ICOT Technical Report: TR-035

TR-035

Parallel Prolog Machine
Based on the Data Flow Model
by
Morivoshi Ito, Kanae Masuda

and Hajime Shimizu

August, 1983

Mita Kokusai Bide, 21F {03 456-1191 -5

|G DT 4-28 Mita 1-Chome Telex 10O 132964

Minalo=kuy Takwe 108 Japan

Institute for New Generation Computer Technolug?



Parallel PFrolog Machine Based on the Data Flow Model

Woriyoshi Ito, Kanae Masuda, Hajime Zhimizu

Institute for Hew Generztion Computer Technology

1. TINTRCDUCTICH

Equipped with basic functions such as pattern matching and
aon-deterministiec  conbtrel, the logic programming language like Frolog
(Progremming in Logic) [10] seems suitable for knowledge information procesasing
system. For such inference-based proces=zing systems, generally, a sequence of
processing is not determined in advance; such systems, Gtherefore, regquire =
function to «carry on progessipng, while heuristically seeking appropriate

procedures, This functien is inherent in Prclog.

Prolog provides the potential for parallel processing [6]. Conventional
zeguential processing systems are based on the depth-first sesrch approach, or
sequentiglly controlled non-deterministic search approzeh with backtracking. By
~ontrast, the breadth-first search spproach, simultaneously trying multiple
possible searches, 2an solve problems faster by ipitiating 2 number of searching

processes on pultiple processors.

The data flow model can naturally implement parsllel processing [1] [2]
[&8]. The execution mechanism of the data flow model iz closely related to that
af Prolog. This paper desoribes a machine architecture based on the data [low
model to  implement parallel executien of Prolog., First, a Prolog's parallel
execution model is discussed in section 2. Section 3 describes the abstract
architecture of the machine. Section ¥ and 5 explain the contreol mechanisms of
pnification processes and structured data, respectively; both are basically
required tao implement the parallel execution of Prolog. Finally, an

architecture of a parallel Prolog machine is outlined in section 6.



Fage 2

2. PARALLEL UMIFICATIOIN MODEL

Unification, or pattern matching, is a basic functien of Prcleg. A Prolog
program  is  executed by repeatedly performing unifications between goal
statements which correspond Lo gueries and a set of clauses which correspond  to

given knowledge.

Fach clause consists of a2 head and 2 body as lollowing:
$¢- Q1 & G2 & ... & 9n. (m>=0)
where P denctes a head literal, 0i denotez 2 body literal, and the symbel '<-7

means implication.

When clauses are restricted te Horn clauses as in Proleg, the head consists
of at most opme literal. & clause without head is ezlled a geal siatement. The
pody is zlso optional; a clauss without itz body is called an unit  clause.
Multiple Lliterals in the body, if =o, are connected with each other through

ANDs=.

When a goal statements has multiple literzls, these literals are &NDed.
The unification for the whole goal statement, therefore, does not sutccead unless
it supceed for all literals in the goal statement. That is, the goal statement

ce=nnot be su-cessfully solved uniess all the literzls can be solved.

Ais for each literal in the goal statement, slauses which are potentially
unifiable with the goal literal must have = head literal which has the same
predicate as the goal literal. A subset of such clauses is referred as the
definition of that predicate. A set of clauses constituting a definition are
OFed. In other words, 2 geal literzl can be solved if successfully unified with

at legst one clause.

When 2 goal literal inm a goal statement is given, the prigitive unifieation
pperation iz  executed by inveking one of slguszes in the definition of the goal
literal's predieate, and by unifying (i.e. pattern-matching) between the goal

literzl and the head literal of the selected clause. This operaticn will



Fage 3

produce & common  instance of two literals, if the pattern-matching has

succeeded:; or a2 'fail' signal, otherwise.

When a given goel literal is successfully unified with the head literal eof
a npon-unit clause, then another unificaticon is initiated taking its body as a
new goal statement. On the other hand, the unification operation terminztes
{i.e. the solution is obtzined) when the goal literal iz successfully unified
with the head literal of =2n unit clzuse; the result is returnsd to the parent

process which has called the unification process.

Tn Prolog, paralleli=m concerning the unificstion can be divided inte three

types:

- 0OF parallelism

- AND parallelism

- parellelisp among arguments
F 45

They are desoribed below.

2.1 OF Parcllelism

iven a gozl literal and the definition of its prodicate, wnification
between Lhe gopl and the definition can be performed in parallel on 2ll eclauses

in the definiticn.

& szegquential Preleg interpreter uses backtracking to cantrol this
unification. In this system, the order for calling clsuses in a definition has
previously been determined. When a goal literal 1s given, the first clasuse is
invoked according to the order and unified with the gpoal literal. When the
unification fails {i.e. no sclution exists), the backtracking mechanism invokes
the clause in the next order and unification is retried on this clause. 0On the
cther hand, aur parallel Proleg machine aims at hiph-performance inferrence

processing by performing unification in parallel on QRed clauses in the



Papge &

definition.

This OR parallel execution can be performed simply by sioultaneocusly
initiating wunifiecation for individual clauses 1in the definition of goal
predicate. Then, the successful unifieation results (i.e. solutionz), are
merged to form an output. When only 2 single solution is required, one of the
suppessful scolution, perhaps first cobtained, can be oubtput, Thisz don't care
non-determinizo can be implemented by guarded clawses mechanism deseribed later,
The merge operation generally outputa solutionz in & non-deterministic order;
it may output them in the order ebtained. Our machine will employ struectured

data czlled stream whieh plavs a role of 2 "pipe® through which merged solutions

are delivered [3] [11].

The streaz iz a non-stiriet structured data and provides 2 mean of
asynchronous communicaticns between producer processes, which generalte the
elements of & stream, &nd consumer processes, which refer these elements, For
our machine, producer processes correspond to unification processes operating on
an OR-parallel basis and generating merged solutionz, while consumer processes
correspond to other unification proceszses which input the merged sclu=zions. The
strezr can be empty, when pll the OR-parallel unificaticns of the gozsl literal

have failed.

2.2 AND Parallelism

ANDed literals in a gozl statement can be solved in parallel. Thi= AND
parzllelism, however, invelves the following problem, When goal litersls being
executed on an AND-parallel-basis have shared wvariables, the solutions for these
variables must be consistent. In this consistency checking, another unification
gperation, sush 28 a join cperaticn in & data base system, must be performed on
sets of the solutiens for the literals with shared variables., When these sets
of seclutions zre big, then the consistency checking cperation tends to require
longer overhead and larger smount of resocurses. For this reaszan, we will

introduce AND parallelism making use of the pipeline effect Iin our machine as



Page 5

deseribed below. Two zpproaches are pessible for AKD pipeline execution:

= Pipeline execution of all goal literals,

- Parallel executicn of goal literals without zhared variables.

Theze approaches are described below.

