of hierarchy.

As for software tools, we use an ESP cross simulator, an ESP cross compiler, a KLO assembler, and
a KL compiler, all written in DEC-10 Prolog. We also use an EMACS editor [Staliman 847, and

a 7 editor under the Tools environment.

Page 6

4] Projecr environment

One of our problems s a tight schedule for development. Cur team started in June 1983, about
one year ago. We plan to complete our first stage of development around the end of this year.

One of the reasons why we adopted the enhanced logic programmiog language ESP is that it will
provide us with naturally modular programming for this project. However, it has caused the obvious
difficulties attendant on the introduction of 2 new language. We have managed to overcome these
through intensive programming sessions and consultation between tcam members.

Another problem is the small number of people engaged in the project. Only about thirty people
are hard at work on the development of SIMPOS. As SIMPOS covers a wide range of software, only
a very few people can take charge of dialogue management. However, we are happy to report that the
present report results from many in-depth discussions with our colleagues,

A third problem is project management and communication among participants. In this regard, we
appreciate the software tools for the DEC206(, especially MM and OZ electronic mailers, and the
STINGY documentation program.

2. Design goal

Our goal is to construct a dialogue system which satisfies the design criteria listed in Table 1.
Hardware and usérs are defined in our environments: a cursor cootrolled bit-map display for the
hardware, and computer specialists as the users. We are designing for the specialist, not the novice.

In other area, we have tried to focus the following points:

1) Simplicity

2) Ease ¢f customization

3} Least overhead (no loss in most cases)
4) Supporting program commtunicaliont

F) Urilizing mulriple windows and the mouse cursor control

We want to produce 2 simple systemn, but we also want to use it to construct more sophisticated
systems. A simple system, if pot the final product, is 2 good starding point.

There are cangers regarding customization. In our experience, too much customization sometimes
causes problems. User may find another facility totally different from their own, and this can block
nateral cooperation among participants. We need a kind of sharable customization, which we hope
can be realized using class hierarchy, that is which autematically assures a modular structure.

An exact definition of overhead is difficult, but we hope to produce very simple system that would

Page 7

require less of it. We omitted several facilities in the current design, such as the undo/redo capability

with conversation recording, to comply with this criterion.

3. Initial step - division of the Window System and the Coordinator

Ohr first step was to divide the functions according to the desiga goals. In other words, we had to
consider the architectured components required for the above design goals. As we have explained, we
are using & bitmapped display and cursor control as hardware components. We paturally decided to
build the window system as a software component.

However, thers is a guestion whether dialogue management should be entirely embeddsd into the
window system, or whether dialogue management functions should be divided into stnaller pieces. As
noted earlier, the Lisp Machine selected the former method and the result is a very complicated
window system. It is unmanageable both for the user and the program designer.

Cur decision was the latter meths:, We restricted the window system to management of the very
basic dialogue functions, and thus invented the "Coordinator” which manages the principal part of the
dizlogue between user and system. We left application-oriented dialogue management 10 the
application program designer, although we provide the building blocks to make it work. For example,
dialogue management in the text cditor is left to the editor designer, although he can use existing

blocks, such as the translation table or the whiteboard, which are explained in the next chapter.
4. Design of the Window System

1) The definition of a window
For a user, each window is a viewport on a process (editor, debugger, etc.). The window of each
process is a logical display, and each window is a rectangular area on the bitmapped display showing

some process information.

2} Mulii-window environment

When using the computer, various information is shown by many processes. It is very helpful for
users to be able to refer to such information at will. However, in ordinary systems, it is hard to see
editor, compiler, and debugger information simultaneously. A multi-window environment solves this
problem. Several windows are displayed om the screen at the same time, each window showing
information from a different process. Using this environment, users can refer to all available

information.

