ICOT Technical Report: TR-033

TR-033

Parallel Inference Machine
Based on the Data Flow Model

by
Norivoshi Ito and Kanae Masuda

December, 1983

©1983, 1COT

Mita Kokusai Bldg. 21F 03 456-3191—5

H :D | 4-28 Mita 1-Chome Telex 1COT 32964
Minato-ku Tokva 108 Japan

Institute for New Generation Computer Technology

Parallel Inference Machine Based on the Data Flow Model

Meriyoshi Ite, Kanae Masuda

Institute for Mew Generatlion Computer Technology

i. INTRODGCTION

Eguipped wWith basic functions such as pattern watching and
non-deterpinistie control, a logic prograoming language like Preolog (Progremming
in Loegie) [13] seems suitable for use in knowledge information processing
systems, For such inference-bzsed processzing systems, penerelly, & seguence of
processing is not predetermired in advance; such systems, therefore, require =
function to ecarry on processing, while heuristically seeking appropriate

procedures. This function is inherent in Prelog.

Prolog provides the potential for parzllel processing [7]. Conventional
sequential processing systems ere based on the depth-first search spproach, or
the seguentially controlled non-deterministie search approach with hacktracking.
By contrast, the breadth-first search spproach, simultanecusly trying multiple
pozsible searches, can solve problems faster by initiating = number of searching

processes on multiple processors,

The data flow model can naturally implement parallel procesaing [1] [2]
[E1, and 4its execution mechanism is closely related to that of Prolog. This
paper describes an execution mechanism and & brief machine architecture based on
the datz flow model te implement parallel execution of Preleg. First, an
execution wechanism of Prolog is discussed in Seetien 2, followed by a
deseription of the parzllel vunificstion model in our machine in Section 3.
Section 4 explains primitive operaters fer non=deterministic merging and
unificetion., Finzlly, the azrchitecture of a parallel Preoleg machine iz ouwtlined

in Section &,

Page 2

2. FEXECUTION OF PROLOG

Unifieation, or pattern matching, i3 a basic function of Proleg. A& Prolog
progran is executed by repeatedly performing unifications between goal
statements which cerrespond to gueries and a set of clauses which correspend to

piven knowledge.

Fach clause consists of a head part and 2 body pert as follows:
P 21 & 22 & vu. & 0. {nk=0)
where P denctes = head literal, 741 denotes z body literal, and the symbol Tt

meanz implication.

When clsuses are restricted to Horn clauses as in Prolog, the head consists
of at most one literal. & clause without a head is czlled = goal statement.
The body is alsec optional; a clause without a body Is ealled a3 upit clause;
otherwise, & clause is ealled & non-unit clauze. If there are nultiple literals

in the bedy, they are connected through ANDs.

When a goal statements has multiple literzls, thesze literels which are
called poal literzls are AlFDed. The unificction of the whole gpoal statement,
therefere, can not succeed unless it succeeds for zll the literzls in that goel
statement. That is, the gosl statement nzrnot be successfully solved unleszs 211

the literals in the goal statement can be solved.

!, clause whiech is potentially unifisble with a goal literal must have &
hesd literal which has the szme predicate 23 the geosl literal. A subzet of such
olauses iz referred to as the definition of that predicate. A& seb of clauses
constituting & defipnition are ORed. In other words, 2 goal literzl can be

solved if successfully unified with at least one clause.

'hen = goal literal in & poal statement is given, the primitive unifiestion
nperstion is executed by invoking one of the clauses in the definition of the
gpoel literal's predicate, and then unifying (i.e. pattern-matching) beatween the

gosl literzl and the head literzl of the selected clause. This operation will

Pape 3

produce & common instance of two 1litersls, if the pattern-matching has

zucceeded: or & 'fail' signal, otherwise.

When a given pozl literal is successfully unified with the head literal of
2 non-unit elause, then ancther unification process is initiated teking its booy
az a new goal statement. When the poal literel is sucecessfully unified with the
head litersl of a unit clsusze the unification operation terminates (i.e. the
selution is obtained); Lhen the result is peturned to the perent process which

called the unificgstion progess.