(1) Pipeline Execution of ALl Goal Literals

Yhen a given goal statement has pultiple literals, this approach deterpines
the execution order of these literals according to certain rules. The order
must be determined uniguely by, for example, specifying input/output relation of
variables like in the Relational Language by E.L. Clark and 5. Gregory (1], or

by selecting literals from left to right.

With a2n uniguely determined execution erder, a poal statement can be solved
by transferring unifiers, which are the lists of the variables and it=s instances
{i.e. the subatitution information of the variables) in the goal literzl, among
the literals according to the execution order, and by initiating unifications of
ezach literal when the unifiers have arrived. Pipeline processing can be

implemented by connecting these literals with s=treams in the execution order.

Assume that a geoal staztement given has multiple literals, and unifications
between & goal literal and clauses of its definition are executed in parallel,
and Lhey create a stream of unifiers for variables in the gosl literal. TIn this
cgse, Lhe wunifiication of each geosl literal will be processed in the following

otrder:

(a) When an unification ocn the previous goal literal succeeds, the
unifiers are sent along the stream, and the next geoal literal fetches

the unifiers from the stream.



Page 6

(b} According to the unifiers, the substitution i= performed on
the wariables in the literzl concerned. Using the substituted literal
as a new geoel literzl, the next umifieations are cerried out between
the new literzl and the c¢lauszez of 1{ts definition. The resvlts
construct another stream, and are zent to the succeeding literzl. If
there iz no succeeding literal, the new unifiers obtained satisfy the

goal statement.

(2) Paralle! Execution of Geal Literals without Shared Variables

Literzls without shared variazbles do not have to solved on & pipeline
basis; the unificztions of them can be executed in parallel. This approzch is
based on this idea tc improve parallelism, and alsc to aveoid the duplicated

execution of same unificaticns in valn.

Suppose that s goel statement
- plE) & gqfY) & r{X,¥).
iz given. Where p, g9, &nd r are predicates, and X and ¥ arc variables. As the
literals p{¥) and g(¥) have no shared veriabkle each other, they z2an be =zolved
independently. If z segquential execution method of AND literals, 25 desoribed
in {1} above, is5 used, and i the pl¥) prodeces multiple instances of variable
¥, thern the same unification of the literal alY) must be applised for all  the
results of the unifiecaticn of literal p{¥). Ir this approach, however, the
unification of g{Y) may be applied only onece, and is initiated not waiting for

the results of the unification of pl(X).

In the above goal, p(X) and g(Y¥) beccme the producerz of the instances rfor
veriables ¥ and ¥, respectively, and r(X,¥) becomes a2 consumer of these streans.

This will be represented as following greaph:
e ———————

]
= plX) & qiY) & riX,Y)
]

The unifieation process of r(X,Y) inputs two streams fop vepilebles ¥ and Y, anpd



Page 7

performs unification on all the combinations of instances of them. This can be
easily be achieved by recursive calling of the litaral p(X,Y) by unfolding both

streams to their elements.

In this approach, however, involves some problems. Zuppese that another

goal statement below 1s given:

e .

- B(X,Y) & a(X) & r{Y)

Frmm———————

In thiz casze, when one eof soluticns to the geal literal p(X,Y¥) is obtained, the
instances for variables ¥ and Y are sent to g{X} and r{Y¥), respectively. Then,

glX) and r{¥) will be solved independently.

However, if the instances of X and Y are mon-ground terms (i.e. if they
ineclude some unbound wvariables before calling p(X,Y¥)), and if an unit clause
below iz given as the definition of p:

plZ,Z) <-
where the head literal has multiple occurrence of the varisble 2. Then the
returned instances from p(Z,I) may also be non-ground term, and be bound to the

same unbound variable Z.

Thi=s means that, when execution of g{i] causes X to be bound s=oge
instances, execution of r(¥) iz affected to it (i.e., dinovolves side effect

operation bteween q{X) and r{Y¥Y)).

It iz difficult to deteect such z side effect unification and to determine
the execution order of literals at compile time, Therefore, operators, those
that detect whether the instances {rom the literal p(X,Y) include the shared
unbound variables or not, and those that contrel dynamieally the stream flows in

the goal statement, will be necesaary.



Fage &

By default, which selects the execution order of literals with shared

variabples f{rom the left to the right, the literal q{(¥) will produce the

instances of shared unbound variable 2, and r(Y) will consume them as follows:

R —

' :
= plX,¥) & gi{X) & riY)
| ¥

e e e
The unification procedure of a clause where its head literal has wmultiple

pceurrences of same variable, like p{Z,2), is represented by the following data

flow graph:

first second
argument argument

"war” “vyar -

unify unify

ﬁ_@"‘“
[ unify |
R

{ raturn |}

Figure 2,1 unification procedure of clause p{Z,Z) <=

Az an unbound varizble can be unified with any farm of term, the unify
operctors between two input arguments and the unbound variable Z can be omitted.
In order to guarantee the identity of the first and second argument of predicate
p in the above clause, the independent instances of their unifications must be
unified again, This unification will produce an instance of variable I, which is

sent the bedy of the clause, if the body exists.



Page §

After the body unification has completed, the share operator checks the
final dinstance of I whether it is a ground term or not. In order to perform
this check operation faster, the data type field of the instance has an unbound
flag, whieh shows whether the instanee is an unbound variable or the instance
has any unbound variable as ils substructure, S0 the structure construction
operator, which 4s used when constructing a new structured data from existing
data, will check all the substructure's unbound flags, and will produce a new
data structure with the unbound {lag depending on them: if any of them is or,
the new flag is set on, otherwise, the new flag is set off. The share operater

executes the following procedure:

{alIf the argument's unbound flag of the share operator is off,

the cperator returns the argument itselfl.

{b)If the flag is on, and if the argument is an unbound variable,
Lthe operator returns 2 new shared unbound variable, which has an unigque

shared unbound variable name in its data part.

{e)If the flag is on, and if the arpument is & shared unbound

variable, the operator returns the argument itself.

(¢} If the flag is on, and if the argument i3 a structure, the
cperator recursively calls the share operations te all its
substructures, and returns a4 new structure constructed by their

results,

2.3 Parallelism among Arguments

When a goal literal and one of head literal of its unifiable clause conszist
of multiple arguments, the unifications between the arguments in the goal
literal and the corresponding position's arguments in the clause head literal

can be performed independently by representing the unification procedure by data

flow graph. When an argument of the goal literel and the corresponding



Page 10

position's argument of the head literal are structure, then Lhe parallel

unification of their substructures can also be implemented.

Tn this case, all the independent unifiecation results must be checked for
consistency, that is, the literel unification suceeed only if all the argument
unifications have successfully cobpleted. The reqired consistency checking
enables the parsllelism among arguments to be considered a variant of AND

parallelism.