Page B

3) Simplicity

We designed the window system to manage only basic dialogue functions, i.e. control of keyboard
and mouse inputs, control of the output to each window, and control of the window allocation on the
screen. Input echoing is handled by the process itself. Iaput control means management of the
connection between the keyboard and processes. The window system determines which window is
connected to the keyboard, and passes the keyboard inputs to the process which owns that window.
The window system then translates the kevboard's input codes into character codes or commands
according to the transiation table prepared for each process. The window system offers users the
ability to manipulate the screen image. Such manipulations include move window, seleci_window, and

reshape_window,

4) Window hierarchy

Some process require several windows simultaneously. For example, an editor may use a text
window for showing file contents, a command window for command input, and s0 on. In such a case,
the windows are closely related and must be treated as a set. We offer the window hierarchy for this
purpose. By this mechanism, some windows are defined as imferior windows to others, which are
called superior windows. In the example above , the editor window is defined as the superior of the
text window, the command window, and so on. Inferior windows are, obviously, located within the
superior window. Hy manipulating the superior window, the user can treat inferior windows as a set.
The mest superior window s the full screen, and the normal windows (the editor window, ctc) are
inferior windows of the screen. Each window may have inferior windows (called sub-windows) within

it, and each inferior window can have its own inferior windows.

F) Window status

Each window has one of the following five statuses:

selected : connected 1o the keyboord,
Omly one window can have this status.
shown : completely displayed on the screen.
The meanings of the mouse button clicks for this window, are defined in the
window itself. The superior window must have shown status,
exposed : completely displayed on the superior window,
When the superior window does not have the shown status, even if the

window is completely displayed on the screen it does not have shown status, but

Page @

this status, .
overlapped : partially or completely hidden in the superior window.
This window is hidden by another inferior window of its superior window.
deactivated : nof managed by the window sysiem.
This window is not displayed on the screen until activated. However, its dot

image is not destroyed; it is stored in the bitmapped memory area.

Please note that the difference between exposed and overlapped statuses is determined within the
same level of the windew hierarchy. Figure 1 shows the example of the statuses. In this figure, Bl

and B2 are inferior windows of B, and ©1 and C2 are inferior windows of C.

SEEEE RS AN AN AEERERREN SRR RN RN RARRddRAREERARRRdRAE

Figure 1. should be inserted here.

Tl st sa e e o 0 A R R A L

6) Input / Quiput Control
The input/output control is performed wsing the window status, as described above. The

relationship between window statuses and input/output functions is given in Table 2.

AREERRFERAR A RN AR A RSN G N E SRR R RN RN ER R R AR R RN

Table 2 should be inserted here.

EAEEEREREE NN R AN AN AR R AR RN AR AR

Our machine has a keyboard and a mouse as input devices. The keyboard is a standard text-input
device. Input from the keyboard is normally echoed to the window, depending on the process. For
example, passwords input during the log-in procedure must not be output for security reasons.

There is orily one keyboard. The windew system must recognize the selected window to which
keyboard inpur s 1o be sent.

We also have the mouse cursor control, as an input device. The mouse can point to any location
on the display screen. The position of the mouse determines the window to which the mouse button
click is sent. (Here, the position of the mouse does not mean the physical position of the mouse device,
but the position of the mouse cursor on the secreen) The mouse device computes the relative
movement. The mouse button click applies only to the shown window, because the user cannot see

the all of the "not shown™ (exposed or overlapped) window, and the window cannot easily recognize

Fage 10

which part of itself is hidden by mnother window. Therefore, even if the mouse button click causes a
change in the window's output image, it may not be apparent to the user. If the user wants to
communicate with the "ner shown™ window, he can select it with the mouse button or by using the
system menu. When the mouse cursor is positioned outside the shown window, the default meaning of
the mouse button clicks is taken into service,

The most tvpical use of the mouse is the selection of a menu item. The menu displays the input
method, such as "find and selecr”. For this purpose, we will provide a special menu window. The

menu window displays several subjects, and by using the mouse, users can select the ones they want.

5. Design of the Coordinator
1) The form of the dialogue

The form of the dialogue can be defined as the sequence of user inputs and system outputs. Here,
user inputs are limited to keystrokes and mouse functions. This limitation results from the restrictions
inherent in current input devices. In the future, we may be able to use other methods such as voice
input, pressure sensitivity, and so on. Still, in genperal, the forms of dialogue arc almost unlimited. At
one extreme, from a human orientation, is the use of natural language for input/output. At the other
extreme, is the use of the mouse as the sole means of input, which has been used to some degree in
Merox Star [Smith BZ].

