ICOT Technical Report: TR-034

TR-034

Systems Programming in Concurrent Prolog

by
Ehud Shapiro
The Weizmann Institute of Science
Rehovot, ISRAEL

Movember, 1983

Miiln Kakusal Dldg. 21F (03 dab-31%91 -5

H :D] 4-78 Mita 1- Chome Telew [COT 132964
Biinato-ku Tokyo 108 Japan

Institute for New Generation Computer Techndlogy

Cvetams Programming in Concurrent Prolog

by
EBhud Shepiro

Depertzeont of Applicd Mathernatics
The Vivizwann Jastitute of Heience
lehovot 76103, ISRATL

November, 1983

Abstruct

Congurrent P:"-‘.u\; [28] cosbines the logie pregrataming comprintion modcl
Wit snardedsconnand indetenminncy and datadow synehronizution. It wili fL‘-I'ELL the
ARt Lf the Herne! L..J"L.“”¢ [23] of the Paizilel Inferepce hinchine (58], pl BN by
Jopots Fifih Ceneration Computers Project. This paper explores ihe feasibiliiy of
vroseaneine such o machine solely in Coneurrent T2 mlﬁg {nt the absence of o lowe:- lovel
Cowrenoaing langeres), by implementing in it a representative colleetion of systoms

precroiming probiems.

This paper subsumes an earlier draft entitled "Concurrent Prolog
as a Multiprocessor's Kcrnel Language.

Tg appear in Proceedings of the 711th ACM POPL Symposium, January
84,

I, Intraduction

The process of turning a bare von Neumann macline into a usable computes
is vadl vademstood. One of the more elegant techniques Lo do so is to jmplement a
cress-eoinpilin Tor a syslems programmning language {zay C) on 2 usable computer. Then
pples s b in that lenguage an operating system kernel (say Unix), deviee drivers, a
fle cy-tom, and a prograimming covirenment. Then boot the opciating system op the
tropel cewputer. From that singe on the computer is usable, and application pPrograme,
cotmnpiles sud interproters for higher-lovel languascs (say Franz Lisp and CProlog) can
be developed on it.

This paper addrerses the question of turning a bare computer into a veuble One,
but for o machine of » difficiont type, nanely, a paralle] logie programming machine. In
particuiar, it explores the suitability of Concurrent Prolog [28] as the kernel programming
lenguage! of such o cotaputer, by asking the question:

L. Will a machive thal inplernents Coucurrent Prolog in hardware or firmware be usable
as w general-purpose, wultj-user, interactive computer?

or, steled slighily differently,

2. Is Concurrent Prolog expreszive enough to be a kernel langunse of 2 gevers! purpocs
compuier?

We investizate there questions only from the soflware, not from the Lardware,
side. Our concern witl elieioney is linited by the assumption that the machine will
- " i "
execule o0 koont as many Megalips* as today’s computers exeeule hips.

These questions are far reaching. but not purely speculative, given thz Fif):
Generstionw Compriers Project’s plans 1o design and build a parallel logie pregre~nning
machire, ued to nee Concurrent Prolog as the busis for the machine’s Lernel lanrunse
[

[ﬁI].

The paper attempts to give sowe evidence towards 2ifirmative answers to thee
anesbions, To du so, wi assvme 2 voriputer that behaves like a vitlual Conenrpep,
Profoy muehine, but Loy no other llower-level or otherwise) programmine constyueis,
special instructions, Lardware interrupls, ete. We 2lio scsuine that hasie drivers fer 170

e tors Kevet lotirprage donntes a hvbrid between a machine lanpurne and 2 syslems presranoed o
].1|1g;|:_~:L~. irnplempen by laedwore of firmwnre. As ar ae] bnew it war jnlrodeesd by the Bk
Coneration Praject [23),
2LAPS: Lol ool Inferences Ver Socond. [y Copevrent : . _—
sl hellooa #lwr socoaadl I the rontext of Concorrent Froleo, it weans process redectin «
er vevon:l.

deviees are provided, which make each deviee understand Concurrent Prolog stresims.
This ssaurtion is elaborated Turther below.

We then develop a collection of Concurrent rolog programs that ean ren on
such o sanchine, ivcluding:

kA Coucurrent 'rolog interpreler [debugger.

1 A top-level erach/reboot loop, that reboots the operating system aulomaticslly upe
a sollware (and perlings also a hurdware) crash.

b A Uniz-live shell, that Landles foreground and background processes, pipelining, and
an abort (“Cenirol-C") interrupt for foreground processes,

b A multiple-process manager ¢ le MUF [6] , that mansges the creation of, and cola-
mugication with, multiple interactive processes.

b Programs for merpivg streams, using various scheduling strategies.
i A solution Lo the readers-and-writers problem, based on the concept of monitors [16].

B Shared quenes, and their application to implementing managers of shared resouices,
such 23 a disk sclieduler.

The prosrams hove been developed and tested uzing 2 Coneurrent Praleg juler-
proter, written in IMiclog [28]. They show Concurrent Prelog’s ebility Lo express prove:
crestion, termination, communication, synehronization, and indeterminacy. They sup
pest that a “pure” Concurrenl Proley machipe is sell-contained, and that ib will be be
ussble “as is”, withoutl too many extraneous feriures.

Iiven if such a machine is usable, it is nol necessarily useful. TFor Concrreeiin
Proleg to be a penern] purpose programming langnage, it has to solve convenieniy &
bioad rouge of “real-life” problems. llowever, determining what is a read-life pootlon
depends upon one's peint of view. One may suggest implementing the alporithms in Abo,
Hopesoft and Ullmen's book as such a problem. Concurrent Prolog will exhibit a grond
failire 0 sueh an implementation is attempted, and for & reason. The algoritlans in Lthat
bool (e, most other sequential algorithms) are deeply rooled in the von Newminn
compuier. One of the basic operations they use is destruetive assignzsent of values to
v rblos (including destruetive poiuter manipulation). This operation is chenp on o von
fnenmann machine, but is not available directly iu the logie programming eompuletion
mnodel, iz prohibitively expensive to simulate, and thinking in terms of ik resulis in an
avhvonrd progromoing stbyle,

On the othier hand, the operations that are cheap in Covcurrenl Prolog-- process
crention aad cortnunicntion—are not vaed in covventional eequential elgorithms, 2huest

8

by defivition, flence Concurrenl Prolog (or any other logic progranming lavguape) is
nob stleguete Tor beplementing most von Neumann algorithms. One woy ask @ Is thers
anything elee to hoplement (besides payroll programs)? Or: Whatl is Coneurrent Profeg
pond for, then?

i

Our eipuerienes to date guggesis thal, in controst to von Neumenn lurs o mes

(=2

and slzorithiee, Concurrent Prolog exhibits strong afillistion wilh four other * .:.-nds”

in compuater reience: (“.!hir-rl.-nrinnl:{‘d programaming, datoflew and groph-reduction e

gunan, distribuled alzoritluns, and systolic alporithms.