If the goal literal has shared unbound variables z2s dits zrpuments, the
consistency checking muest guarantee that the same shared varilables are bound to
the same instances. Here, we will show =some exanple. Suppose that a2 gozl
statement

= plZ,2) & ...
iz given, and also 2 clause of definition p

p(E(U),E(VI) <= ..
is given. Then unificstion process of thisz elause must know that its input
arguments have scme shared unbound variebles each other. We will use 2 share
operstor, like just deseribed in (2}, to change the unbound variable I to the

shared unbound varizble, before c2lling the definitiom of p.

The unify operetion of the eclavse can be represented by the data flow

graph:



Page 11

first secand
arqu?ent argument
I 'f(”’}' "..;L'1.r:|.-
(;_unify
-
'\-\_“_-‘_

consistancy
chneck

Figure 2.2 Data Flow Graph of the Clause p(f(U},g(V}) <- ...

The graph shows that an unify operator of each argument has twe outputs:
one is an instance between an argument of goal literal and its corresponding
position's argument of the head literal, and other is a binding environment of
the unbound variables included in the goal argument., The binding environments,
which consist lists of the unifiers of the shared unbound variazbles {i.e. the
shared unbound wvariable names and their instances), are sent to a set of
consistency check operators. A consistency check operator receives a pair of

the binding envircmments, and constructs a new binding envirenment as following:

{a) If one of the input enviromnments is "fail' at least (i.e. ir

its unificaticon has failed), then outputs '"fail' as 2 new environment.

(b) If one of the input enviromments is 'nil' (i.e. if its goal
argument hzs no shrared wvariable), then outputs another input

environment a2z a new environment.



Page 12

(c) If both envirconments are lists, then check= con=zistency among
two environments; it get a first unifier Crom the [irst emvircnment,
and search associatively whether the seccond envircnment has the same
shared unbound wariable =28 the cone in the first unifier; if the
zzsaciative sezching succeeds, the two instances in the first unifier
and the unifier in the second envircnment are checked for consistency,
i.e. these twe instances are unified; this unifiecsticn will produce
'fril' if the the unifipstion has failed, or a new instance for the

shared unbound variable if the unification has succeeded.

The zbove consistency check operation is executed for 211 the
unifiers in the first environment, and will produce a new environment
for all the shared variables included in both of the input
environments, Thiz enviroment is to be a most general unifiers of the

shared variables.

On the other hand, an unify operatcr of the argumentz will execute tLhe
following procedure; it tests the goal argument's data type whether the
argument has any shared unboud variable or not. The datz type [ield hasz a
shared flag, whieh indicates that the datz has any shared unbound varizble as
its substructure, just lilke the unbound flag described zbove. If the flag is
off, the cperateor produces the two outputs: one is an instance between the goal
literal's arpument and the head literzl's arpgument, and other is 2 'nil' wvalue
which shows a binding envircoment is empty. If the shared falg is on, the

operator produces the two results as following:

{2) If Lhe goazl literal's zrpument is & shared unbound wvariable,
it prodouces the shared wunbound variable z2s the instance, and & new
structure cell address as its unifier. This cell is used toe store the
shared wvariable anod the contents of the head argument, which is an

instance of the variable.



Page 13

(b} If the goal literal's argument is a structured data, it
decomposes the structure to the substructures, evecutes unifiications
upen these substructurss by recursively calling the unify operators,
and constructs two structures from these unification results: one is a
construction of their substructure's instances, and other is & new

envircnments.

If a goal literzl has the shared unbound variables, the dinstance of the
unification between the goal literal and head literal includes the shared
unbound variables themselves, The instance of these variables may be gotten
from the binding envirenment, by searching again associatively from the
envirenment with the shared variable names as the keys. This cperation may be

done by the subs {abbreviation of substitute) cperator in the above Eraph.

3

o

ABETRACT MACHIME ARCHITECTURE

The machine is constructed by multiple processing elements with multiple
shared structure memcories, They cen operate independently each cther, and
cennected by asynehronous communication networks. A unification procedure
reprezented by a data [lew graph is loaded in one of the processing elements,
and executed. The processing element detects the executable instructions in the
graph, and interpretes them in parallel. If multiple procedure invoestions ape
issued, these procedure invocations may be distibuted among processing elements,
Each processing element ¢an execute multiple instances of the procedures when so
many gprocedure z2re activated. These instances are distinguished by the

processing element number and their process identifiers,

The structured data is stored 4in the struclure memories, which is
accessible from the processing elements., The structured data, Cherefore, is
represented by a pointer to the structure memory, and ean be shared by the
multiple wunification procezses, In this section, we will show the data types

and the execution modes of the machine,



Page 14

3.1 Data Types and Basic Unification Primitives

The data types implemented oo our mpachine dinpclude symbols, integers,
variables, lists, vectors, atreams, and strings. Of these, structured data -
iists, veetors, streams, and strings - is represented as z pointer to  structure
pemory. To improve unifiecation perfermzance, our wmachine empleys a tagged
architecture, and represents data using a tag field showing its data type and a

value field.

The basic unificztion primitive, 'term-unify', is used in the unification
between cne argument in a geal literal and the corresponding position's argument
in the head literal of its definition. Thiz primitive can be represzented by a
data flow greph in Figure 3.1. As the figure shows, this primitive ipputs 2
pair of arguments and, when one argument is & variable, returns the cother. When
both earguments are atoms (symbols or integers), it returns the unificastion
result of two srgumants, {When they are same ztom, it returns the atom itselfl;
otherwise, it returns the special atom 'fail®, which means the unification has
failed.) When both are lists or vectors, it eslls the list= or vector-unify
primitive, respectively, which, in turn recursively calls the term-unify. In

other cases, the term-unify returns 'fail'.



Page 15

Figure 3.1 Data Flow Craph of "term-unify' primitive

Another basic primitive is a merge operation of a non-deterministie stream,

In order to implement a stream as an arbitrary incremental structure, a stream

body is represented by a list type data structure; it has a first part where a

stream element is stored, and rest part where a pointer of rests of the streanm

is stored. This merge operation can be implemented as fellows. Belore invoking



Page 16

clauses of the goal literal's definition, a create-stream operator is exercuted:
this oparator returns two outputs: one is & peinter of a stream head cell, and
other is & pointer of a stream tail peinter gell. The strezm head cell is a
beginning of the stream, and its pointer is sent to the consumer processes,
which can get stream clements from the peinter. The stream tail peinter cell is
ipnitialized to point to the stream head cell, and ias shared by the invoked
OR-parallel processes, Each OR process, 1f successfully terminated, appends a
new solusien to the end of streazx by updating the stream tzil pointer Lo point
to the new stream end, This append-stream cpepation executes the fellowing
cyclez; it allocates z new stream body cell, read the contents of the stream
tail pointer, updates it to peint to the new stream body cell, writes & solusion
to the first part of the body cell, and finally writes the pointer of the body
cell to the rest part of an old stream tail cell., As the stream tail pointer
eell is shared by the OR processes, the append-stream operator must lock the
cell apzinst other zppend-stream operators wvhile vpdating the contents of the

cell,

An append-stream cperateor of & failed OR process does no operation, and
only decrepents the reference count of the stream tazil pointer cell, When zall
the OF procezses of the stream have terminated, i.e. when the reference count
of the stresm tall peinter cell has reached toc zere, the finpzl operstocr writes
'"fail', which is used for a symbel of end-of-stream, teo the rest part of the

stream tail.