Qur emphasis on simplicity in both design and implementation resulted in the multi-window system
with a mouse curser control. In the same way, we want to restrict the dialogue input to single key
codes, mouse button clicks, and selection through the menu window. We do not wish to place any
restrictions on the output,

This approach satisfies our design criteria for ease of implementation and minimum overhead,
because it is essy for users to assign @ special meaning to each key and mouse button chck, It
requires kittle processing overhead to decode the user input into machine executable form, and no
overhead to output the information. Our command language is 50 simple that we need not implement
a syntactic parser or a complicated error-correcting routine to process, parse, and decode the command
language.

It might be argued that single keystroke commands may cause entical mistakes, but such mistakes
can occur even using highly sophisticzied commands, such as theose in natural language. The
advantages of a minimum number of kevstrokes, we believe, will result in easy, efficient conversation.

The idea of the single keystroke command is not new. The EMACS editor, originally developed at
MIT, 15 a very famous example. The Z editor, used in the TOOLS system, and the ZMACS editor,

used in the Lizp Machine, use thiz kind of command system.

Page 11

Arguments for iconic input have been deliberately rejected because of heavy use of the window
system. Omne author claims it would be useful neither for our users nor our application builders. Its

slow respanse and complicated screen configurations do not allow for efficient usage.

2) Problems with our form of dialogue

However, there remain problems with single kevstroke commands.

Although there are many key codes available, (128, 156, or 511), many more will be necessary for
efficient use of this type of command system. It may be necessary to introduce arguments and/or
command modifiers. Otherwise, a context mechanism would have to be introduced to assign multiple
commands to the same code according to the dynamic environment.

We have decided to adopt the latter solution. We consider the window as the context of the
dialogue. The key-command assignment will be different for each window.

The another problem is that users may easily forget commands or keycodes. HELP facilities are

necessary to remind users of keystrokes and mouse button click meanings.

3) Separation of didlogue levels

Although the user communicates with the PSI computer system as a whole, he can think himself as
talking to u special component of the whole system. We call that component an exper? in this paper.

We can define two levels of dialogue: expert and system. At the expert level, the user talks with
an "expert”. The commands use a specialized expert’s vocabulary.

At the system level, the user talks to the whole system, ie. he can select an expert, stop its
execution, create a2 new expert, and KILL an expert. The set of commands in this level must be
common throughout dialogue processing. To execute this level of commands, a special manager for the
control of experts is needed. The Coordimater is such a manager. That is, system-level commands are
sent to the Coordinator, while expert-level commands are sent to an expert.

This separation brings up another problem, how to distinguish between command levels, and who
designs the commands. We have introduced a table of commands, which describes the keystrokes and
mouse button clicks, the contents of commands, and their destinations. Each window designer can
select his own command set It includes the system-wide keystroke and mouse button click

assignments for system-level commands. Further details are given in the implementation section.

) Managemenr of dialogue
Expert-level dialogue must be managed by the expert itself. At the system level, the Coordinator

manages the dialog, ie, it helps the user to change the target of the dialogue. It also supports the

Page 12

creation znd deletion of the expert.

To avoid overhead, no general mechanism for recording the input/output sequence is provided.
This is left to the expert designer. However, there is a mechanism for recording the experts with
which the user has made contact.

Communication between experts can be controlled by themselves or by the Coordinator. One
advantage of communication through the Coordinator is that the establishment of fized
communication paths is not necessary. Another method might be the introduction of wvirtual

communication paths between experts.