In {30] A. T leuchi and the author show thet Concurrent Prolog lends itself -
toraliy o the progrmming style 'Lr!-s:[idioms of object-orienled progromming langungos
.1H'.H e S Micik (18] aod Aetors [14] . Many applieations are easier to iLplement in
s fresmework,

The synchronination mecharizts of Concurrent Prolog—read-only variables
i oo natueal generalizalion of datafinw s:.'u{:]wonl;:rrtinn from funetionz! Lo relatiznni
Joegmeages, The basic operation of » Concurrent Prolog prosram—precess reduclior--is
basienlly a grapl reduction operation, since a process is 2 DAG, and a clause can be vierod
epociiying how to repluce one DAC by a (pessibly emply) collection of other DAGS. It
15 i!‘.‘-ﬁ'c.,.lfr to obzzrve that the synti csis of dateflow and groph reduction meehanis,
o been attempled by hardware rescarclicrs, indepandently of Josie progromming IJ':] .
We buve eomie e parience with implementivy distribuled algorithios in Conerie-
rent Protog. The implementation of 17 “Lord of the Bina” algorithin 'L“-' in Coneurront
Drole s, described in [24], exhibits 2 siriking similarily to the Englizh deserintion of {1
algerivhim, where every xuie of process behavior corresponds to one Conenrrent Prolos
clause. Thal paper also reports on an implementation of a complicaled distribuiad jin-
Mt speaning bree alronithim,

A implementation of Shiloach and Vishlin's MANTLOW slporithim [37) da.
meririles the ability of Coneurrent Prolog to irapls.muk comples prentio] alooritt .
Vot Joss of elliciency [15] .

Numarieal computstions are quite remote from Artificis] Intelligenae, the orizinnl
wetocnec] niche of degic programming, Neverthelss, wo find that the ne -Lm.-l (3 tHE
curtert Paciog solutions Lo numericul problems have a *systolic loueh” to , P
vevaversn Whal hnplewenting systolic alzorithms [22] in Coneurrent Prolog is eosy.
A ferileeming paper will include funrurrvnt Frolog implamentstions of soveral sys-
tolie el eritbous, incledinge the Lex: aponal bavd-melrix multiplication aleerith: E‘;’.i;.

Otber receid applications of Concurrent Prolog include Lhe braploinesd ot ion
r = i & * s
of w parellel parsing aleordlim [12], an or-paraliel 1 rolog interpreter [15], & horduere

-.}}.

specifieation and debugging system [33], and a LOOPS-like |£] olsject-orienled bnowledse

representationlanguage [9].

2. Concurrent Prolog

Concurrent Prolog is a logic programming lznguaes, in that o program is o
collection of universally quantified Horn-clause axioms, and s compuiation is un atlempt
to prove a goal—an existentizlly quanlified conjunctive statesent—from the axioms iu
the program. The poal stateraent describes an inpulfoutput relation for whick the input
is known; a successful (construetive} proof provides a correspordiug output.

The difference between Concurrent Prelog and olher logic prograinming lan-
guages (c.g. pure Prolog) is in the mechanisin they provide for controlling the construe-
tion of the proof. Prolog uses the order of clzuses iv the program and the order of
goals in a clause to guide a sequential search for a proof, and uses the cut operator Lo
prune undesired portions of the search space. Concurrent Prolog searches for a proof
in parallel. To control the search, Concurrent Prolog embodiz: Lwo familiar concepts:
guarded-cotnmand indelerminaey, and datzflow synehronization. They are implemented

using two constructs: the commit operator “|” and ihe read-enly annotation “1%.

The commit operator is similar to Dijkstra’s guarded command [7], and was
first introduced to logic programming iy Clark and Gregory [4]. I allows o process
te make preliminary computations (specified in the goard of a clause), before chousing
which action to take, ie. whick clause to use for reduction. Read-only aunoiations on
veeurrences of variables are the basie (and enly) mechanism for procere gynchronizatlion,
Rouglily speaking, a process that attempts to 1ustantizte a variable through a read-on'y
occurrence of it ruspends until the variable is instontinted by another process. The other
components of coneurreni prograimming: process erealion, termination, and communica-
tion, are slready available in the abstract commputation model of logic programmning. A
unil. goal correspesds to a process, and a cowjunclive poal to a system of processes.
Apicecis 18 ereated via goal reduction, and terminated by being reduced to the cmpty
(true) gozl. Conjunclive goals may share variables, which are used as communicstion
chaunels between processes.

More precisely, a Concurrent Proleg pregram is a finite sot of guarded-clzuses.
A guerded-elouse is a universally quantified axiom of the form

A (:1,,(;;]1..,(?1“[f;],ﬂj,”.rb}n. m,ﬂzﬁ'.

where the G and the B's are alomic formulas, also ealled unit goals. A is ealled the
clause’s head, the G's are ealled its guard, and the I's its body. When the guard is eraply

the caminit operaior “" is omitled. Clauses may contain variables marked read-only,
guch an Y200 The BEdinbureh Proleg syntactic eonventions are followed: constants begin
with i levei-case letler, and variables with an apper-case letter. The special binary Lerm
X 137 5 used to denote the list whose head (car) is X and tail {cdr) is Y. The conslzni
|| deisstes the cmply list.

Concerniug the declarative semantics of a guarded clause, the commit operator
reads ke o conjunction: A is implied by the G's and the B's. The read-only annouaticons
can be ignored in the declarctive reading.

Procedurally, a guarded-clause specifies o behavior similar to an alternative in
a guarded-commnand. To reduce a process A using a clause

Al « G| B,

unify A witl Al, and, il successful, recursively reduce G to the empty system, and, if
successiul, comninit to that elause, and, if successful, reduce A to 3.

The unification of a process against the head of a clause serves severel foie-
tions: prssing parameters, assigning values Lo variables, selecting and constructing datz-
stroctures, and sending and receiviog messages. The example programs below demonstrats
all these uses of unification.

The reduction of a process may suspend or fail during almost any of Lhe steps
deseribed nbove, The unilication of the process sgainst the head of 8 }auqu suspends
il it regunires the instantiation of variables occurring as read-only in A{ lt {ails if A and
Al are nobl uniffable. The compulation of the guard system G suspends if any of the
processes in il suspends, and fails if any of them fails. As in guarded-commands, at moat
one of the process’s or-paraliel guard-systems may comimit.

Prior to commitnient, partizl results computed by the first two steps of the
reduction - vriflying the process apainst the head of the clavse and solving the puard—
are not neeessible to olher processes in A's system. This prevents interferenee belwoen
brother or-purallel computations, and climinates the need for distributed bacliracking

This completes the informal desr:r]pl,'mn of Concurrent 'rolog. The simplivily
of the langrage is an asset when atlempling a hardware or firroware implemeniation of
il

3. A Meta-Interpreter for Concurrent Prolog

Oxne of the simpler ways te implement a programming environment for a pro-
gramgning lapeuage L ois aogioenting L's inferpreter. Among the program developracnt
tools thal can be implemented in ihis way are sophisticated debuggers [27] , runtime-
statislics packages, cxlensions to Lhe language, sod new cmbedded langzuages. The
diffieulty of impieruenting these tools grows with the complexity of that interprefer.

For reasons of boolstrapping and elegsnce, the preferred mplezacntslion lan-
guage for L's programming environment is L itself, as argued clogquently by Sandewall[25].
Hence the ecse in which an L inlerprefer con be tmplemented in L 15 of elear practicnd
fmportance, as well vs a wseful eriteria for evcluating the czpreesivencss and cowpletencss

of the language, as argued by Sussman and Steele in [32} .

Designing an expressive language with a simple ruela-interpreter® is like solving
a fixpoint equation. If the languzge L is too weal, then L's data-struelurez may nol
be rich enougli to represent L programs conveniently. If the control constructs of L are
incomplete they cannol be used to simulate themeselves conveniently.

On tlie ether hand, if the control structures of Is are wwkward and unrestricted
and the data-structures are too barogue, then its interpreter becomes very large and
unintelligible {e.g. goto cannot be used in z simple way to simulate uuresiricled goto, hul
the cosiest way to simulate a while stalement iz using a while staiernent in the inlerpreter).

A meta interpreter for pure sequential Prolog ean be written in three Prolog
clauses, and, indeed, implementing software tools and cinbedded languages via extending
this interpreler is a common activity for Prolog programiers.