31,2 Prolog Execution modes

Froulog program is executed in either compiler or interpreter modes. Theze
nodea ¢iffer only in the level used 25 the internel represzentation of program.
In other words, in coppiler cede, 2 Freoloap progrem is converted inte a data flow
fraph, the eguivalent of machine languzgpe of our mackine, before boing eXecuted,

while in irterpreter mode, it i3 converted into an  intermediate code 1 ike

vegter, whish is then interpreted by an interpretor writtan in g oosts (low



Page 17

graph.

In general, the processing in the compiler mode requires prather conplex
compiler, but has an advantage of faster execution speed, By contrast, the
interpreter mode is suitable for interactive operating envircnments where
processing is carried on while dynamically updating the program. In this mode,
as the program may be represented by structured data like vector, generation or
update of intermediate ceode is relatively eéasy. Due to frequent accesses Lo
structure memory and code interpretation overhead at runtime, however, ths

execution speed is slower,

igure 3.2 shows an example of compiled code of a Prelog program
represented by data flow graph. This example progrem is a definition of zppend
as follows:

append([],X,X) < .
append([B1%],Y,[EIZ]) < append(X,Y,I).

In this figure, a rectapgular block meanz a procedure invocation, =znd the
above-deseribed 'term-unify' ecan be replaced with more efficient primitives,
guch as unify-with-nil, which unifies the dinput with nil, eor decompose-li=st
operator, which wunifiss the Input argument with list and, if succeeded,

deconposes it to left part and right part.

Figure 3.2 (a) is a graph of append where the First and second clauses sare
executed din parellel, and Figure 3.2 (b) is a graph of gen-append, which is
invoked in the second clause of the definition. The second clause calls append
recursively, which will generzte a stream. The gen-zppend graph unfolds this

stream into elements, and generztes a new stream.

After the uifications off the head literal's arguments have completed, their
results are tested whether all the unifications have succeeded or not. In the
first elause of append definition, which is an unit elause, this operation is
executed by rcons operators, which test its inputs and, if all of them are not

"fail', generate & construction of them; otherwise, generates a "[fail’. The



Page 18

putput of cons operators initiates an append-stream operater, described above,

which in turn appends the result to the end of stream.

In the second clause, which iz a npon-unit e¢lauvse, the head literal's
upnification results are passed to its bedy if all the arpument uwunifications have
succeeded. A& check-suce operator passes its top input to the output port, when

its pight input is not 'fail’.

S ooreate Uuihf-) (f unlhv ﬂec;mpﬂsé
k stream / ( nil snare i 115:_ A

‘nil”
Kl cons

re
return

{a) Cata Flow GCrfaph of append

Figure 3.2 Data Flow Graph Example



Page 19

————

checkycihackYconeck [
succ Asucg Asucc
4 \\\

decompos
sLCesan

- append
stream

o) Dats Flaw Graph of gen=-append

Figure 3.2 Data Flow Graph Example (cont.)

4. CONTRCL OF PARALLEL PROCESSES

In the parallel execution envircnment of Preleg, multiple unificatioen
processes  are simeltanecusly  executed. This requires the process control

functicn described below.



Page 20
4.1 Sharipg of Procedure Codes

To implement a recursive cell in Proleg, procedure codes have to be =hared
either by copving the originazl codes or by assigning a different process
identifier to the procedurs invocatien. Dynomic management of code memory
gllocation and code copying in the former method are generally thought to have
longer overhead than management of process identifiers in the latter mpethod,

We, therefore, have ochosen the latter method {colored teken method) fer our

zmachine.

4.2 Contrcl of the Rumber of Active Processes

A5 described earlier, there &are two possible non-deterministic search
approach: depth-first and brezdth-first. Breadth-{irst search approach
sipultaneously tries multiple sclutions, which may drastically increase the
number of active processes. For an zeotual limited rescuece system, this may

cauce & deadlock stotus beceuse of explossive resouce exhaustion.

The system, therefore, has to be equipped with & mechenism to automaticzlly

control the number of active processes. Two mechanism are possible:
- Mechanism to restriect stream length,
= Mechanism to conlrol proceszs priopity.
(1) Mechanism to Restrict 3tream Length

This methed prevents rescurces from  being  explosively consured by
restricting the length of 2 strezm. For example, zssume 2 stream with a maxiwum
length of H. The stream length can be restricted by initiating simultaneously

up to N processes of OR processes which ocutput their resulis as elements of the

stream and by suspending execution of the remaining processes,



Page 21
(2) Mechanism to Control Progess Priority

Thiz pethod prevents the number of active processes frem drastically
increasing by assigning an appropriate priority to each process and contrelling

its initiation accerding to the priority.

In general, process creation can be controlled with process gueues arranged
by their priorities. This priority-based contreol is performed in the following
way: first, a process management table like Figure 4.1 is established and, whe=n
& process invecation request (procedure call instruction) is issued, the request
is chained 4in the gqueue with the corresponding priority on the table;
meanwhile, the dispatcher, which 1is a process manager in operating system,
monitors the current state of every processing element and, having judged some
processing element In  idle =tate, fetchs the request from the gueue with the

highest priority and allocates that element to it,

—— — J/

prirarcily

s N o B o IV

. r
—_—

process invocation reguest gueue

Figure 4.1 Proceas Mansgement Table

The executien of a Proleg program can be represented by an  AND=-OR  search
tree shown in Figure 4.2, Tor an AKD branch, a rectangular box in the figure,
the solution cannot be obtained until 2ll its successive AND processes are

solved, Therefeore, the same pricrity maey be asasigned to these AND processes.



Page 22

On the other hand, zn OR branch can be solved if any of the successive O0ORF
processes has successfully terminated; thus, some of its processes may be lasy
evaluated. Feor example, by assigning higher priorities te left OR processes
than its right, the right processes may be invoked only if the proces=ing
elements are relatively idle, cotherwise their invocation may be delayed until

higher processes terminate. This approach can prevent an explosive inerease of

OR processes.

b

7 7 N
Y e 7\
N LA
s ~H_J I ' ' .

\ §

Tl e
¢

I(d

,.' \ 1 )"} P ) f_“ ?
NN = MO C&
AW )K_/ Nt A\

( — !

f 1 . ! ' | I |
Figure 4.2 AND-CR Searching Tree

L.3 Termination Control of Processes

At the point of view of OR parallelism, our mackine can be regarded as
"eager evaluator", which execute O cendidate processes in parallel, L tries
to obtaln solutions, not by activating OF processes in a sequential manner until
an OF process terminates successfully, but by activating multiple unification
processes Iin parallel, although some of process executions may be waste if' only

one solution is necessary.