2. PAREALLEL UNIFJCATIOMN MOLDEL

In Prolog, the paralilelism involwved in the unifieation cen be divided into
ithree types:
- OR parallelism
= ARD parallelism

= parallelism among arguments

These are desceribed below.

3.7 OR Perellelism

Given = peal literal and the definition of 4its predicate, unification
between the gpeozl literal and the definition can be performed in parsllel on all

clzauzes in the definition.

f sequential Frolog interpreter svstem uses backtracking to control
unification, and the order for calling clauses in a definition is predetermined.
When a goal literal is given, the first clause iz invoked zccording to the order
znd unified with the pgoal literzl. When the unificatieon fails (i.e. no
splution existe), the backtracking mecharniam invokes the next eolause in the
order and unification iz retried on this c¢lause. On the other hand, our
parallel Prolog machine aims at high-performance inference processing by

performing unificstion in parallel on CHed eclauses in the definition.

FPage &

This OF parallel execution ecan be perfermed simply by simultanecusly
initiating unifiecstion for individual clauses in the definition of the goal
predicete. Then, the successful unification results (1.e. sglutionz) are
merged to form an cutput. When only a single solution is required, one of the
successful solutions, perbaps first one obtained, czn be output, This "den't
fare" mnorp-deterrinise can be implemented by the fpuarded clause mechanism
described in [107. The werge operation penerally ocutputs seclutiens in a
non=deterministic order; it may output them in the order cbtzined. Our machine
will empley structured dsta called a stream, which plays = role of a fpipe”

threugh which merged solutions are delivered [3] [14].

The =stream is a2 non-atriet structured data and provides means of
gsynchronous conmunications betwesn producer processes, which generabe the
elepments of a streswm, and consumer processcs, which refer those elements. For
our machine, producer processes correspond to unification processes operating on
gn OF-parellel basiz and generzting merged solutions, while consumer [progesses
correspond t¢ other unification processes whieh input the merped solutions. The
stream will be empiy when 21l the OP-parallel unifications of the geal litersl

heve failed,
2.2 AND Parallelism

AMDed literals in a goal statement can be selved in paresllel. Thiz AMND
parellelism, however, involves the following problem: when geoal liter:zls being
executed on an AMD=parallel basis have shared variables, the solutions for thkece
varigblez nmust be econzistent. In checking for this consistency, another
ynification operntion, such as & join cperation in a data base system, must be
performed on sets of the =zolutions for the litersls with shared variables. When
Lhese zets of soclutions are large, then the consistency checking operation tends
to require longer overhead and larger amounts of rescurces. For this resscn, we
will ipirocduce AND parallielism inteo our wmachine making use of the pipeline

effect &3 deseribed later.

&ge 5

3.3 Parallelism Among Arguments

When & goal literzl and one of the head litersls of itz unifisble clauses
conziat of multiple arguments, the unifications between the arpuments in the
goel literal and the corresponding position's arguments in the clause head
literal can be performed independently by representing the unificelion procedure
2z & data flow graph. When an argument of the poal literzl and the
corresponding position's argument of the head literal are structures, then the

parellel unification of their substructures can zlsc be implemented.

4, PRIMITIVE CPERATCRS FOR UNIFICATION

Preolez programs are build from terms. L term is either & symbol, an

integer, &2 wvariable, a list, or 2 vecter. 1In addition to these dita types, we

introduce another dats type, which is celled a stream. of these, strectured
data - & 1list, wector, or stream - is represented 25 2 pointer to structure
wemery. To impprove unificetion performanee, our machine employs 2 tagged

architecture, and represents dats wsing 2 tap field showing its deta type and 2

valuo ficld.

In this szection, we will first describe the besie unifieczilon primitive
operetors between any twoe terms uszed for parallel unificafion among zrpuments.
Mext, we will explain the non-determinicstic streanm merging primitive operztors
whick are uzed when implementing OR parallelizm. And finally, we will describe

the consistency checking operations among AMD literals.