1IV. IMPLEMENATATION

1. Overall features

Cur language, ESP, has determined the main features of our implementation. That is, the class
hierarchy with multiple inheritance and demons is used not only in coding, but also throughout the
design implementation. Many basic constructs of the operating system kernel, such as programs,

processes, ports, and pools, have also determined our style.[Hattori 83]

2. Implementation of the Window System

1} Window Hierarchy

The window hierarchy is constructed recursively. In other words, the screen has inferior windows,
windows have sub-windows as their inferior windows, and sub-windows themselves have inferior
windows,

This window hierarchy is not constructed at the basis of the class inheritance mechanisin. It may
change dynamically, whereus the ¢lass hierarchy is fixed at definition. We define the classes
as_superior or as_inferior. The cluss, ar_superior, has the slot, inferiors, which lists inferior windows
pointers. The class, as fnferior, has the slot, superior, which holds the superior window pointer. By
changing the contents of these slots, the user can dypamically add and remove inferior windows.
Windows may overlap each other on the screen, and this is controlled within the superior window
{which one is5 top, second, ..). Each window koows its own inferior windows, and manages their
display priorities. The full screen is defined us speciul window and ordinary windows are its inferiors,

so control can be uvsed even for the full screen.

Page 13

2} Keyboard inpur and translation table

Each expert has its own command set and its key assignments may change with the context.
Therefore, it is better to assign each key to a command related to a particular window. The window
system provides a translation table to accomplish this.

The translation table is a class instance, stored in a slot of e window. By rewriting the slot, the
user can dynamically change the transiation table.

We supply the class defauls_translarion_table (Figure 1.} as the standard table and the user
translation table inherits this class. The key code definition in the user's translation table overrides

the definition of default_translation_table.

Pt LT L LRI RN AL R L R L LR DL b bl b il b

Figure 2. should be inserted here.

SRR ES AR RS ENERRERRRERERER RN R kAR RERRERERED

3} Mouse Inpur

The PSI machine has a mouse cursor control. The mouse cursor can move anywhere on the
screen, A mouse movement may produce a change in a window connected to the mouse. The mouse
button click is often used to control window allocation, window creation, and window deletion. This
means that the mouse needs epecial controls other than that of the keyboard. Including the echoing
to screen, most of the mouse control is incorporated in the window system. Ia mouse movement, only
the difference from the last position is considered as the raw input from the mouse device. With each
mouse movement, the window system calculates the new position and checks mouse_owning window.
Each process defines the meaning of the mouse button click by means of the translation table, and the
meaning is valid only in that window. Each process may define the mouse cursor pattern shown in its
window, but the mouse cursor is actuully controlled by the window manager, not by the process. The
window system checks mouse_owning_window pattern, and using this pattern, positions the cursor as
indicated by the mouse. Since this is a high-level user interface, mouse cursor movement must smooth,

which requires rapid processing of the mouse control.

4} Meny

Menus are @ very useful means of command ioput. There are many kinds of windows and a
menu is a typical one. The menu window deals with neither keyboard input nor process text output.
Tt displays various items and lets the user select one. The menu window appears at the current mouse

position. The size of the menu window is determined by the number of items and by the largest item

Page 14

string. The programmer can define the menu window only inherited the menu classes and supplied
with the items, such as lists of item strings and types. The window system determines the size and

creates the hitmapped image. Figure 3 shows sample codes that define a system menu.

I IR R T R R R R AR R R R R R R L L L L LR Ll L

Figure 3. should be inserted here.

AEEEEER RN R RN RN RN N AR R RN R R SRR ERAR R ERAARA DR

3, Implementation of Coordinator

The following items relate to Coordinator implementation:

regisiration of the expert thar is the process the user communicates with

representarion of each expert and the ser of experts

managemeni of experrs: crearion, selection, deletion, ete.

keystroke inpur and mouse burron click processing

program communication support

Expert registration, representation, and management depend on the data representation of the
expert. The details are beyond the scope of this paper, and will appear in a forthcoming paper
concerning the construction of the programming system kernel [Kurokawa 847. Only an outline is
presented in this section,

Registration is performed by coupling the expert nzame and body. The body is a program that
works for the user and communicates with him through the window. The body will be executed in
the expert process after creation of the expert. There can be any number of copies of the expert to
do many different tasks. For example, there will be several text editors, one for each of the different
types of text

The expert is implemented through the special classes, namely e_program and e_process. They have
special properties for communication with users and the Coardinator.