Page 23

In erder to support guzrded clauses like in Concurrent Prolog [11), which

15 used to dynamieally reduce the search space, it is necessary te terminate OR

proceszes running in parallel, for efficient use of resources.

4 definition of guarded clauses may be represented as follows:

Hi <= CG1 1 B

H2 <= G2 | B2

Hn <- Cn | BEn
where H1,H?,..., and Un are head literals, G1,G2,..., and Gn are guard parts,
B1,BE2,..., and Bo are body part, and Pif iz a guard bar. If one of unification
of guard parts succeeds and control has passed to its body part across the guard
bar, then the selution of this definition iz a result of this bogy part. Other

results are discarded.

THis guard mechanisp ¢an be implemented using =semaphore shown in Figure

N.3.



Fzg= 24

Jozl Litera

Figure 4.3 Unificetion of guerded clauzes

The crestie semaphore operator a2llocates and initializes & memcry cell
shared by every guarded olauses, The test & =&t operztor in éach clause i3
executed when the unification of its guard part succeeds. It tests the flag in
the allocated memory cell, and sets it on if the flag tested was off. While
this opeartion is proceeding, other cperztor cannot interrupt te this operation.
If the result of tested flag was off, the unifiezticn <l itz bedy part proceeds,

ctherwise, the token will be absorbed in this cperator.

Az soon 25 the fipst te=zt & =et operator is  executed, the unification
proceszses of other clauses zay be lorced to be termineted, insteac of waiting
for their terminations., We will provide token communicaticn paths with [ilters
which will abzorb the tokens belonging to perticuiar processes. The filter can

pe implemented using, {or example, asscciative memory. whelher to  sbsorb  the



Page 25

token «can be determined storing process identifiers for tokens te be terminated

in the asscciative memory and by searching asscciatively using token's process

identifier az a key when a oken arrived to the filter.

Yhen the result of test & set operator azbeove was off, it broapdea=ts all

the process identifiers of its brothers and their decendants to all the filters.

4.4 Process Alleocztion Control

Ancther problem concerning process control is how to alleocate ressurces to
activated processes. This resource management problem is closely related to the
network structure of the system. Ideally, the network struecture should be
capable of not only minimizing overhead fer the rescuce panzgement and
interprocess communications but alse of permitting system leoad to be distributed

evenly throughout the =ystem.

Cenerslly, it is very difficult teo statieally determine resource allocation
at compile time iIn the applications such as inference system, where dynamic
program behavior is not clear. The machine, therefore, may have to dynamicelly
contrel resource allocstion, while exazmining the follewing points; how to
manege communication costs and load state of processing elements and how to

centrel program lcading.
(1) Management of Compunication Costs and Load State

Fesource management can be simplified by adopting a network topeleogy din
which communicaticen distances among any pair aof processing elements are same,
because, with su¢h a network, resource manager can allocate & relatively idle
processing  element to & new process without considering communication costs,
One possible network structure of this teopology is a multi-stage network. Witk
this network, however, the more the nmuober of processing elements in the system

increases, the more the inter-element communication costs becomes expensive.



Pzge 20

Qo ne otber Rang, when there 15 scpe locelity in inter-element
conpmunications, the communication cesby cen be lowered by z2llocating
closely-related processes Lo neighbeor processing elements. Compared wiih the
network described above, this network requires rather complex resouce manzger to
balanee the Lload. Lead balanecing could be achieved, faor example, by
distributing resource manager L0 each processing element and by oommunicating
load status among nelphbor loes! manzgers so that processing lozd z2an be avenly
diztributed ameng these precsssing elements, which may agproximately disribute

the precessing load te all the processing elenents.

P

Our machine, therefore, will use a network tapalogy with loczl

sombunications among processing elements.

(2} Progrem Loading Contral

Cepy method whisk broadeszsts the entire program to all processing clements
et initizlizstion could eliminste dynamie program leading; process gllocotion
gcould be copirolled by simply vonsidering inter-process copounication costs and
igcad balance emong the processing elcements. For large-scale zpplication,
nowever, thiz requires large-cspacity program menory in sach processing element ;
Lthus, herdware costz would bLecooe probiivitive in large-scale gulti-processor

sYsted.

Programs, therefore, will have to be diztributed zmong prooessing elements,
Thiz reguires dynanie program icading contrel, sinee, oo Zeseribed abeve, statie

prograo alleoezticn is generzlly difficult.

In the dyopemic program leeding, prugrem leadiog overhezd con be reduced by,

for exanple, introducing folleowing approaches:

{a) When a new process iz initiated, zlleeazation of the process to

a processing elepent which has already the process's progran codes,



Page 27

(b) distinguishing the program loading unit from the process's

program code unit.

In approach (a), process allocation will be controlled by balancing the
inter-process communication costs and load concentration te the particular

processing elements against program loading overhead.

The approach (b] invelves loading a set of relatively-closely-related
procedures 4in a processing element (or in a set of processing elementz} in one

loading time.

The allocation of new precess may cause a swapping out of another
processes. This owapping mechanism requires a dynamic relocation function of
programe, which transliates & logical address to the pysical address of program

mexory in the processing element,

€. STRUCTURED DATA CONTROL

Many data wmanipulated in the Prelog application has 2 complex data
structure. The key point of & Prolog machine design will be efficient

processing of structured data.

Generally, the copy method, in which the structured data is copied to all
the processes referencing that data, enables the subseguent processes to be
executed indepandentliy of each other. For handling complex and large structured

data, however, this method suffers from large overhead caused by data copying.

Therefore, a function which can share structured data among proeesses is
required. In a =ystem with this function, processes will he able to share the
same structured data by communicating pointers to the structure memory where Lhe

structured deta is stored.



Pape Z8

A system with shered structured data will pregquire a contrel funetian
capable of distibuting the struclured data smong multiple structure memories to
avoid access concentration. For example, assume that oultiple processes will
simultanecusly traverse the shared structured data. In this case, simultaneous
appesses to the different portions in the same structured data and distribution

of structure memory load czn be achieved by mapping the legiezl structured data

over the multiple structure memories,

hs described above, efficient stiructured data manipulation ¢a2n be achieved

by two coptrol functions to share and distribute the structured deta,

§.% Sharing Control of Structured Data

When sharing structured data in a parallel processing system, such as g
data [flow machine where @multiple processes are running independently of each
other and activities (instructions and tokens) are distributed ever wvaricus
portions in the machine, the problem inveolved 1s how to perflorm mepery gartage

collection.,

A method proposed to solve this problem sets up a reference count in  each
memary ecell [6]. This reference count method stores the numbepr of activities
referencing 2 memory oell in jts peference countl pemory, and, when *the pusber
reaches zZero by terminaticn of an activity, makes the cell peussble az 2 gzrbage

cell.