4.1 Basie Unification Primitives

The bgaic unificstion primitive, 'terpm-unify', iz wsed in the unification
botwecn one argumcent in 2 goal litersl and the corresponding position's argunment
in the head literel of its definition. This primitive can be represented by =
dete flow praph shown in Figure 4.1. A5 the f{igure shows, this primitive inputs
2 pair of arguments and returns z common instance of them., Wheén one argument is

a wvariable, it returns the cther. When beoth arguments are atems (symbeols or

Page B

integersz), it returns the unificetion result of two argument=. (When they are
the =ame atom, it returns the ztom itsell; otherwise, it returns the special
atom *fail', which means the unification has failed.) When both are lisztz or
veoters, it oglls the list- or vector-unify primitive, respectively, which, in
turn recursively czlls the term-unify. In other cases, the terp=unify returns

*failt.

When introducing parallelism among the arguments described above, all Cthe
independent unificationm results must be checked for consistency, that is, the
litergl unificetion succeeds only i all the argument unificetions have
successiully compl eted. The reguired econsistency checking ensbles the

paralieli=sm among argumentz to be considered as a variant of AND parallelism.

If the goal literzl has shared urbound variables zs its zrfuments, however,
the conzistency checking must guarantee that the same shared vapiables are bound
to the same instances. Some examples of this are given below. Suppose that a
Eoal statement

€= ... & pl2,2) & ...
is given, and the instance of the variable I is a non-ground term (i.e. it i=
an unbound variable or includes some unbound variables) before pl{Z,2) is ecalled,
and also suppose that a clause of definition p

p(f{U),g(V])) <= ...
i= given. The unificztion proecess of this elause must have some way of knowing
that itz ipput erpguments have some shared unbound varisbles in compon with each

other,

Pape 7

Figure 4.7 Data Flow Graph of a '"term-unify' primitive

We will use & share operator to change the unbowend wvariables in the
instence of 2 to the shared unbound variables, prior to celling the definition
of p. In order to perforn thiz operation fasater, the deta type field of the
instance hasz an unbound flag, which is set 0¥ when the instance is z2n unbound
variable ar when it has any unbound variable 83 its substructure. 2o the
structupe construction cperateor, which iz used to construct new structured data
from existing data, will cheek 211 the =ubstructure's unbound flaps, and will,
produce a newWw data structure with an uwnhbound flag whieh is either OH or OFF,
depending on the status of the old flags. The share operetor oxecutes the

fallewing procedure:

Page &

(2)}If the unbeund flag of the share cperatocr's argurent iz OFF,

the operator returns the argument itself.

(p)If the flag is OM, and if the argument is an unbound variable,
the operstor returns & new shared unbound variable, which has & unigue

ahared unbound variable name in its data part.

{c)If the flag i=s ON, and if the argument is a shared unbound

variable, the operater returns the argument itself.

{d} If the flag i=s 0N, and if the zrgument is a structure, tihe
operator recursively czlls the share operationz toc be performed on zll
itz substructures, and returns 2 new structure constructed of their

results.

The unify operation of the clause can be represented by the dzta flow graph
in Pipgure 4.2. The unify operators in the greph are somewhat medified versions
of the above 'term-unify' primitive, The graph shows that the unify operator of
each argument has %wo outputs; one is an instance between an argument of the
goal literzl and its corresponding position's argument of the head litersl, and
the other is 2 binding environeent of the shared unbound varisbles included din
the poal argpument. The binding envircoments, which ceonsist of the lists of the
unifiers of the shared unbound wariables (i.e. the shared unbound variable

names and their instances), are sent to & set of consistency check operators.

£ consistency check operator receives & pair of the binding environments,

gnd constructs a new binding environment as follows:

{a) IT one of the input enviromments is a *fail' atom (i.e. if
itz unification has failed), then the operztor outputs "fail' as 2 new

environcent.

Paege 9

(b) If cne of the input environments is 'mil' (i.e. if its goal
argument has no shared variable}, then the operator cutputs another

input envircrnment 25 a hew environment.