A meta interpreter for Concurrent Prolog is deseribed below. [t assuiies Lhe
cristence of o built-in system predicate clovees(4, Ce), that returns in Cs the list of all
clauses in the interpreted program whose head is potentially upifiable with A4 The
constant frue significs an emply guard or 2n empty body.

.
d0ed a mela-cirentar interpreter in [220

0 our current implementation Cs is the list of all cawses with the szme besd predicate as A Better
indexing mechnnism can make the predicate more scieclive. Anolber possible oplimizalisn is o vre
the bovnded-buller teehnique of Takenchi and Furukawa |34)], to generate clavses on a domnand-driven
I.H.:lHi_Si.

- -

reduce(true).
reduce({A 3]} «
reduce(A?), reduce(13?).
reduee(A) +
clauses(A Clauses) |
resolve(A,Clauses,Body),
reduce{Body?).

resolve(A, [(A+ Guard|Body)[Cs|,Body| «-
reduce(Guard) | true.
resolve(A,[C|Clauses],Body)«
resolve(A, Clauses,Body) | true.

Program: 1: A Meta-interpreter for Concurrent Prolog

Like any other Coneurrent Proiog program, Program 1 can be read both dec-
laratively, i.c. as a sel of axioms, and operationally, i.e. as a set of rules defining the be-
havior of processes. Declaratively, reducefA) states that A is true (provable) with respect
 the axioms defined in the predicate clauses. Operationaily, the process reduveef4)
attempls Lo reduce the system of processes A to the empty (haltiug) system true.

Declaratively, the axioms of reduce read: true is true. The comjunclion 4,7
is true if A is true and B is true. The goal A is true if there are clauses Cs with Lhe
same hiead predicate of A, resolving A with Cs gives B, and B is irue. The predicats
resolve(A, [C| Cs/,B] reads, declaratively, Lhat resolving A with the axioms [C]Cs] giver B
if the clause C has bead A, guard G and body B, and the guard G is true, or if recursively
resolving A with Cs gives 3.

Operationally, the clauses of reduce say that the process true halts. The process
(A, B)reduces itsell o the processes A and B, and that the process A, with clauses Cs,
reduces itsell to B il the result of resolving A with Cs is B.

The reader not familiar with logie-programming may bLe puzsled by thie inter-
preter. 1t secms Lo eapture Lhe control part of the compuiation, but does not seom Lo
deal at all with unification, the data cotiponent. The answer Lo the puzzle js that the
eall Lo the first elause of resolve is doing Lhe worle, by unifying the process with the hapd
of the clavse. Their unification is achieved Ly calling thewa with the same name, A,

LA Rl H - d ® "
Ihis interpreter assumes one global program, whose axioms are necessible via
the systein prodicate eleuscs, as in conventional Prolog jmplementations, In a real
haplementution of Concurrent Prolog, proprams would be objeets that can bo pas.cd

-8 -

as argumnuls, and reduce and clauses would have an additional argument, the program
being simulated.

This interpreter canpot exccute Concurrent Prolog programs that use built-in
gystem predicates, such as itsell (it uses the predieate clauses). The current implementa-
tion of Concurrent Prolog contains several {13) system predicates: metalogical predicates
(clouses and system), control predicates {otherwise and =), interface Lo Lhe underlying
prolog, 1/O (read and write), and arithmetic predicates (the lazy evaluator :== and
arithwuictic test predicates). To handle system predicates, the interpreter can be aug-
mented with the clause

reduce(A) +
system(A) | A.

system(X)is a system predicate that succeeds if X is a Concurrent I’ rolog systom
predicate, and fails otherwise. For example, the call system(system(X)] suceceds. The
clause demonstrates the use of the mete-varieble, & facility also available in Proleg, which
allows to puss processes 1o other processes as data-struetures. It is used exteusively in
the shell programe below.

One may suggest that using the metavariable [acility, a Concurrent Prolog
meta-interpreter can be implemented via the clause

reduce(A) « A.

This claim is true, except that il will be rather dificult to implement the
softwsre Lools wentioned carlier as an exlensions to this interpreter, whereas implement-
ing a Concurrent Prolog single stepper by extending Program 1 is a trivial matter.

The interpreter in Program 1 is 10 to 20 times slower than the underlying
Coneurrent Prolog implementation. We feel that it is reasonable to pay a 10-fold
slowdown during Lhe program development phase for a good programming environmand,
Desides, a default to the underlying Coneurrent Prolog can be incorporaled easily, as in
the ense of system predicales, go that in developing Jarge systems only the portion of the
code that is wnder development needs the extra layer of simulation.

4. Streams
Concurront Prolog processes compiunieate via shared logical-varinbles. Logienl

varinbles are single-assignmeut: they ean be either uninstantinied or instantinled, bul,
once fustantinted, ther value ennney be destructively maodified. Hence the Concurrent

.

Prolog computation model is indifferent to the distinetion between the ghared-memory
computation model and the communication based model. A shared logical-variable ean
be viewed as a shared memory eell that can aceept only one value, or as a communicalion
channel thal can transinit only onc message.

The distinetion between the “reader™ and “writer” of a shared variable {or the
“sender” and “receiver” of the message] is done via read-only annolations. A process
pf.. . XP...) cannot instantiate X. Attempts of p to reduce itsell Lo otler processes using
clauscs thal require the ivstantiation of X, such as

pl.fla).) =

suspend, until X is instantisted by some other process. If & is instantiated to f(17),
then the process p can unily with thet clause, even though it instantinted ¥ to a, sinee
the scope of a read-only annotation is only the main functor of & term, but nol variables
that cecur inside the term. This property enables a powerful programming technique
that uses tncomplele messages [28] .

Even though logice! variables are single-acsignment, two processes can com-
municate with cach other via a single shared variable, by instantiating a variable into
a term that contains both the message and another variable, to be used in subsequent
communications. This programming techniques gives the effect of streams.

The cleanest way to implewent 1/O functions in a Concurrent Prolog machiue
is for I/O devices to gencrate and/or consume Concurrent Projog streams. The current
implerentation of Concvrrent Prelog, which is an interpreter written in Prolog (28] ,
suppurls only terminal 1/O (the rest is done by the underlying Prolog). It implements
the stream abstraction for the user terminal via two predicates, inetream(X), which
geuerated the stream X ol teres typed in by the user, and outelream(Y), thal outputs to
the sereen the stream X', They are implomented using the underlying Prolog read and
write predicalos.

instream({X|Xs}} «
read(X) | instream(Xs).

ovlstream([l).
oulstrenm ([X|Xs]) —
write{X), outstreaw(Ms?).

Program 2: Implementing terminal 170 streams vsing read and wrile

Il we wanl insiream to allow the user to signily the end of the stream, the
program bas to be complicated a livtle.

- 10 -

Using these programs, a “deviee-driver” that implements a stream interface to
the terminal ean be specified:

terminz){[{eyboard,Screen) +
instream(IeyBoard), outstream(Screen?).

In a virtual Concurrent Prolog machine in whieb interfaces to 1/ O deviee drivers
are implemented as streams, there will be no need for specialized 1/O primitives. One
possible excepiion is a sereen-oulput vrimitive (write or bitblt), which may be nee:led for
convenience and efliciency.

5. Booting an Operating System

Assumc that deviee drivers for a terminal (screen, keyboard 2nd a mouse), disk,
and a local network have been delined for a personal workstation. Then the following
program can be used to boot its operating system:®

boot +—
mouitor(KeyBoard?, Mouse?, Screen, DiskTo? Disk Out,NetIn? Netout),
terminal{ ey Board, Mouse, Sereen?),
disk{DiskIn, DiskQut?),
nel{Netln, NetOut?) |
Lrue.
bool ~—

otherwise |
boot.