This methed, however, reguires rcferenee counts to be updated not only when
structured dats i1y manepulated but 2lze when 2 process iz invoked or 2
conditinal branch ocours. Therefore, we must evaluate the overhead of reference

count manipulation.

5.2 Distribution Control of Structured Data



Fage 29

Sharing structured data among several processing elements will be

aceompanied by the problem of structure memory access concentration deseribed

above,

Structure memory distribution gives rise to the problem of how to map a
logical structured data on physical memory banks, For example, suppose that
multiple processing elements sipultanecusly btry to access a single dats
structure, If the strueture is stored over several banks, access conten=ion

will be reduced and structure manipulation load will be evenly distributed among

these memory banks.

Meanwhile, structure traversing operations, suchk a= updating control of
reference count or some sort structure treversing like a share operator
deseribed above, require transfer control of operations between memory banks, ir
the structure mapped over several banks. In this type of operations, executien
can be done efficiently by introducing a network that interconnects memory banks
with a loczl topolegy, and by carrying out the structured data mapping to

exploit the leocality.

When a two-dimensional mesh structure is used as this network, structured
data like =2 frequently-used tree structure could be mapped as shown in Figure
5.1y where circles and squares denote memory banks and memary cells,
respectively. Notice that unbalanced load could be reduced by intreducing more
flexible memory cell allocation strategy than the one shown in the fipgure. Fop
example, a strategy which allocates the subtrees to memory banks lozated al one

or less distance from itz root node can be used.



Fage 30

Figure 5.1 Distribution of Structured Data

6. MACHINE AHRCHITECTUHE

Our machine, c¢on3tructed on a baszis of multiprocessors with shared
structure pemory banks, copnsists of Processing Element Modules (PEMs), Structure
Memory Modules (3MMs), and three types of nelworks connecting these modules

(Figure 6.1).



Fage 31

Inter—3M Metwork

PEM! Processing Elemens Module

SMMI Sarueiure Memary Module

Figure £§.1 Machine Configuration

Ezeh module can operate independently. Spatial parallelism (paralleli=sm
dus to simultaneous execution) ean be achieved by distributing a set of active
processes (activities) among modules. Since asynchronous compunications among
these modules and among functional blocks in 2 module are adopted, this machine

cah make usze of pipeline parallelism.

The basic structure of the modules are discussed below.

6.1 Processing Element Module (FEM)



Page 32

PEM interprets the unifiecztion procedure and controis instruction
execution, procedure ezlling, and basic pattern matching cperation, as well as
executes some built-in predieates. Tt is further divided inte twe submedules

forming a cireular pipeline structure shown in Figure 6.2,

anr'_'l' PE .~"-I|-!!"v\.-'_'r-i
i

! I oPEM|
i | ! ! f
L ———

i ]

| =l

! | 1CM I
o |
Lo !'
i I ! e I t =

|| . e DT Q)
! N B N T e SM
‘ i: i [ Meiwork
| ||
|
i L

Figure 6.2 Configuratien of a Processing Element Module

(1) Instruction Control Module (ICH)

The ICM iz activatod when o result packet (zee Figure 6.3(z2)) representing
a token arrived on its input port. 4 result packet consistz of a process
identifier which specifies 2 process, 2 destination address of an instruction to
which the result is transferrec, and a result value which is an ocperand of the
instruction. Using & process identifier and & destination address of the result
packet, ICH determines whether gll operands for the instruction are now present
{i.e. whether the instruction becomes executable) or not. IFf the instruction
turrs out to be executable, the ICM generates an instruction packet (3ee Figure
£.3(b)} and sends it to the Execution Module {(EXM). As Figure 6.4 shows, an TCM
consists of a FResult Packet Filter (RPF)} that [Filters ocut result packets
belaonging to the termination processes, a HResult Packet Queue (APC) with =
gueuing function for result packets, and zn Instruction Control Unit {ICU) with
2 pontrol functicn whieh determines whether zn instruction is executable and, if

it is, generates and outputs an instruction packets,



Page 33

o . e e e e e +
| process | destination |

iidentifier! i value
o e o e S e e s =+

{a) Hesult Packet Format

5 e e e i
{ ope | left | right | process | dest | ... ! dest !
| eodeloperand joperand [identilier | L H 2 |
i —— ———— e ——— - .-

(b} Instruction Packet Format
Figure 6.3 Result and Instruction Packet Formats

I
]
!
]

e e

result packat

[
{ RPF
L
RPQ
APF: Result Packet Tiltsr
APH: Aesult Packet Quesus
T IC4: Instruction Coentrol Unit
ICy ! AMr Matching Memory
dM:  Operand Mamory
[ LE ] OH 14 [4: Instruction Memory

instructiosn packet

Figure 6.4 Configuration of Instruction Control Module

{a) Result Packet Filter [RFPF)

The RPF has an associative memory to store process identifiers belonging te
the aetive processes, and when a result packet arrives, performs assoeciative
search or the memory using the process identifier in the packet as a key field.
If an associative search succeeds, the token belangs to an active process,
ctherwise, it beleongs te a2 termipated proceszs  or a swapped out  process,
According to the search result, it determines whether it sheould pass the result
packet conto the next RPJ. The RPF also has an address conversion function to
implement the dynamic relecation of program. The associative memeory, therefore,

contains, in addition to the identifiers of the processes being executed, the



Page 34

physical base addresses of the code for the processes. The RPF can perform
address canversion by adding this base address to the destination address, which

specifies a relztive address from top of code.

(b} Result Packet Queue (HRFQ)

The BPD consistis of first-in first-out memory and stores result packets
tepporarily umntil the next stage unit, ICU, beccomes ready to input the result

packet.

{e)} Imstruction Control Unit [ICO)

The ICU consists of a Matching Memory (MM} which is used to determine
whether an instrustion 4s& exesutable or net, an Operand Memory (OM) which
temporarily =tores operands until their instructions become executable, and zan

Instruction Memory (IM) to store the instruction code,

To simplify the detection of instruction's executability, each instruction
receives only one or twoe operands.  An instruetion with single operznd becomes
exeputable when its result packet arpives, and an instruction with ftwo operands
becomez executable when two result packets, which carry the left and right
cperands, arrives. To which type an instruetion belongs is specified by the

firing control tag subflield in fthe destination address fiela in the result

packet.

When a result packet arrives from the RPZ2, the ICU tests the firing control
tag 1in the result packet. I1f the tag specifies an Imstruction with singl
cperand, the ICU constructs the instruction packet immediately, from the result
packet and the instruction code fetched from the IM, and send the instruction

packet to the next stage unit, EXM.