(e) If both environments are lists, then the operstor checks
conszistency between the two environments; it gets the first unifier
from the first envirconment, and searches the second envircnment for the
same shared unbound variable as the one in the first unifier; if the
assoeiative searching suceeeds, the two instances in the first unifier
and the unifier in the second environment are checked for consistency,
i.e., these two instances are unified; this unification will produce

"fail' if the the unification has failed, or a new instance for the

shared unbound variable il the unification has succeeded.

The above consistency check eoperation iz executed for &ll the
unifiers in the first environment, and will produce 2 new environment
for =211 the shared wvariables included in both of the input
enviromments. Thiz envircerment includes the most genersl unifiers of

the =hared variables,

On the other hand, the unify operetor for the arguments will execute the
following procedure; 1t tests the goal argument's data type for shared unbound
variable. The dzta type field has a shared flag, which indicates whether or not
the data has any shared unbound variable as itz substrueture, just like the
unbound flag described above. If the flag 1s OFF, the operztor produces two
outputs; ong is a ooomon instance between the goal literal's argument and the
head literal's argument, and the other is a "nil' value which shows a binding
environcent is emply. I the shared flag is 0N, the operator producesz the

following two results:

Fage 10

{a) If the goal literel's argument iz a shared unrbound wvariable,
it produces the shered unbound wvariable as the instance, and a new
structure cell address as its unifier, Thi=z cell iz used to store the
shared varisble and the contents of the head argument, whkich is &n

inatance of the variable.

{b) If the goal literzl's argument iz a structured data, it
decomposes the structure inte substructures, executes unifieaticnz con
thesze substructures by recursively celling the unify operztors, and
constructs two structures from these unification results: one is &
conztruction of the substructure's instances, and the other 1= & new

environcent.

If a goal literal has shared unbound variables, the instance of the
unification between the goal 1literel and head literel includes the zhared
unbound variables themselves, The instance of these variables may be gotten
from the binding envircument, by again essoclztively searching the environment
with shared variable names 55 keys. This operation may be done by the subz

(abbreviation of substitute) operstor in the above graph.

.2 Stream Merging Frimitives

Another basie primitive is a merge operation of a non-deterministic stream.
In order to implement a stream as an arbitrary incremental structure; a stream
bedy 1s represented by a 1ist type data structure; it hes @ first part where a
ztream element is stored, and 2 rest part where a2 stream rest pointer is stored.
This merge operztion can be implemented zs follows. Before inveking clauses of
the poal 1literal's definition, a create-siream operator is executed; this
cperester returns two outputs: one is a pointer of & stream head cell, and the
other is & pointer of & stream teil pointer ¢ell. The stream head cell is the
bepinning of the stream, and its pointer is sent to the consumer processes,

which ecen get stream elemonts from the pointer. The stream tail pointer cell is

Pege 11

initialized to point to the stream head cell, and is shared by the invoked
OR=-parzllel processes. Fech OR process, if successfully terminated, appends a
new solution to the end of the stream by updzting the stream tail pointer teo
point to the pew stream end. The solution of the OR process is represented by &
list of the final instancesz for the input arguments of the heed literel &end a

binding envircnment of the shared variables,

Thiz append-stream operation executes the feollowing cycles: it allecates 2
new Stream body cell, reads the contents of the stream tail peinter, updates it
to point te the new stream body cell, writes 2 solution to the first pert of the
bedy cell, and finelly writes the pointer of the body cell to the rest part of
an old stream tail cell. As the stream tail pointer ¢ell iz shared by the OR
processes, the zppend-strezm operstor must lock the cell zpainst other
append=stream operators while updating the contents of the cell, AT
append-stream operater of a failed OF process performs no operation, simply

decrementing the reference count of the streap tail pointer cell.

Mur machine adopted the relernece count method far the mepory
management[€], which i= also uszed for the stream manegement; when sll the OR
processes of the stream have terminated (i.e. when the reference count ¢of the
stream tail pointer cell has reached zerc), the final eperstor writes 'fail!,
which is used for z symbel of end-of-stream, to the prest part of the stream

tail.