Program 3: Booting zu operating system

The first clause invokes the device drivers and the monitor. The second cinuse
autouatically rebools the system upon a software crash of either the mobiior or the
device drivers. otherwise is a Concurrent Prolog svstem predicate that suceceds ift and
when all of its brother or-parallel guards fail. Declaratively, it may read as the negaiicn
of the disjunction of the guards of the brother clauses®.

r - 1l - *
We nre aware of the Tart tbat efficiency consiaerations may prevent the vse of pure streams lor devices
Lhist menerste a lol of vseless data, sueh as a mouse, and that some lower-ievel taterTace may Lo required.
Copyyg predicate otfierwiae is not impleinenied correctly in the eurrent Concurrent Prolog interpreter [28].
Wy eveered when it hog snepended brother ar-parallel guards, iustend of suspending, 2ud sueeceding

auly when all sech guards Tl Mewce programs wsing it are net fully debugged.

- 11

6. A Unix-like Shell

A shell is a process that receives a stream of cotnmands from the termingl and
executes them. In ovur coptext the commands are processes, and cxecuting then means
invoking them. A simple shell can be implemented using the melavariable facitiy,

shell([X]Xs]) «
X, shell(Xs?).
shell(]]).

This shell is bualch-oriented. Ii behaves like a Unix-shell that execevies all
commands in “background” mede, in Lhe sense that it does not wail for the completion
of the previous process before accepting the next command. Asis, it achieves the effeet of
Unix-like pipes, using conjunctive goals with shared varizbles as commands. For example,
the Unix command

plglr

can be simulated with the conjunctive svstem

p(X), q(X2, Y}, (Y7

provided that the Unix command p does not read from its primary iuput and g decs rot
write Lo its primary vutput. Externai 1/0 by user programs is handled below.

Note that since the process’s 10 streams have explicit nanes, we are vot
confined to linear pipelining, and any desired 1/O configoration of the processes can
be spesified.

Oune of this shell’s drawbacks is that it will crash if the user process X crashes,
since X and shell(Xs) are part of the same conjunctive system, which fails if one of ils
mewmbers fails. This can be remedied by calling envelopef{X) instead of K.

envelope(X) « X | write(halted(X)).

envelope(X) « olberwise | write{[ailed(X)).

ILis easy to augment the shell to distinguish between bae Lground and foregrovrnd
processes, assuming Lthot every command X is tagged bg(X) or fa(X), as done in Program .

(1} shell{[1).
() sholl([f=(X)1Xs]) «
envelope(X) | shell{Xs?).
(2) shell((bg(X)Xs])
envelope(X), shell(Xs?).
Pruogram 4: A sheli that handles foreground and background processes

Note ihat foreground processes are execuled in the snell’s guard. This allows
a gimple extension Lo shell so it will handle an abort (“controi-C” on decent computers)
interrupt Tor foreground processes. Upon the receplion of an ebort command the cur-
rently runming foreground process (if there is onej is aborted, and the content of the input
streum past the nbort command is flushed. This is achieved by the clauses in Program
4.

(4) shell(Xs) «

seck{abort,Xe,Ys) | shell(Ys?).

seek(X, | Xs), X5).
seei(N,[Y]Rs],Ys) «
Xi=Y | seek(X Xs?,Ys).

Program 4zt An exlension to the shell that handled an abor! interrupt.

The program operates as iollows. When an fg(X¥) commard is received, the
two guards, cnvelope and seck are spawned in parallel, and begin to race. The first to
commit aborts the second, so if envelope terminates before seek found an ebert commund
in the input stream {most probubly because the user hasn’t typed such a command yel)
then the envelope commils, seek is aborted, and shell proceeds normally with the next
command. Qn the other hand, if seek suceseds in finding an ebort command before
envelope terminales, then envelope is aboried, and shell proceeds with the input past the
alert cotmmand, as relurued hy seek

A more general inlerrupt, grand_ebort, that aborts sl processes spowned by
shell, both foreground and background, ean also be implemented quite easily:
topshell{Ns) «

shell{Xs) | troe.
topshell{Ng) 4=

sech(prand abort Xs,Ys) | topshell(Ye?).

The distinetion the shell in Program 4 makes between background and fore-
groend processing 15 not of nuuch use, however, sinece loreground processes are nol

15

interactive, i.e. they do not have access to Lthe shell’s input stream. One problem with the
shell giving a user program its input stream is that upon termination the user program
has to return the remaining stream back, so ihat the shell can proceed. Since we cannot
expect every interactive user program to obey a ceriain convention for halting (ef. quit,
exil, hall, stop, bye, cte.} the shell has to implement a uniform command, say ezt to
“softly” terminate an inleractive session with a user program (in contrast to aborling
it.]_ A filter, called swtich monitors the input stream to the program. Upon the receplion
of an ezit command it ¢loses the output stream to the program, returns the rest of the
input stream to the shell, and terminates. A reasonable interactive user program should
terminate upon encountering the end of the input stream. If it is not reasonable, an abort
interrupt will always do the job. The following code inplements Lhis idea. Commands
to interactive foreground processes are of the form fg{P,Pi}, where P is the process and
Pi is its inpul stream. For example, a command to run the process foofX) with input
stream X will be given as foffoo(X ¢}, X).

(5) shell([Fg(X, i) [Xs]) —
envelope(X), switeh(¥s?,Xi,Ys) |
shell{Ys?).

switeh([exit|Xe], [}, Xs).
switch{[X|Xs],[X]Ys],Zs) —
X\ =exit | switch({Xs?,Ys,Zz).

Program 4b: An extension tc the shell that handles interactive user programs.

7. A manager of Multiple Interactive Processes

The shell deseribed above ean handle only onc interaclive process al a time,
lile the DEC supplicd TOPS-20 EXEC. MUF (Multiple User Forks) is a popular DEC-
20 program, developed at Yale university [6], which overcomes this limitation. It can
handle mulliple interactive processes, and has a mechanism for easy context switching.
It eannot compele, of course, with the convenience of a system with a bitmap display
and o pointing geviea,

MUI" associates names with processes. It has commands for creating » new
process, freczing or killing a process, resuming a frozen process, and otlhers. Program 5
achieves some of this functionality,

- 1) -

(0) muf(X) «
muf{3,[}).

(1) rauf(fereate{Pname,Process,Pin Pout){loput],Ps) «
Process,
tag(Pname,Pout),
muf{[resume(Pname)|{Input?},[[Pname,Pin)|Ps]).

(2) muf([resume(Pname){Input],Ps) «
find_process{Pnnme,Ps,Pin,Psl})|
distribute(Inpul?,lin Iaputl Pinl},
muf({loputl?,{{Prame,Pinl}iPsl]).

(3) mul{{exit!Input]], [(Pname,[])|Ps]) «
mul(Input?,Ps).

(4) muf([|,P’s) «
close—inputl(Ps).

(1) find_process(’name,[{Pname,Pin)|Ps},Pin,Ps).

(2) ind_ process{Purame,[Pr|Ps],Pin,[Pr{Ps1]le—
otherwise |
find_. process(Puatae,Ps, Pin Ps1).

(1) distribute({],Pin,[],Piu).

(2) distribule([X|Tuput],Pin, X} Input],Pin)«
muf _command(X}| true.

(3) distribule([X|{uput],[X{P'in], Input1,Pinl}e
otherwise |
distribute(Input? Pin,Inputl Pinl).

(1) elose~input(]]).
(2) close _inpul([{Pname,|)Ps])+
close_iuput(Ps).