There is a special chject, namely e process_poof, which manages the current set of the experts.
Using the ohject-oriented programming technique, e_process_pool is not simply a mediuvm to store the
e_processes, instead it handles methods, such as broadeast, for all the experts.

The expert window s special in the sease that it contains the translation table which decodes

keystrokes and mouse button clicks into the character codes and the commands, then sends it to the

Fage 15

destination. The translation table is actually an ESP program represented as a class. The code looks

like the following:

(TITEZ TR RIS R R R R R B A R A N R B bl L bbbl L)

Figure 4. should be inserted here.

A ARER SN ER R RN PR RPN E R RN RN N RN AR RN RN RN

In the above program, the translation table contains the fourth argument (the meaning of the
command) as a string that will be used for the HELP program. The transiation table codes are
executed by the window manager,

The context of the conversation is represented by the expert window. Each expert has its own
¢ window in which the private command set is defined, and the object is implicitly defined in the
communication, which can be stored in the whiteboard.

The whiteboard also accomplishes the communication between experts. The whiteboard is actually
implernented as a circular stack containing expert messages. Using e_window, the user directs the
expert to store a message in the whiteboard. (This is done by a keystroke or mouse button click.) He
can alsp request the expert to get a messape from the whiteboard.

The user directs an expert to set his current object in the whiteboard, and he also orders another
expert to get the object from the whiteboard, and to perform some operation on it In this way, an
expert can communicate with any other expert and communication is under user control. If a set of
experts want to communicate among themselves without wuser interaction, they must be designed to

define their own communication channels,

4. Experience with ESP

One of the special features of our project is the introduction of logic programming. So far,
DEC-10 Prolog has been the only language mecting the requirements of experienced logic
programmers, PSI is a special machine for the logic programming language, KLO, which has the same
basic mechanism as Prolog. It is natural that we use a logic programming language for the
implementation.

However, we did not use machine language itself. We adopted the enbanced language, ESP, which
has, as its main feature, a class mechanism similar to that of Smalltalk or Flavor, as previously noted.
We adopted that language for its modularity, easy maintenance, expandability, and, critical factor, its

graceful intreduction of stares into logic programming.

Page 16

As is known of pure Prolog, the representation of a state, in its conventional meaning, is & difficult
problem. Concurrent Prolog [Shapire 84] provides another method, but it is oot usable at the
present time.

There are dozens of people with differing backgrounds, participating in the SIMPOS
implementation. Also, we are on a tight schedule, and do not have enough personnel to manage the
interface between our members. For all these reasons, we rely heavily on the class mechanism of ESP
to give modularity to our project with little interface overbead.

It might be argued that the dehugging of object-oriented language 15 rather difficult unless it has a
sophisticated browser facility, as in Smalltalk [Goldberg 847, QOur feeling here is that, untl we

build a powerful window system, we cannot create an effective browser system.

From our experience, we can list the following merits:

1) Size of source

Our source cades are rather small compared with those of the Lisp Machine. For example, our
window program is about 100,000 characters, and the Coordinator i about 20,000 characters,
Although the Lisp machine’s window system has many facilities (including those of our window system

and Coordinator), its code contains more than 1,000,000 characters,

2} Modularity
Although we meet only once a week, we do not need complicated procedures to maintain
consistency with each other. One reason is the fact that all source code is stored in one computer.

We can check it, add comments, and send them, all via electronic mail.

3) Maintenance

We have found that existing code (actually classes) can be used for other purposes. For example,
we used existing 1/0 programs for special programs, such as Initial Program Loader I/0O program.
The class mechanism seems to support such modifications. This commen use of programs will
facilitate system maintenance.

We think that our adoption of ESP is the rght decision for our work.

Fage 17

V. SUMMARY

1. Overall evaluation
We have not yet fully evaluated our dialogue management. However, using the criteria from

Tahle |, we can summarize our partial evaluation as shown in Table 3.