4.3 Consistency Checking Operations Among AND Literszls

When g pgiven poal statement has multiple literzls with shared variables,
Lthe executioen corder of theze literazls is determined zocording to certain rules.
The order must be determined uniquely, for example, by selecting literels from
left to right, or by specilying the inpubt/output relation of variszbles like in

the Relatieonzl Languege by E.L. Clark and 5. Gregory [4].

Pepe 12

Literals without shared variables do nol have tc be solved on 2 pipeline
beals; Ltheir unificetions can be executed in parallel. This approach is based
cn the idez to improve parallelism, and also to avoid the duplication of

unifications.

Syppose that 2 poal statement
<= piX) & gqlY) & r(X,Y}.
is given, where p, q, and r are predicztes, and ¥ and ¥ are variables. A= the
literels pi(X} and q{¥) have no shared variable in common, they ean be solved
independently. If = seguential execution metkod of AND literals is used, and if
the plX) produces multiple instznees of variable ¥, then the same unificstion of
the literal q{¥) must be applied for &l1 the results of the wunifieztion of
literal p(X). In this approzch, however, the unificztion of q(Y) may be applied
only once, and is initiated without waiting for the resultz of the unifiecation

of p(X).

In the szbove gozl, pl(X) and g(¥) become the producers of the instances fap
varigbles X and Y, respectively, and r(X,Y) becomes a consumer of these strezms,
The unificstion process of r(X,Y) inputs two streams for variables ¥ and Y, and
performs unification en all the combinetions of their instances. This can
e2sily be achieved by the recursive calling of the literal plX,¥) and by

urfelding both ctreams to their elements.

This approach, however, invelves some problems. Suppose that another goal
stztement below is given:
<= piX,¥) & q(i) & p(Y)
In this case, when one of the solutiens te the goal literal pi¥,Y) iz obtained,
the instances for variables ¥ and ¥ arc sent te g(X) and r{Y), respectively.

Tnen, g{X) and r(Y) will be solved independently.

Page 13

However, if the instances of X and Y are non-ground terms (i.e. if they
include some upbound variables before celling plX,Y)), and if a unit clause
below is given as the definition of p:

plZ,Z) <=
where Lhe head literal has multiple oocurrences of the variasble E. Then the
returned instances from p(2,Z) may also be nopn-ground terms, and be bound to the

sape unbound variable Z.

This means that, when the execution ef q(X) causes X to be bound to the
some instances, the execution of r(Y¥) is affected by it (i.e. dinvolwves =z side

effect operztion between gl¥X) and r»(Y)),

Tt is difficult to detect such a side effect upification and to determine
the execution order of literals at compile time. Therefore, operztors that
detect whether the instznees from the literal p(X,Y¥) include the shared unbound
variablez ar net, and those that check the consistency of these shared unbound

variables, will be necessary.

The unification procedure of a clause where itz head litersl has multiples

ocourrences of the sazme variable, like p{Z,Z), is represented by the datz flow

graph in Figure 4.3,

2ince an unbound variable can be unified with any form of term, the upify
gperators between two input arguments and the unbound variable Z can be omitted
{thease cparators are shown by the broken lines). In eorder to pguzrantee the
identity of the firat and second arguments of predicate p in the above clause,
the independent instances of their unificationsz must be unified gagzin. This
unify cperzstor will produce an instance of variable 72, which is sent toe the body
of the eclausze, if the body exists. After the body wunifieation has been
completed, or no body exists, the share operator checks the final instance of 2

a3 to whether or pnot it is a ground term,

Page 14

In the given goal statement, therefore, the goal literal p(X,Y produces
the two instances for variable X and Y, which are the same unbournd variable Z.
Theze instances sre senl Lo the new goal literals q(X) and r(Y), ezeh of them
will produce the instance 2 and the binding enviromment of Z. Two binding
environments of £ are checked for consistency by using consistency check
operator cdescribed above, And, fipally, two instances I are substituted by the

result of conzistency cheeck aperator.