(1) muf_command(ereatei—,—.—,~]).
(2) muf_.command(resume(_})).
(3} wuf_command(exit).

Progrem 5: min-MUP

The muf process is invoked with the call muffX?) where X is ite input stream. It
first initialines itsell with the emply process list, using Clause (0}, Lhen iterates, SCrving
50T commnnands.

On the command ereate(Prame,Procese, Fi,Po} il creates a process Proceas,
and o process teg(Praeme,Po), that tags the process’s oulput stream elements with the
process’s name, and displays them on the sereen. It also adds a record with the process’s
name, Preme, apd input stream, F:',{n its process list, and sends itself the comiand
resurrne{Pnaome].

On the coramand resume(Prame), muf uses Clause (3). It searches its process
list for the inpul stream of the process Prame, and puts this process record first on the
list. This is done by find_ process. 1f successul, it invokes distribute(Tnput?, Pin, Inputt, Pini),
which copies the elements of the stream Input 1o the stream Pi (Clause 3) until it renches
the end of the stremin (Clause 1), er encounters a command to muf (Clause 2). In that
cvent it terminates, returning the vpdated streams in Pif and Inputl. muf itsell is
suspended on Tnputl.

On the command ezdt, muf closes the input stream of the current process, and
removes it from the process list (Clause 3).

When encountering the cnd of its input stream, muf closes the input streams
of ell the processes in its list, and terminates (Clause 4).

Some of Uic frilis of the real MUF can be easily incorporated in our rmini-
mnplementation. For exampie, the freeze command resumes the previously resumed
process, without having to name it explicitly. This is implemented by the following
clause:

muf{[freeze|lnput], [Pr,(Pname, Pi)|Ps])
mufl([resume(Pname}lInput?), [(Pname,Pi), Pr|Ps]).

which reverses Lhe order of the first two process records on the process list, and sonds
itsell & resume command with the name of the previously resumed process. A similar
defzull for exzdt can be added likewise.

Note that if the length of the process list is less then two, this elavse would
not apply, since ils head would not unify with the muf process. Similarly, if a resume
command is given with a wrong argument, Clause (2} wouldn’t apply, sinee the guard,
find_process, would Tl

muf, as defined in Program 5, would crash upon recciving such crroncous
corunands. Adding the following clause would eause it Lo defaull, in such ecoeos, {o
an eryer-messnse rouline:

mufl([X[lnput],Ps) «
otherwise |
muf_crror(X,Ps),
mul{Input?,Ps).

muf_ error analyses Uhe command with respect to the process list, and reporls to the user
the iype of error it’s made.

Similurly easy Lo implement are queries concerning the names of the processes
in the process list, and the identity of the curiently resumed process.

8. Meiging streams

A Concurrent Prolog process can have several input and/or output streams,
and use them lo commuuicate with several other processes; but the number of these
streains is fixed for any given process. It is sometimes convenient to determine or change
al ruptime the number of processes communicating with another process; this can be
achioved by merging communication streams.

In some funclional and dataflow languages merge is a buill in operator [1,11].
Logie programs, on the other hand, can express it directly, as shown by Clark and
Gregory [4]. Program 6 adapts their implementation to Concurrent Prolog. It imple-
ments the process merge(X?, YP, Z), which computes the relation “Z is the interleaving
of X and ¥".

merge([X]Xs], Vs, [X|7s])+ merge(Xs?, Yx, 7s).
merge(Xs, [Y|Ys], [V|%s])— merge(Xs, Ys?, Zs).
merge(X, [], Xs).
mergel|l, Ys, Ysh

Frogrom 8: Merging two streams
Using siream-merge as the besic method of many-to-one communication poses
threo major problemns:
1. low to provide a fair access Lo the shared process?
2. How to minimize communication delay?

3. How to roule a response back Lo the sender?

- 17 -

The building-block of a fair communication network is a fair merge operator. The
abstract compuintion maedel of Concurrent Prolog is undor-specified, and does not deter-
mine which of the first two clavses of Program 6 would be chosen for reduction if both
inpul streams hove elements ready. Dijlaiva ([7], p. 204) bas considered this under-
specification a desirable property of the guarded-command, and recommended simulating
a totally erratic demon when choosing belween two applicable guards. Neverthelesz, for
rezsons of efliciency and expressiveness, we prefer Lo work o a more stable environment,
aud sllow the pregrammer to control the chosen elsuse in the special ease in which there
are applicable clauses with emply guards.

A stable Coneurrent Proiog machipe always reduces a process using the first
unifiable clause with aun empty guard, if suck a clause exists.

A stable implementation is a natural consequence of having a sequerntial dis-
patcher for Lhe guards of a process. Such a dispatcher would perform the unification of
tbe process against the clauses’ heads sequentinlly, and dispatch the guard of 2 clause if
the unification with its head suceeeds, It would commit as soon as it succeeds in unifying
the process with the head of a clause whose guard is empty.

The defivition of a stable machine assumes that some order (say, text arder) iz
imposed on the clauses of cach procedurs in the program. Note that a stable implemen-
tation guarantees nothing about the sclection of clauses with non-empty guards.

Oun a stable wachive, Program § above will always prefer the first stream over
the second, if both sireams have elemenis ready. Hence it does not ges-antee bounded
waiting (however, it may be used w0 implement a notion of mmterrupts with different
relative priorities).

To achieve l2irness, this program is modified slightly, so it switches Lhe positions
of the two sireams on each reduction, as specifind in Program 7. On a stable maching,
this would ensure 2-bounded-waiting.

merge([[X|Xs], Vs, {X]2s])~ morge(Ys, Xs?, Zs).

merge(Xs, | 1Ys), (Y| 78]} merge(Ys?, Xs, Zs).

merge(Xs,{], Xs).
merge([], Vs, Yej.

Program 7: Fairly merging two streams

This program is a salisfactory solution to the problem of merging two streams.
More than two streams can be merped by constructing a tree of merge operators. I is

= 15 -

not difficult to see (ef. [29])that a balanced merge tree composed ol fair binary merge
operators ensures linear bounded-waiting, and has a logarithinic communieation delay.

The construction of a static balanced merge tree is casy. To allow 2 dynami-
cally changing sel of processes a fair and efficient access Lo a shared resource, a more
innovative solution is required. In {29]we define sell-balancing binary and ternary merge
operalers. These operators compose dynamically into a balanced merge-tree, using alge-
rithms similar Lo 2-3-tree insertion and deietion, The algorithms require sending messeges
that contain communication channels, in order to reshape the tree. In other words, the
algorithm uses incomplele messages. 2-3 merge trees also ensure linear bounded-waiting
and logarithmie communication delay. hence we believe they provide an acceptable solu-
tion to the problem of dynamic many-lo-one communication.

The problem of routing back the response to a message iz solved, at the pro-
gramimiug level, using incomplele messages. A message thal requires a response typically
containe an uninstantiated variable; the sender of the message suspends, looking at the
variable in read-only mode. The recipient of the message responds to it by instantiating
that variable. This teehnique is used in the monitor, queve, and disk scheduling programs
below.

8.1 A vole on abstract stream operaticns

A more abstract (bud alsc longer and iess cfficient) implementation of merge
can be obtained using the send(X,S,51) and receive(X,5,51) operations on streams. They
define ke relation “the result of sending (receiving) X on stream § is the stream S17 as
follows:

send (X, [X{¥s], Xs).
receive(X, [X|Xs], Xs?).