T3 R1tT TR TR R TR RT AN RN RN RERTERLERERLE Y]

Table 3, should be inserted here.

Tt ey a e NN RN R R R R R R R R R R LY Y]

2. Key items in design and implementation

We can list the [oflowing items which have been effective in design and implementation:

« ESP - an enhanced logic programming language using the class mechanism
« separation between windows and Coordinator - simple structure

o translation table to handle single keys and mouse button click command

o whiteboard to support program commumnication

« window hierarchy

= window status for input/output control

3, Future work
As yet, we have implemented only the kernel of dialog management. For the future, we are

considering following facilities:

1) Advanced inpur/ourtput media

As the technology advances, we can use many other wuseful devices for man-machine
communication. Voice input, pressure-sensitive screen input, color graphies display, and synthesized
voice putput are candidates. We want to develop these technologies for use in advanced man-machine

communication.

2} Advanced halp facility
A limited HELF facility has been implemented; it is invoked by the user with an assigned key-vode
or from a command menus. However, a more advanced, more intellipent HELP function is needed to

make our sysiem easier to use, The use of natural language would be optimal. Precise understanding

Page 18

of the user's intention (in context) would he an extremely valuable addition.

3} Undo/ redo capability

This capability will be incorporated after the introducion of session mapagement. The basic
capability of undo is that it would provide the recovery function over the entire SIMPOS system. The
belief that logic programming backtracking would enable this is somewhat naive. Some type of
processing, such as destructive system resource operations , should be, in principle, determimistic and
another mechanism for undoing is required. Perhaps the key to the design of such a function would

be a method of deciding the areas to which undo could, and could not, be applied.

4) Session management

To support the above undo/redo capability, we are thinking of introducing session management.
For session management, all user input and/or all the command or character codes sent to the process
are kept on record, along with all process output. This record is used for undo/redo operations, that
is, the input for the reverse operation would be given, or the same input would be resent. The
overhead of maintaining these inputs and outputs is the major problem. Another problem is that
sometimes the user does not know whether his input will be accepted by session mapuagement or by
the process itself.

It would be easy to implement such a session management facility at the user’s front end, but it
would be less efficient. At the back end, it might be implemented to work only for special commands,
such as unda/redo. This would reduce processing time,

Session management also requires a text-editing capability. Using the translation table and existing
{and forthcoming) facilities, it would oot be difficult to implement the session management facility.

Thanks to the multi-window function, we need not implement a complex session manager.

ACKNOWLEDGEMENT
Orur thanks are due to Mr. Karuhiro Fuchi, Director of ICOT Research Center, and Mr. Tashio
Yokoi, Chief of our laboratory. We would also like to express our appreciation to members of our

laboratory for many helpful discussions,

REFERENCES

[Chikayama 847 Chikayama, T. "ESP Reference Manual”, ICOT TR-044, (Feb. 1984)

[Dzida 78] Dzida, W, "User - Perceived Quality of Interactive Systems”, IEEE Vol SE-4,

Pege 19

Nod, pp.270-276, (Jul. 1978) also in Proc. 3rd ICSE, pp.188-195, (1978)

[E1lis 83] Ellis, JR. Mishkin, N. van Leunen, M. and Wood, SR. "Tools: an Environment
for Time-shared Computing and Programming”, SOFTWARE - Practice & Experience,
Vol.13, pp.873-892, (Oct. 1983}

[Gaines 83] Gaines, BR. and Shaw, M.IL.G. "Dialog engineering” in Sime, M.E. and Coombs,
M.J. Designing for human-computer communication, Academic Press, pp.23-33, (1983)

[Goldberg 847 Goldberg, A. "Smalltalk-80, The Interactive Programming Environment”,
Addison-Wesley, (1984)

[Hattori &3] Hattori, T, Yokoi, T, Basic Constructs of the SIM Operating System, New
Generation Computing, vol.l nol ppB1-85 (1983}

[Hayes 82] Hayes, P. J, "Cooperative Command Interaction through the Cousin System”,
Proceedings of International Conference on Man/Machine Systems, pp.59-63, (July 1982)