oIk L1
AT goent arsyment
trge Tiagqet
: " Al
e sennns Lelly) anily)
argusent arzument T T T

"\UH 'Sll-"r -
Y T
i I_ " -‘_\
- —— B .
Srame anzty . SNEra ! ,
A = — '“-—"-——J,J”_“L H
.‘_“_____1“ __.-' l-rf -
—0 >) 1 sans
.-_—"—H.‘ s (8 . o
\L: F ":'_-F.
T : - i . hens
——
aubs sLES
— R P
¥ L S S
. ' lII ol 4 Lot o]
- . .
- .
Fipure 4.2 Data Flow Graph of Figure 4.3 Data Flow Graph af
the Clause p(f(U),g(V}) < ... the Clause p{Z,I} <-

Fipure 4.4 shows another example of the compiled code of 2 Prolog program
represented by the data flow greph. This ervample progrzn is 2 definition of the
append shown below:

eppend([1,X,X) <~ .
append{[HIX],Y,[HIZ]) <- append(X,¥,Z).

Ir this figure, a rectengular block means a proccdure invocation, and the
above-deseribed 'term-unify' ecan be replaced with more efficient Primitivesz,
suck 23 unify-with-nil, whieh unifies the input with "nil', o5 the

decompose-list operator, which unifies the input argument with the list and, if

Page 15

this succeeds, decomposes it to left part and right part; if the input argunent

is an unbound variable, the left and right paric are zlso unbound variables.

Figure 4.4 (a) is a graph of append where the first and second clauses are
executed 4in parallel, and Figure 4.4 (b} iz & greph of gen-append, which is
invoked in the second clause of the definitien. The second clause calls append
recursively, which generates a stream. The gen-append graph unfelds this stream

into element=z, and generstes a new stream,

After the unifications of the head literzl's arguments have been completed,
their results are tested to see whether or not zll the unificetions nave
succeeded. In the first clause of the append definition, which i3 a unit

elause, this operation is executed by using cons (construct) operators, the

- - ——— —
+ 1
i 1
i’ aregze O snify snESy fAezampeze
L SETEED L s Si. - v Lllst
i — ——, -~ — - G
—~ . g . = —— T— " .
consistensy !_.-"'f consistesncy
apare el 1o —_— beoy
pe— ~ unsly i
B PR i
rope
e
™ o
| - S
s _
| . s
¥ ST f o r ;" 1 ’ ¥
] lr r " v _lf I 1"'|, -
SONE ¢ ;Swliﬁnfﬁullchliw-:eh.&witch{:wit:niEHi:chA"
. - ‘.-"._ K - L :
i _} = £ = \#r:::' et
i i - e - e
e e ry - -~ - il o S
appana ’ - T
¥ : r'l:‘ (.-' : " 7 —
s, Sorean g
I S ——) —
i 4 e —— -
3) zrpend = aippernd
B — — R ILrepT
raturn '
——— H
ol
reac &

ser-sppens

JE2ra Flaw Graph of append

Figure 4.4 (2) Data Flew Graph Example

Page 16

I Y _".._H —_
switohiswites[switon switon =
L - 5

e

. . s -
4 ~ = T
.--'"f I-"’f - _‘-‘_“-_‘_"—-—..,__‘_' - T —
q — . 3
| Zecomposie = g‘ Angen ~
stresn A FL]

Jata Flew Lraph of gen-zppend

Figure 4.% {b) Data Flow CGreph Example
inputs of which are tested, and if all of them are neot 'fail', generate a
ccnstruction of them; otherwise, this operation generstes a 'fail'. The output
of vons ppergtorz initiates an append-stream operator, described above, which in

turn appends the result to the end of stream.

In the second clause, which i= 2 non-unit clauze, the head literel's

unification results are passed to its body if all the arpument unification= have
sugceeded, & switch operator passes its top input to the left output port, if

itz ripght dipput i=s mot a 'fail'; and passes its top input to the right output

FPage 17

port, otherwise.