In the case of an instruetion with two operands, the MM, which consists  of
gn asscciative memory, 18 searched associatively using the process identifier

and the destimation address in the result packet asz & key field, The



Fage 35

associative seapch fails only for a packet which carries the first-arrived
operand at the instruetion, and the process identifier and the destination
addpess  in the packet are stored in 2n empty MM's entry, and the cperand value
in its corresponding OM'= entry. For other packets, asscciative searches
succeed and the instruction is executable; the [irst-arrived operand stored in

the OM and the operand just arrived aleng with the instructien code constitute

an instruction packet.
{2} Execution Module [EXM)

The EXM receives an instruction packet from the ICM, decodes the operation
code, and controls its execution. Figure 6.5 shows the structure of an EXM.
The EXM consists of Atomic Processing Units (APUs), the basic functional units
responsible for instruction execution, an Instruction peckelb Distribution Unit
(IDU) which distributes instruction packets among AFUs, and a HResult packet
Arbitration Unit (RAU) whieh ceollects result packets generated in 4PUs and

transfers them to the pext destinztion.

instruction packeaet

i _‘___ -
—
1

N RALU

d
| -
result rpacket

Figure 6.5 Configuration of Execution Module



Fage 36
(g} Atemic Processing Unit (APU}

Instructions executed in APUs include those for process identifier
alleceticon control related to procedure czlling and those for instructions or
built-in prediecates withoult accesses to structure memory. The execution results
af the instroctions, along with the destination addresses in the instruction
packets, form result packets, which are sent Lo the RAU, Instruetions, which
agcess  the  structure memory, are trapsferred to the designated SMM via PE-SM

Hetwork.,

Procedure eall instruetions reflerence 2z process contrel table, which
maintain parent-children relationship of grocesses, and allocste unigque process
identifiers for crezted processes. The process ﬂﬂntrﬂi table is stored in Loeal
Memery (LM}, which are shared among APUs in the EXM. The LM is zlso used for

free cell lizt described lzter,

Structure memory instructions, whiech include resd, write, =zllocate, or
reference  count econtrol  instrustions, are transferred from the APU to SMMeE 2=

SHM instruection packets.

In order to control pipelinig between the APU oparation and various packet
tranomissions, each APFJ hss a2 result packet register and 2 EMM instruetion

packet register,

The number of APUs in an EXM will eventuzlly be determined by balancing the

throughput of the ICM and the throughput ef the LPU,
(b) Instruection Packet Distribution Unit (IDU)

The ITU receives instruction packets from the ICH and distributes them to
the appropriate APUs. Using a load-distribution strategy, in which each APU has
same functions, the IDU ecan send the instructien packets to the idle APUs. The

packet transmizsion is suspended, if all the APU are busy.



Page 37
(e} Result Packet Arbitration Unit (RAU)

The results of an instruction execution are =ent as result packets, to the
specified destination addresses 1in the instruction code. The RAD waits for
result packets from every APUs, arpitrate the result packet sending requests,
and select one of them., According to packet's destination address, which
includes the FEM number and the IM address of the destination instruction, the
F&U determines whether cireulates the packet in its own PEM or sends it te

another PEM viz Inter-PE Hetwork.
£.2 Structure Memory Module (SMM)

Structured dala manipulated in 3MM includes lists, wvectors, streams, and
strings, whose logiezl structures are represented in Figure 6.6. A user defined
structure is represented by a vector or a list. A vector is compeosed froem its
size and one or more elements, and is represented by a pointer with a data type
"vector' of the structure memory, where its size and these elements are tored.
The first element of z vector is celled as a functer, the second element as a
firat argument, the third elepeni as a2 gecond argument, and =0 on., A list is &
special vector which is assumed to have a construct operator as its functor and
have two arguments, left esnd right parts. Only two arguments are stored in  the
structure memory, and z list is represented by a pointer of this mepory address
with a dats type 'list'. Lists are introduced to implove the performance of
iist operation. While a list and vector are zble to have any type of data for
their individual elements, a string must has & same data type for their all

elements,



Fage 38

- 1 r
laft langth lengin
| right 1st elemsnt () (3] C2xp )
| a
Zngd element
- _ _— ; . e =
(a) list s i
nth element ! | |[n]
({9) vector {¢c) string
- ; [ ._ | first
| head ptir —r— = first :j% first
! . .
! i i ; ~
} tail oir : rest , | Test |
 — F\\““_ ________J
strezx Dodvy

(d) strCeam

Fipure 6.5 Representation of Structures Deta

Streams basically employ the representation of the difference list [5]. 4=
in Figure £.6 (d), a stream is represented by a head pointer indicating the
begipning of the stream 2nd s tail pointer indicating its end, Like a list, =
stream's body i3 represented by a chain of cells each having two arguments,
First and rest parts. A stream element is put on the first part, =and =

subsequent part of stream is pointed by Lthe rest part.

A producer process of the stresm elements adds a new element after the
current tail pointer and updatesz the contents of the tail peinter to the address
of the new element. & consumer process of Lhe stream can get  the elements of
the stream by traversing the stream body starting with the head pointer. When

the consumer reached at the current stream end, it waits for the next elepent



Fage 39

which will be appended by the preducer, That 1is, the stream provides an

asynchrenous communication means from the producer to the consumer,

Figure 6.7 shows the conliguration of a Structure Memory Module (SHMM).

BZ-3M Metiorx

ROM o
| ac i 27| tvoe| value]
] . { I -
Py
21d | dest|caain
! ‘ r Inter_si Yetwark

SMCOr Structute Memoarv Controller
[ H Datz Memogy

HCM: Refernce Count Memory

POM: Pacxet fueue Mamory

Figure 6.7 Configuraticn of a Structure Memory Module

As the figure shows, a SMM  econstists of a  Structure Memory Controller

{SMC), Data Memory (DM), Reference Count Memory (RCM), and Pending Queue Memory

(PGHM).

The SMC is initiated when a SMM instruction packet sent from an AFl via the
PE-5M Hetwork, and contrcls execution of the instruction. Instructions can be

roughly claszified intc three types:

= Reference court control instructicns



Page 40

- Data resd/write imstructions

= Free ecell control dinstruections

{1} Beference Count Contrel Instructions

Te perform efficient gargabe collection on structure memory, our RDachine
uses z reference count method., This pethod reguires a refersnce count, which is
stored in the Feference Count Memory (RCMY, corresponding to  each structure
memory cell stored im  the Data Memory (DM). A structure memory cell hes
gpultiple entries where its substructures are stored. Sinee 2 reference count
ecntrol  instruction i1z often performed simultaneously with other structure
gperztions, the SMC will be designed so that updating the reference count and
accessing the DM can be carried out in parsllel, The updating of the reference
count imvolves a series of operations: reading freom the RCM, czlculasting & new
reference count, and writing the result ints the RCM. Using 2 high-speed memory
devioe as the RCM, these cperations c¢&n be completed in the sape or less pachine

cyeles a5 a DM operaticon.