[HFCS B2] Proceedings of a Symposium on Human Factors in Computer Systems, (Mar. 1982)

[Kurokawa 847 Kurokawa, T. and Tejo, S. "Coordinator - a kernel of the programming system
of Personal Sequential Inference Machine (PSI)", forthcoming, (1984)

[Maguire 827 Maguire, M. "An evaluation of published recommendations on the design of
man-computer dialogues”, Int. J. Man-Machine studies, Vol. 16, pp.237-261, {1982)

[Norman 75] Norman, D. A, "Design Rules Based on Analyses of Human Errors”, Comm.
ACM, Vol 26, No. 4, pp.254-258, (Apr. 1983}

[Norman B3] Norman, D. A., "DESIGN PRINCIPLES FOR HUMAN-COMPUTER
INTERFACES", ACM CHI'83 Proceedings, pp.1-10, (Dec. 1983)

[Shapire 847 Shapiro, E. "Systems Programming in Concurrent Prolog”, ACM POPL, pp.93-105,
{1984)

[Sime B3] Sime, ME. and Coombs, M.J. "Designing for human-computer communication”,
Academic Press, {1983}

[Smith 82] Smith, D. C, Irby, C, Kimball, R and Harslem, E. "The star user interface: an
overview", Proc. NCC, pp.515-528, (1982}

[5taliman B84] Stallman, R. M, "EMACS: The Extensible, Customizable, Self-Documenting
Display Editor”, in Barstow, D. K, Shrobe, H. E., and Sandewall, E. (eds.)
Interactive Programming Envirenments, McGraw-Hill (1984)

[Symbolics 8§17 The Lisp Machine Manual, Symbolics Inc. (19%1)

[Taguchi &4] Taguchi, A, Miyazaki, N, Yamamoto, A, Kitakami, H, Kaneko, K, and
Muraksmi, K. "INI: Internal Network in the ICOT Programming Laboratory and its
Future — Impact of the FGCS on Future Communication Networks —7, ICOT TM-0044,

Page 20

{Feb, 1984)

[Takagi B4] Tukagi, S, Yokoi, T, Uchida, S, Kurokawa, T, Hatteri, T., Chikayama, T,
Sakai, K., Tsuji, J. "Overall Design of SIMPOS - (Sequential Inference Machine Programming and
Operating System)”, Submitted to the Second International Logic Programming Conference
(Feb. 1984)

[Thimbleby 82] Thimbleby, H. "Interactive Systems Design: A Personal View", Proceedings of
Internztional Conference on Man/Machine Systems, pp.118-122, (Jul. 1%82)

[Uchida 83] Uchids, S, Yokota, M, Yamamoto, A, Taki, K., Nishikawa, H. "Outline of the
Personal Sequential Inference Machine: PSI", New Generation Computing, vol.l no.l pp.75-79
(1983,

[Watts 82] Watts, R. A, "A Friendly Interface for the Lay User”, Proceedings of Interpational
Conference on Man/Machine Systems, pp.64-67, (Jul. 1962)

-

\ Criterion Keference
Design simplicity [Shneiderman 80]
Principles user modeling [Gaines 83]
consistency [Norman 75]
learning [Dzida 78]
adaptablility [Maguire 82] [Watts 2]
Principal command language [Gaines 83] [Hayes E1)
Elements [Maguire B2} [Norman 83]
| hardware [Maguire 82)
% user's control [Dzida 78] [Gaines 83]
Advanced belp [Maguire 82]
Functions fesdback [Morman 75] [Maguire 82]
undo/redo [Norman 73]
customization [Thimbleby 82]

Table 1. Summary of criteria for dialogue management

Input Cutput
Keyboard ' Mouse
SELECTED done done dane
SHOWN waiting done _d-u;uv.-: o
EXPOSED waiting done
OVERLAFPPED waiting waiting /done
oot available