5. MACHINE ARCHITECTURE AND ITS PERFORMANCE

The maechine is constructed by multiple Processing Element HModules (PEMs)
with multiple shared Structure Hemory Modules (SMMs) as shown in Figure 5.1.
Theze modules can cperate independently of each other, and are oonnected by
asynehronous communication networks; Inter-PE MNetwork, PE-SM UHNetwork, and

Inter-5M Network.

e T e
T e T
/"'HF
e
e
- -
;-'"i g
i o -~
o o -~
v P -
e -
- .
- . .
’ e -
// —— -
! inpte:=FE heawgryp b g
- - —_—
- S - —— S
’_,f' - P ! A - Fa Fl
o " i S -
. T - S — . -
- . " L S
e L o -
e R e s A
g - ———-
— _— . A I a -
LT A ame " ooy T
o FEN s PEN = = .
L U o i
- — e
- ar r
-
- L S— —
—
= Tomn = S)
. - e
-~ - ="
i ro—
—_—
B [—_— " -
. - i _ =
- —r S - o -~ -~
- e . e -
' . -~ | =
. o — e =T T e [e — -
A e - s -
— T - _— - -
[- — - P
— o — -
intes =558 piwers ___..-’f
o
T -
PEND Processing Diemerns Musa =
EhA I Brrmeiwi s Memare Moceie

Figure 5.1 Machine Architecture

Fach PEM conszists of an RKFY (Fesult Packet Queue), ICU (Instruction Contrcl
Unit) and EXU ({Execution Unit). These units in the FEM comstitute a circular
pipeline structure and they send packets to the next-stage units via
ssynchronous comnunication interfaces., The RPY is a first-in first-out memory

whieh pools pesult packets({tokenz) apprived, and sends them to the ICE. The ICU

Page 18

receives presult packetz from the RPY, detects whether the instructicns are
executzble or net, and sends executable instructicns to the EXU. The EXU is
made up of multiple APUs (Atowic Processing Unite), and distributes the received
instruetions te the APUs. The APUs execute the instructions and generste new
result packets whieh 4r turn are sent to the next RPJ, or generate struature
memory handling commands sent to the SMM vie the PE=SH Network if structure

memory ocpereations are needed.

A unification procedure represented by z data flow greph is leoaded in one
of Lhe PEMs, &nd executed. The PEM detectz the executable instructions in the
grzph, and interprets them in parailel. If multiple procedure invocations are
issued, these procedure instances may be distributed among the PEMs. FEach PEM
czn execube multiple instances of the progedures when many procedures are
activated. These instances are distinguished by the PEM number znd their

process identifiers.

The structured data iz stored in the SMMs, which is accessible from the
PEM=. The structured dzta, therefore, is represented by & pointer tc the

storage in the 2MM, and cen be shared by the multiple unification processes.

We have developed z2 software simulator for this mackine; which is an
event-driven, functional-tlock-level simulatcr, and wsed it to evaluste the
perfornance of the machine. Fach functionzl block corresponds to the units just
deseribed zbove. Zome of their assumed operation and delay times are 28
foellows: delay time in RPTY is 8 machine cycles, add instruction time in an AFU
is 3 machine eyecles, result packet construction time and send time in an APU iz
I eyeles, switehing delay time of each switching node din the networks 1is 10

mzchine oyeles, and so on.

Figure 5.2 shows the machine's simulation results when the number of
modules{PEMs and SMMs) changes from one to four, where LIPS (Logical Inferences

Per Secend) are computed assuring = machine oyole speed of 250 nano second.

Page 149

Two versions of 2 factorial progrem, which uses the divide-znd-conguer
pethod Ffor inopeasing parallelism, are simulated: oene is & nof-stream version
and other is z stream verzion. The other two progrems sre streanm versions. We
feund thet the non-strean version of the [ectorial program, where gzch prediczte
call is detercinistic and is regarded 25 a2 pure function, shows & performance
improvement by a factor of 2 te 3 over the strean vepsion, which uses the strean

cantrol primitives described sbove. Fartorial

,,_,.H"" [perantreze!