Such an implementation hides the internal representation of the stream, and eliminaies
the need Lo use the read-only anbotation almost entirely in the ealling program, since
the resulting streamw of receive is already annotated a2s read-only. We find the use of serd
and receive oxplicitly, instead of achieving this effect ineplicitly via unification, eseentizl
for the readability of prograrms with complex communication patterns, such 2e the oncs
deseribed in [15,26].

‘The send and recefve calls can be eliminated for the sake of efficiency using
standard partinl-evaluation and program-transformation techniques [20,35].

~- 10 -

8. Monuitors and the readers-and-writers problem

The Concurrent Prolog solution to the readers and writers problem uses this
method of many-to-ene communication. It is very similar, in spirit, to the idea of
monitors [I3]. A designated process fa ‘monitor’) holds the shared data in a2 local
argnment, and serves the merged input stream of ‘read’ and ‘write’ requests {‘monitor
calle’). It responds to a ‘read’ request through the uninstantiated response variable in it
(‘result argument’).

A schematic implementation of a monitor is shown in Program 8. Note that it
serves a sequencs of read requests in parallel, since the recursive invocation of monitor
in Clase (2) is vot suspended on the resull of serve, in contrast to Clause (1).

(1) monitor{[write(Args)|S], Datz) «-

serve(write{Args], Data, NewData), monitvor(5?, NewDatat).
(2) monitor([read{Args)|S], Data) «

serve(read(Args), Data, _}, moniter(5?, Data).
(3) moniter([],—).

Prograin 8: A sclematic implementation of a monilor

In monitor-based programming languazes. a procedure call and a monitor call
are two basie, mutually irreducible operations. In Concurrent Prolog, on the other hand,
there is one basic construet, a process invocation, wheress a monilor ealj is a secondary
eoneept, or, ratber, a programming technique.

Concurrent Prelog monitors and merge operators can implement operating
systems in a functional style without side-eflecus, using techniques similar to Henderson’s
[11].

10. Qucues

Merged streams allow many client processes to share one resouree; bul when
several client processes want to share several resources eflectively, a more complex bullering
stratepy is needed. Such bulfering can be obtained with a simple FIFO gueve: a clicnt
who requires the service of a resource enquenes its request. When a resource becornes
aviailable it degueues the next request from the queue and serves it.

The following impleinentation of shured queues is a canonical example of Con-
curvent Froloy programming style. It exploits two powerful logic programmins Lech-
miques: incomplele messages, and difference-lists,

_ay -

A shared queue manager is an instance of a monitor. enqueue is a “write’
operstion, and “dequeue” involves both “read” and “write”. An abgtract implementation
of a queve monilor is shown in Pregram 9.

(0) queve_monitor(S) «—create—quene(Q),
queue—monitor(8,Q).

(1) queve_monitor{{Request{S],Q) +
serve(lequest,Q,Q1),
quene_monitor(5?,Q17).

(2) queve_moniter([},Q)-

Progrem 9: A queue monitor

Clause (0) ereates an empty queue; Clause (1) iterates, serving queue requesls;
and Clause (2) halis the guene monilor upon reaching the end of the requests stream.

The implementation of the quene operations employs difference-lists [3]. A
difierence-list represents a list of elements {in this context, the queue's content) as the
differenee bebween Lwo lists, or streams. For example, the difference hetween [1,2,3,4]X]
and X is the list [1,2,3,4]. As a notational convention, we use the binary term XA\Y (resd
“he difference botween X and Y"), to denote the list that is the difference between the
list % and the list Y. Nole that this term has no special properties predefiend, and any
binary term will do, as leng as it is used consistently.

create_quene(¥\X).

serve(e nqu&ue{}(}.lload"@(imew Tai]].,[{eud"l.‘l‘ﬁew'l‘aij],
serve(dequeue(X),[X|NewHead)\ Tail, NewHead\ Tail).

Program 9ar Queuc operations

creafe._ quene(€)) states that € is an empty difference-list. The clauses for serve
define Lhe relation belween the operation, the old queue, and the new queue. On 2n
engueue(X) message, X is unified with the first element of the Tail stream, and in he
new quene NewTail is the rest of the stream. On a dequene(X) message, X is unified with
the first element of the Tead stream. and in Lthe new queue NewHead is Lhe rest of the
old Houd streaw.

Operationally, the program mimics the pointer twiddling of a converlional
guete preseamn. One difference is the simplicily and uniformity of the way in which
varinhles are transmitled into and from the queue, using unification, compared to any
other method of purnmeter passing and moessage routing.

— a1 -

Another is the bebavior of the program when more dequeue messages have
arrived then enguene messages. In s case the content of the difference-list becomes
“Nezstive”. The Head rups abead of the Tail, and the negative difference between them
is 4 list of vninstantiated varinbles, each for an excessive degueue message. Presumably,
a precess who sencs such a message then suspends on its variables in a read-only node.
Oue conrvauence is that excessive dequeue requests are served exactly in the order in
which they serived.

The propram can be condensed and simplified, using program transforination
techuigues [20,35]. The resulting program is more eflicient, and reveals more clearly Lhe
declurstive semantics of the queve monitor. Its operational semantics, however, seems
to becomme a bil more obseure, and its does not hide the inlernal representation of the
quese, 2s Program 10 does.

(1) gueue. monitor(S) «

queue—monitor(S?, X\X).

(1) queve_monitor([dequene(X}|5] , [}{II\’EWHE:&L]\Tailj -
queue_monilor(SY?, Newllcad Tailj.

(2) queuc—moniter(jenqueue(X)|5], Head'[X|NewTail]) «
queuc—1nonitor(S?, Head'\NewTail).

(3) queue_monitor{[],).

Progeem 10: A simplified queue monitor

Declaratively, the gueuc—monitor program computles the relation guene(5),
which says that S is 2 legal siream of gueue operations. 1t uses an auxiliary relzlion
gueue—moniior(5 Dequeve\ Engueue), which says that Dequeue is the list of all eleiaents
X such that deguene/X) vecurs in 8 [Clanse 1), znd that Engueus is the list of all elements
X such that engueve(Xjoceurs in 8 (Clause 2). The interface between these two relations
{Cluuse 0), constrains the list of enquened elemente to be identical to the list of dequoved
clernenuts, by calling them with the same name.

11. Bourded-buflfer communication

Bounded buflers were intredueed inte logie prograinming by Clark aud Gregory
[4]as 2 primitive construct. Their principal use in logic-programming is not to utilize
a fed mwemory-urea for commmunication. but ralbier Lo enferee tighter synehronization
between the producer and the consumer of a stream.

— 90 .

Takeuchi und Furukawn [34Jhave shown how to implement bounded-buflers
Concurrent Prolog, hionee it need not be considered a primitive. Their implementation
ropresonts the bufler using a difference-list, and uses incomplete messages to synchronize
the prodecer and the consumer of the stream,

12. An implementation of the SCAN disk-arm scheduling algorithm

The goal of a disk-arm scheduler is to satisfy disk 1/O requests with minimal
arm toovewnentis. The simplest algorithm ie Lo serve the next I/O requesl which refers to
the {ruck closest to Lie current arm position. This algorithin may result in unbounded
W*Lit'm" a disk 1/O request may be posiponed indefinitely. The SCAN algorithm tries
to miniinize the arm movement, while guarantecing bounded waiting. The algorithm
reads ss follows:

“while there remuin requests in the current direction, the disk arm conlinues
to maove in that dircction, serving the request(s] at the nearest cylinder; il Liicre are no
pending requests in that direction (possibly because an edge of the disk surface has been
encountered), the arm direction changes, aund the disk arm begins ils sweep across the
surface in the opposite direction™ [from [17p.94).

(0) disk—scheduler{DiskE, User8) «—
disk_scheduler(Disk§?, UserS?, (11 [1), (0, up})).