When & reference count for a2 structure memory cell reaches to =zero, that
iz, when the structure becopes a garbage, all of its =substructures zre tested,
If an substrueture is found to he a pointer to =another structurecd data, the
reference  count to  that substructure must be decremented. If the pointer of
substructure points to other SMM, the reference counlt decrement dnstruction

packet will send to the specified 5MM via Inter-5M Network.

(2) Data Regd/VWrite Instructions

In addition tec a data type tag and value, ezch entry in the DM centains =2
feady (R) bit, which shows whether the contents of the corresponding data value
iz valid, and a Pending {P) bit, whieh shows whether any waiting instruction flor
deta is exist. The R bit is provided to z2llow the producer and consumer

processes to asynchronously compunicate messages.



Page L1

Having received a read instruction, the 3MC first checks the R bit at the
specified DM address, If it is on, the SMC reads the data type and value in the
bM, and constructs & result packet te send them to the destination address
specified in the instruction. Otherwise, the read operation is suspended until
data is written into that entry. The suspended read operation is temporarily
stared 1in the Pending Cueue Memory (POM); First, the SHC gets an free gueue
pell in the PGM and stores the process identifier and destination address in the
cell. Then it alse stores the address of the queue cell in the value field of
the DM entry and turns its P bit on. If the P bit has been already con, the new

queue cell is chained to the previous queue cell chain.

Having received & data write instruction, the 3MC checks the P bit at the
specified DM address. If it is on, which indicates some suspended read requests
has already been iszsued, then the SMC fetehes 21l the queue cells .chzined by the
value field and produces result packets to be.sent tec the szpecified destination
addresses in the queue cells, Then, the ZMC writes the data value into the DM

entry, while reseting the P bit and settig the R bit simultaneously.

More complicated instructions, such as test & set operation or structure

traversing coperation, will be also provided.

(3} Free Cell Control Instructions

To execute a structure construction instruction faster, a free cell list to
maintain the free cell addresses of strucure memory will be set up in the LM of
each FEM. When this instruetion is executed in one of the APU, the AFU pgets a
free cell address from top of the loecal free cell list and comstructs result
packets immediately. After the sending of result packets has completed, the APU
zends & free cell inastruction packet to the SMM in order to 2dd 2 new free cell
address into the free cell list, and also =ends the data write instruction
packets of the substructures., Notice that addresses held in the free cell listsa

are different each other,



Page Uz

In eorder to map the structured data over the 5MMs evenly, the APU must be
able to select an arbitrary SMM when allecating a free cell list. All the SMMs
in the system provides a single address space. A SHM cell address, therefore,
consists of a SMM number and 2 local address in the SMM. Figure 6.8 shows the
free pell list stored in each LM, where free cell addresses are maintained by
their source SHMs, Alloccating a new free cell, the APU selecis one of the SHis
zecording to the alloecation strategy described in section 2, and get the top of

free cell list of thet SMM. The free cell list in the LM should be long encugh

te prevent the list from being emptied by free cell requests.

SHEG

free cell address

Figure &.8 Free Cell List in & Local Heuwory

Havipg received a {ree cell instruction, the 3MC gets one of free cells and
constructs & free cell packet, which is sent to the requested PEH Lo z2dd 8 new
free cell te the free gell list in its LK.  All the cellz, whose reference count
is zero, are chained in the [M beginning 2t a free pell header. The 2MC,

therefore, can get a free cell from this header.

f.3 Network Structure

We will use an asynchroncus, disributed, packet exchange network structure,
so that all the modules in the systen can cperate independently. Another factor

which determines the network structure 15 & network topology. The network



Pape 43

tepelogy  will depend upen the characteristies of data transfer requests., Our
machine will use tree types of networks: Inter-PE NWetwork, PE=3M Network, and

Inter-34 Network.

As the Inter-PE Network and Inter-5SH Network, we select a network topology
with 2 two-dimensional mesh structure, beczuse, as oentloned in Secticn 4 and 5,
this type of network has a potential to alloeczte rescurces to coptimize localized

compunications.

Or the other hand, we have chosen a multiple-stage network topology as  the
PE=3H lietwork, where every distance between a2 PEM and & SMM is equal. A PE-3M
Network based on a loczlized structure might cause respurce allocaztion to hbe
very complex, because this structure reguires testing over process zallocztion
status among PEMs as well as structure memory alleoeztion status esnong SMis, when

allocating any resgurces.

§. CONCLUESION

This paper has described & processing model of a  data-flow-bzsed Prolog
machine and it: architecturs. In the descripticn, we have shown that the
introduction of a stream concepl can implement Ofi=parallel and ARD-parallel

processing of Prolog.

At present, we arec developing 2 zoltware sipulater for this mwechine and

designing a more detailed structure.

Acknowledpements

We would like to thapk Dr. Kunie Murskami, Cheif of the First Besearch

Laborateory in ICOT, and other TCOT research members for their valuable eooments.



Page 44

Relferences

[1] Axamiya,M. and Hesegawa,R.,"Data Flow Mzehine and Functional

Language®, ALB1-84,PRLE1-63, IECE of Japan, Dec. 1981 {in Japznese).

[2] Arvind, Gostelow,K.P. and Plouffe,W.E., " An Asynchronous Frogramming
Language and Computing Machine™, THR1142, Dept. of Ioformation end Computer

Spience, Urniversity of Califernia, Irvine, Dec. 1978.

[3] Arvind znd Thomas, R.E.,"I-Structures: An Efficient Data Trpe for

Functional Languages®, TM=-178 Laboratory for Computer Science, MIT, Zept. 1981,

[4] Clark,K.L. and Gregory,2., " A& Helational Language for FParzllel

Programming®™, Hesearch Report of Imperial College of Science and Technology, DOC

81/16, Jul. 1981.

[5] Clark,X.L, and Ternlend,3.4., "¢ First Order Theory of Data and

Progremsn, IFIP 77, NHorth-tlolland Publishing, 1977.

[6] Cohern,J., "larbage Collection of Linked Datz Structures", Computing

Survays, Yol.13, Ne.3, Sep. 1981,

[7] Ceonery,d.Ss. and Kibler,D., "Parsllel Interpretation af Logic
Frogramming™, Proo. of Conf, on Functional Frograoming and Computer

frchitecture, ACM, Oct, 1981.

[8] Gurd,J.R. and Watscon,I., "Data Driven System for High Speed Parallel

Cemputing®, Computer Design, Jul. 1%80.

{9] Tanaka,H. et al.,"The preliminary Research an the Data Flow Machine

and Data Base Machine 2= the Basic Architecture of Fifth Generation Computer
Systems™, Prog. of Internaticnel Conference on Fifth Generatien Eystem, JIPLDEC,

Japan, Oet. 1981,

{10] Kowalski,R., "Fredicate Logic as TIrograoming Language™, IFIP T4,

Horth-Holland Publishing, 19T4.



Page 45

{11] Shapiro,E.Y., "A Subset of Concurrent Prolog and its Interpreter®,

TR-003, ICOT, Japan, Jan. 19B3.