frpfpeminay

i
i
fr!
| - facterial
Jrry i e [BLraaml
: apmnriesne
a0 | .-,f//:--—’""" for
H.___,_..--""_.--F-.r.— _.-'—""-.-_Fr.'—"
1 -
.a-d""”‘.’f
Hil r’JF;ﬁ ., reverse nf ll=t
P ——
- e e e e —— s AW P —

Merstamp e Pedulen

Fipure 5.2 the Performance cof the MHachine

f. CONCLUSIONM

Thisz paper hazs described 2 processing model of 2 data-flow=bzssed Proleg
machine and its architecture,. In the deseription, we heve shown that the
introduction of 2 stream concept can implement CQOF-parallel and AND-parallel
proceszing of Frolog. The machinme simulation results show that our machine has
the potential of being used as a high-performance inference machine. At

present, we are simulating a larger scaled machine and designing a more detailed

structure,

boeknowledgments

Page 20

We would like to thank Dr. Funic Marakami, Chief of the First BResezrch

Laboratory at ICGT, and other ICOT research members for their valuable comments.

Feferences

[1] Amamiya,M. and FH.Vesegawa, "Data Flow Machine and TFunctional
language", ALB1-B4, PRLB1-63, the Institute of Electronies and Communication
Engingers of Japan, Dea. 1981 [in Japanese).

[2] Arvind, K.P.Costelow and W.E.Plouffe, ™ An Asynchronouz Programming
Lanpusge and Computing Machine®™, TR114z, Dept. of Informztion and Computer
Science, University of California, Irvine, Dec. 1978,

[3] Arvind and R.F.Thoemas, "I-Structures: Ar Efficient Data Type for
Functional Languages®™, TH-178, Lzboretery fer Computer Science, MIT, Sept.
1981,

[4] Clark,K.L. gnd S.0Gregery, " A Felatiomal Language for FParallel
Frogramning™, HResearch Report of Imperizl Collepe of Science and Technoleogy, DOC
81716, Jul. 19E1.

is] Clark,K.l. and S.A.Ternland, "A First Order Theory of Dzta and
Programa®, IFIP 77, Morth-Yalland Publishing, 1977.

[&] Cohen,J., "Garbage Collection of Linked Deta Strectures?, Conpubting
Surveys, Vel.13, Ne.3, Sep. 1901,

[7] Conery,J.=. and D.Eibler, npapallel Interpretation of Logie
Programming™, Proc. of Conf. on Functional Programming and Computer
Architecture, ACHM, Deot. 1981,

[8] Gurd,J.B. and I.Watsorn, "Datz Driven System for High Speed Parzllel
Computing™, Computer Deszignm, Jul. 1980.

[%) Tto,¥., F.Onai, E.Masuda and H.Shimizu, "Proleog Machine Based on the
Data Flow Mechanisn™, THM=016, Institute for MNew Genersticn Computer Technology,
Tokvo, Japan, May, 1983,

[10] Ite,H,, K.Masuda and H.Shimizu, "™ Parallel Proleg Bachine Based on the
Data Flow Model™, Techniczsl BRepert, Instltute [fur New Generztion Computer
Technelegy, Tokye, Japan {(in Preparation).

[11]} Masuda,K., H.Tto and H.Shimizu, " Simulation of a Data-Flow-Dased
Parzllel Proleg Machine™, Proc. ef 27th Mational Conference of Information
Processing Society of Japan, Negove, Japan, Dee. 1983 (in Japanecsc).

[12] Tanake,H. et al.,"The Preliminary Research on the Data Flow Hachine
and Dzta DOase Machine as the Basic Architecture of Fifth Generstion Computer
Systems", Proe, of International Conference on Fifth Generation System, Japan
Information Frocessing Development Center, Tokyeo, Japan, Oct. 1981,

[13] Kowalski,R., "Predicate Logiec &= Frogramning Language™, IFIF 74,
Merth-Holland Publishing, 1974.

[14) Shepire,BE.Y., "A Subset of Concurrent Proleg and its Interpreter®,

TH-003, Institute for Yew Generation Computer Technecliogy, Tokyc, Japan, Jan,
1983,