(1) disk_scheduler(|lRequestiDisk S}, UserS, Queues, ArmSlate)
dequeve(Request, Quenes, Queuesl, ArmState, ArmStatel) |
disk_scheduler(1¥ikS?, User5, Queuesl, ArmStatel).

(2) disk_sehieduler(Disks, [Iequest|User 8], Queues, ArmState) «—
cnquenc{fequest, Queues, Queuesi, ArmState) |
disk_scheduler{Disks, [herﬁ? Quaue*l, ArmState).

3) dizk_scheduler(fiof0, hait)] -5, [, ({11}, =

(%)
(1) deqgienefi { I j ([1olT XY UpQLID, (Up Q,[]. ey (Tup]).
(2) dequeveio J,}-L {[m[l 'h}ll‘p{HDmﬁI‘Q;, (UpQ,DownQ), {—up), {T)up)).
(3) dequeve(io{ T, X), ({], fio{ T X} DownQ|), {[j.DownQ), —, (T,down]).
(4) dequeueliolT, X}l (UpQ,lin{T X Down Q) (UpQ, DownQ], {—,down), (T ,down]).
(1) enguenc{io{r, Args), (UpQ, DowaQ). ([io{T, Arzs)|UpQ], DownQ), (T, down)).
(2) engueve{iof T, Arg ".'|I (UpQ), DownQ), {(UpQ.liofT, Args)DownQ]}, {1, up)).
(4) enancue(iof T, Args), (UnQ), DownQl, (UpQ1, Dewn@Q), (T1, Diz)) —

T | inserfio{T, Args), UpQ, UpQ1, up).
(4) encucecliolT, Args), (UpQ, Down€), {UpQ, ?r;mm('l]'i. (11, Dir)) ~

T<T1 insert{iolf, Args), DownQ, DownQ1, down).

4

- 25 -

(1) insert{iof{T, X), ||, [io{TX)],<).

(2} nsert{io(', X), [io(TL, X1)|Q], [io(T, X), io(T1, X1)IQ], up)+
T<TI | true.

(3) insert{io{T, X), lio(T1, X1HQ], [io{T, X], i0(T1, X1)IQ], down)—
T=>T1 ! true.

(4} inserifio[T, X), [io(T1, X1)|Q), [io{T1, X1)}|Q1], up) «—
T==T1] insertlio(T, X}, Q. Q1, uph

(8) insert{ioT, X), lio[T1, X1)1Q], liotT1, X1){Q1], down) —
T===T1 | insert{ioT, X}, Q, Q1, down).

Precram % The SCAN disk-urin seheduler

The disk scheduler has two input slreams—a stream of 1/0 requests from the
vier(s) of the disk, and a stream of incomplete messages from the disk itself. The
scheduler hes two priority gueues, represented as lists: one for requests to be served at
the npsweep of the arm, and one for the requests to be served at the downswoep. It
represents the arm state with the pair (Track, Direction), where Treck is the cuirenl
track number, and Divection is up or down.

The disk scheduler is invoked with the goal:
disk_scheduler(DiskS?, UserS?)

whe:e UserSis nstream of 1/O requests from the vser(s) of the disk, and DizkSis astrovin
of partially determined {incomplete) messages from the disk controller. 1/O requests a:e
of the form fof Track, Args), where Trackis the track number and Args contain all olher
necessary information.

The first step of the echeduler is to initizlize itself with two empty queves nnd
the arm positioned on track 0, ready for an upsweep; this is done by Clause (G). Following
the uitialization, the scheduler procecds using three clauses:

b Clause (1) handles requests from the disk. If such a request is ready in the disk stream,
the seheduler tries Lo dequeue the next request from one of the queves. I successiul,
Whal request is unificd with the disk request, and the scheduler iterates with the rest
of the disk stream, the new queucs, and the pew arm state. The dequeue operution
fails If bolh queaes are emply.,

B Clavee (2) handles requests from the user. If an /O request is received from Uhe user
i s enquened inone of the queues, and the scheduler ilerates with the rest of the veor
stream and the new queyces.

-9 -

b Clauve (3] terminates the scheduler, if the end of the user stream ig reached and if
both queves are emply. Upor termination, the scheduler sends a *halt’ messape to the
dizk controller.

The dequeue procedure has clauses for each of the following four cases:

b Clause (1) If Down is empty then it dequeues the first request in Up@, and changes
Lhe new state to be upsweep, where the track number is the track of the 1/0O request.

r Clavse {2): If the arm is on the upsweep and Up@ is nonempty then it dequeues the
first request in Up@. The new state is as in Clause (1).

¥ Clauses (3) and (4): Are the symmetric clauses for Down@.

Note thal no clause applies if both queues are empty, hence in such a case the dequeue
procedure fails. Since the disl scheduler invokes dequeue as a guard, it must wail in
thiz case for the next user request, and use Clause (3) lo engueue it. If suel a request is
received and engueved then in the next iteration the disk request can be served.

The engueue procedure also handles four cases. If the I/O request refers to the
current arm track, than according to the SCAN zlgorithm il musi be postponed to the
next sweep. Clauses (1) and (2) handle this situation for the upsweep and downsweep
cases. If the request refers lo a track number larger than the current track, then il is
mserted to Up@ by Clause {3), otherwise it is inserted to Down@, by Clause (4).

The insertion operalion is a straightforward ordered-list insertion. More efficient
data-struclures, such as 2-3-trees, can be used if necessary.

To test the disk scheduler, we have implemented a simulator for a 10-track dishk
contreller. The controller sends a stream of partially determined 1/O requests, and, when
the argrioents of the previous request become determined, it serves it and sends the next
request.

25 -

(0) disk—controller(|io{ Track, Args)iS]) —
disk_controler{ Track?, Arpx?, 8,0, 0, 0,0, 0, 6, 0, 0, 0, 0]).
(1) disk_controller{Track, Args,[io{ Trackl, Argst) |S].D) —
disk(Truck, Args, D, D1} | disk_controlier(Track1?, Argsi?, 5, 131).
(2) disk—controller{-, halt,]}, ~).
(1) disk(—, (-, Fut=a) L],
(2) disk{0, (read(X), true), [XID], [X|DI).
(3} disk{0, {write[X), true), {=|D], [X|D]}).
(4) disk{N, 10, {X]D], [X|D1}) ~
N0 | N1:=N-1, disk(N1?, 10, I, D1).

Program *: A sinulator of a 10-track disk controller

When invoked with a stream §, the controller inttializes the disk content =ad
sends the firsl request using Clause (0). It then iterates with Clause (1), serving the
previous 1/O request and sending the next partielly determined request, uniil a Aol
message is received, upon which it cioses its output stream and terminates, using Clause
(2).

The disk simulator assumes that the arguments of an 1/O request are pairs
(Operation, ReeultCodc), where the operations are read(X) and write(X). On rcad(X)
Clause (2) unifies X with the content of the requested track number, O writefX) Clavse
(3) replaces Lhe requested track content with X. The Result Code is unifled with true if the
operation comnpleled suecessfully (Clauses (2) uod {3)), and wilh false otherwize (Clause
(1)}, An example of an unsuccessful completion is when the requested track nuwber
exceeds the size of the disk.

13. Conclusion

We have provided some evidence that a machine that implements Concurrent
Prolog in hardware or firmware will be self-contained, usable, and useful, without much
need lo resort to reactionary concepts and techniques.

The next logical step is te build it.

Acknowledgements

I'his researeh is supported in part by IBM Poughkeepsie, Data Systems Divi-
St of it was carried while the author was visiting ICOT, the Institute for New

Ganernon Compualer Technology, Tekyo.