DEACTIVATED

Table 2. Window status and input/output

Criterion Partial Evaluation
Design simplicity yes, this has been our goal
Principles user modeling specialist
consistency depends on system /application programmers
learning must be easy
adaprablility there will be an instruction program for novices
Principal command language single-key commands and/or mouse button clicks
Elements hardware bit-mapped display, mouse
user's control the user holds the control
Advanced HELP under construction
Functions feedback multi-window
undo/redo future implementation
customization yes, using the class mechanism

Table 3. Partial Evaluation of PSI Dialogue Management

[} Cl
c2
Bl

I

i B2
A selected C: overlapped
B: shown Cl: exposed
Bl: shown C2: overlapped
B2: overlapped

Figure 1. Window Statuses

class defawlit_translation_table

has
instance
:look_up(Table, Window, control#"k®, #coordinator.
fkill, E_process. _. _}., "Ei111%) :-
rget_e_process(¥indow, E_process);
:look_up(Table, Window, control#°17, #coordinator,
{1ull, E_process, _, _}, "tull"} :-
:get_e_process(Window, E_process):
:1ook_up(Table, Window, X, Part, X, "send character as it is");:
end.

Figure 2. Default Translation Table

class system_menu
has

component

menu_list;

;creale(System_menu_class, Directory, System_menu} :- I,
inew({System_menu_class, System_menu),
:get_invariant_part{#fsystem_menu, Menu_list),
:new(#l1ist, Experts_list).
mzke_from_to{Directory. Experts_list).
:add_first(Menu_11st, Expertz_list}),
cereate(fuulti_column_menu, Menu_list, Menu_window},
System_menulwindow := Menu_window;

iget_invariant_part{System_mepu_class, Menu_list) :-
Fsystem_menulmenu_list == 0, |,
cnew(#11st, Menu_Tlist),

:new{Fflist, Media_system_list]),

tcrcate(#fmenu_item, 'window', common, window, _, Window_item),
radd_last{media_system_list, Window_item},

icreate(#menu_item, "Tile', common, file, _, File_item),

radd_last(Media_system_list, File_item},

radd_last{Menu_list, Media_system_list),

Fsystem menulmenu_11st = Menu_list;

end.

Figure 3 System-Menu Definition

class default_translaticn_table
has
instance
:look_up(Table, Window, control#”k™, #Fcoordinator,
{kill, E_process, _. _}. "kil11%}) = 1,
:get_e_process{Window, E_process};
:look_up(Table, Window, control#”1%, #coordinataor,
{lu11, E_process, _, _}. "Tull1") := 1,
:get_e_process(Window, E_process):
:Took_up({Table, Window, control#™a™. #Fcoordinator.
{arouse, E_process, _, _}. "arouse™) :- I,
:get_e_process{wWindow, E_process);
:look_up(Table, Window, control#"s™, #Fcoordinator,
{status, E_process, _, _}., "status®} :- I,
:get_e_process{Window, E_process):
:look_up(Table, Window, mouse#1, Fcoordinator,
{visit, E_process, _. _}., "visit®)} - 1,
;get_e_process(Window, E_procesz);
:look_up(Table, Window, control#"m™, #Fcoordinatar,
{memorize, E_process, _. _}, "memorize”) :- I,
rget_e_process{Window, F_process);
:look_up(Table, Window, control#"b™, Fcoordinator,
{broadcast. _. Program_name. Command}, "broadcast™)} :- 1
:look_up(Table, Window, control#"v™, #coordinator,
{remember, _. _. _}. "remember®} :- I;
:look_up(Table, Window, control#~s™, #Fcoordinator,
{invoke_system_mwenu, _, _, _}, "invoke system menu™) := |
:look up(Table, Window, mouse#rr, Fcoordinator,
{invoke system menu, _., _. _}. "invoke system meau®™) = [;
:look_up(Table, Window, control#"r®, #Fcoordinator,

{read Object, _}. "read whiteboard®) :- I;

:look_up(Table. ¥indow, control#"w™, #coordinator.
{write, _, Object, _}. "write whiteboard®) :- 1:
tlook_up{Table, Window, X, Port, X, "send character as it 1s™) :- 1:
end.

Figure 4. A Translation Table Program 1o ESP