The paper benefited from a critical survey of an earlicr paper of mine, written

hy Pavid Gelenter []ﬂ].

(2]

3]

4]

References

Arviud and J. Dean Brock,

Streams and Managers,

in Sermantics of Concurrent Computations, G. Kahn (ed.) pp.452-405, LNCS 70,
Springer-Verlag, 1979,

Daniel G. Bobrow and Mark Stefik
The LOOPS Manual (preliminary version),
Memo KB-VLSI-81-13, Xerox PARC. 1983.

Keith L. Clark and Stan-Ake Tarnlund,
A first-order theory of data and programs,
in Informeation Proceseing 77, B. Gilechrist (ed.), pp.939-844, North-Holland, 1977,

Keith L. Clark and Steve Gregory

A relational langnage for parallel programming,

in Procerdings of the the ACM Conference on Functional Languages and Computer
Arekitecture, October, 1981,

Keith L. Clark and Steve Gregory

PARLOG: A Peraliel Logic Programming Language

Research report DOC 83/5, Department of Computing, lmperial College of Science
and Technology, May 1983,

J.E. Ellis, N, Mishkin, and S.R. Wood
Toels: an Environment for Timeshared Computing and Programming,
Reseorel: Report 9322, Department of Computer Science, Yale University, 1982

EAY. Dijkstra,
A Dizeipline of Programming,
'rentice-all, 1976,

Daniel IP. Friedinan and David 8. Wise

2T -

9]

L6}

[11]

[12]

[13]

4]

[15]

[16]

7]

18]

An Todeterminate Constructor for Applieative Programming
in Cenjercnce Necord of the Seventh Annual ACM Symposium on Prineiple of

0no

Progranining Lenguages, pp. 240-200, 1580.

I, Furekawa, A, Takeuchi, and 5. Kunifuji
Mondela: 4 fKnowledge Programmung Languege on Concurrent Prolog,
1COT Technicnl Memorapdum TM-0028 (in Japanese), 1983.

David Gelenter
A Note on Systemes Programming tn Concurrent Prolog,
Unpullished manuscript, Yale University, 1983.

Peter Henderson

Purely Punctionsl Operating Systems

in Functional Programming and it Applications, P. Henderson and D.A. Turner
{eds.), Gambridge University Press, 1982.

Hideki Hirakawa
Cherl Parsing tn Coneurrent Prolog,
ICOT Tecknical Report T'R-008, 1983.

Hideki Hirakawa et al.

Implementing an Or-Parallel Optimizing Prolog System (POPS) tn Concurrent
Proleg,

ICOT Technical Report TR-020, 1983,

Carl C. Hewitt

A universal modular Actor formalism for artificial intelligence.

In Proccedings of the Third International Joint Conference on Artifieicl Intel-
ligence, IICAL 1973.

Lisa Hellerstein and Ehod Shapiro

Algorithmic Programming in Concurrent Prolog: the MAXFLOW ezperience.
Technical Report CS83-12, Department of Applied Mathematics, The Weinmann
Imstitute of of Science, 1983,

C. AT Hoare
Mouitors: un operating systems structuring concept
Communications of the ACM, 17(10), pp.4549-557, 1974.

R.C. Holt, G.5. Graham, E.D. Lazowsks, and M.A. Scoti
tructured Progremming with Operaling Systems Applications
Addison Wesley, 1978,

Daniel 11, Ingalls

- 95 _

[21]

(2]

23)

' Sinall Tullk-70 programming system: design and implementation.
In Conference records of the Fifth Annual ACM Symposium on Principles of Pro-
graxaming Languages, pages 9-16, ACM, January 1978.

Robert M. Keller, Gary Lindstrom. and Elliol 1 Orgame

Rediflow: a waultiproccsaing archstecture combining reduction with data-flow.
Unpublished manuseript, Department of Computer Science, University of Utah,
1083,

H.l. Komorowski

Partial evaluation as a means for inferencing data-structures in an applicative
langusge: a theory and implementation in the case of Prolog.

In Conference Record of the Ninth Annual ACM Symposium on Princivles of Pro-
grammitng Langueges, pp.255-268, ACM, 1982,

S. Kunifuji et al.

Conceptual Specificalion of the Fifih Generation Kernel Languege Version I [pre-
lyninary drafl)

1GOT Technical Memorandum TM-0028, 1983,

H.T. Kung

Let’s Design Algorithms for VLSI Systemns,

Technical Report GMU-CS-78-151, Department of Computer Science, Carncgic-
Mellon University, 1979,

T. Moto-Oka el al.

Challenge for knowiedge information processing systems (preliminary report on
fillly penerastion computer svstems)

In Proceedings of Internalionai Conference or: Fifth Generaticn Computer Systems,
pages 1-85, JIPREG, 1931,

Danny Dolev, Mama Klawe and Michael Rodeh
An 0{nlogn) Uni-dircctional distributed algorithm for extrema finding in a circle,
Journal of Algorithm 3, pages 245-260, 1982,

Firik Sandewall
I'rogramming in an interactive epvironment: the Lisp experience.
Computing Surveys, ACM, Muarch 14978,

¥

Avner Shafrir oud ¥hud Shapiro

Disirtbuicd Progroymming in Coneurrent Prolog,

Techvical Report CS83-12, Department of Applied Mathematies, The Weizmann
Institute of of Seience, 1983.

09 _

27

g

&Ly

[29]

[30]

[34]

/32

33

24

[85]

IEhud Shapiro
Algoritivmie Program Debugging,
ACM Distinguished Disserlation Series, MIT Press, 1983.

Elud Shapiro

A Subget of Concurrent Prolog and its Interpreter,

Techinieal Beport TR-003, ICOT—Institute for New Generation Computer Tech-
nology, 1983, Also available as Technical Report CS83-06, Department of Ap-
plied Mathemutics, The Welzmann Institule of of Science.

Ehud Shapiro,

Fuir, Biased, ond Self-Baloncing Merge Operatore: Their Specification and I-
plementetion in Concurrent Prolog,

Technical Report CS83-12, Department of Applied Mathematics, The Weizmanu
Institute of of Science, 1983.

Elud Shapiro and Akikazu Takeunchi
Object Oriented Programming In Concurrent Prolog,
Journel of New Generalion Coraputing Volume 1, Number 1, 1983.

Yossi Shiloach and Uszi Vishkin
An O(n2log n) parallel MAX-FLOW algorithm,
J. of Algeritims, Vol. 3, #2, June 1982, pp. 128-147.

Guy L. Sleele Jr. and Gerald J. Sussman

The Art of the Inderpreter or, The Modularily, Complez

Technical Memorandum AIM-453, Artificial Intelligence Laboratory, MIT, May
1978,

Nohirisa Suzuki

Experience with specifieation and verification of complex computer using Con-
current Prolog

in Logic Programming and its Applications, D.H.D. Warren and M. van Caneghein
(eds), Lawrence Erlbaum Press, To appear.

A, Takevehi and K. Furulaws:

Interprocess Coinmunication in Coneurrent I'rolog,

in Proc. Logie Programming Workshop 88, pp. 171-185, Albufeira, Portugal, Junc
1883, Also 1COT Techinical Report TR-006, 1983,

Hisao Tamaki and Taisuke Sato
A Transformation System fer Logic Programs which Preserves Equivelence,
[COT Technienl Report TR-018, 1483,

— 80 -

(36] Sunichi Uchida
Inference machine: from sequential to parallel.
In Proceedings of the 10" Annual International Symposium on Computer Ar-

chitecture, pages 4110-416, Stockholm, 1983. Also 1GOT Technical Report TR-011.

-8 -

