ICOT Technical Report: TF{—_OZ?

TR-027

On the Parallel Computational

Complexity of Unification

by
Hiroto Yasuura
{Kyvoto University, Japan)

October, 1953

Mita Kokusa: Didg, 21F 1031 456-3191 ~ 5

| GDT 4-24 Mita 1-Chome Telex WOT J32064

Minato-ku Tekvo 108 Japan

Institute for New Generation Compﬁter Technology



On the Parallel Computational Complexity of Unification

Hiroto YASUURA

{ aiSa vl lab! )

Yajima Lab. Research Report ER 83-01
Dctober 12, 1983

Department of Information Science
Faculty of Engineering
Eyoto University
Kyoto 606, JAPAN



ABSTRACT

The computational complexity of wunification in first-order
logic under parallel computation sScheme 1is discussed. The
unification problem is described as a problem on directed acyclic
graphs and related to the reachability problem on directed
hypergraphs which 1is newly introduced here. We show that
unification is the one of the hardest problems in the class of
problems resolved by polynomial size ecircuits. Namely,

unification is depth complete for PSIIE.
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1. INTRODUCTION

The problem of unificatlon in first-order logic is one of
elementary cperations in the area of theorem proving and logic
programming languages such as PROLOG. The unification problem is
defined as follows: Given two terms consisting of function
symbols and variables, find, 10 1t exists, a simple substitution
which makes two terms equal.

Unification was first introduced by Robinson[1] as the basic
operation of resolution and implemented in several resolution
systems[21{3] and logic programming language PROLOGL4]. Since
unification can be considered &as a generalized operation of
pattern matching, it was also applied to various areas where
symbolic expressions are dealt with, such as in interpreters for
equation languages, in knowledge base systems, in type checkers
for programming languages with a complex type structure, and in
the computation for term rewriting systems[5].

Two inear unification algorithms were proposed, in

sequential computation, independently by Paterson-Wegman[6] and

Martelli-Montanari[5]. For more efficient implementation of
unification, one may try to design a parallel wunificatlon
algorithm. However, no such efficient algorithm has been known

and implemented.

In this paper, we are concerned with the complexity of
unificastion in parallel computation. As the result, we shew thatl
it seems very hard to design a much more efficient unificatlion
algorithm using parallel computation than sequential one. In

other words, unification centains essentially sequential



computation which might not accelerate by parallel computaticn
scheme in Lthe worst case.

For the model of parallel computation, we use combinational
logic circuits econstruected of fan-in restricted logic elements.
This model seems to be one of the most stable models of parallel
computation from computaticnal complexity view point. Moreover,
combinatienal logie eircuits are the most natural model of
implementation of parallel algocrithms 0oy  hardware. The
computation time 1is measured by the depth of circuits,

In the next section, we give some basic definitions and
notations, We adopt a graph representaticn of terms for
unificatien(8]. In section 3, we introduce a combinationzal logic
circuits as a model of computation[T7].

In order to discuss the relation between the complexity of
legle ecircuits and unification, we introduce a new problem,
called the reachability problem ¢n directed hypergraphs. A
directed hypergraph 1is a generalizaticn of a directed graph and
the reachability problem on the directed hypergraph is defined as
an extension of one on the directed graph. We show a parallel
algorithm for wunificaticen in whieh the unification problem is
reduced to the reachability problem of a directed hypergraph.
Definitions of directed hypergraphs and the reachability problem
are also given in section 3, The parallel unification zlgorithm
is presented in section 4, and its computation time is analyzed,.
In the section 5§, we discuss about the lower bound of the
parallel computaticn time of unificaticon and show the unification
problem is log-depth complete for a class of problems that can be

solved by polynemial size cirecuits[T71[8]. Namely, if we can



design circuits with depth Dﬁlcgkn) for unificatien, 211 problems
in this class can be computed by circuits with depth D{lugkn] for
any positive integer k. Therefore, we can say that unification is
the hardest problem in this class which includes all problems
having polynomial algorithms in sequential computation. It is
21so0 shown that unification is log-space complete for PTIME, by

the similar discussion on the above parallel computation.



2. UNIFICATION

Let 4, (i=1,2,...) be a set of i-adie function symbols and
ﬁﬂ be a set of constant symbols. ijﬂ,1,.§1 is denoted by A. Let X
be a set of wvariables. We assume that J1K=ﬂ.
Terms on A4 and X are defined recursively as follows:
{1) Any =& in HD and any % in X are terms.
{2) If Lyr Esy wewy Uy oare terms and £ is a member of A, then
f[t1.t2,...,tij iz alao a term.
(3) All terms are generated by applying the above rules (1) and
(2).

Let T be the set of terms on A and X. A substitution s5:X=>T
is represented by a finite set of ordered pairs of terms and
variables

{{ty, x,)1 Every t, is a term, every x; is a variable and no
twe pairs have the same variable as the second element.).
This representation means that s(xijzti, if [ti, xi} is in this
set, and, otherwise, s{x)=x. Applying a substitution & to a term
t, we simultaneocusly substitute all occurrences in t of every
variable «x, whienh is in a pair (t., x;) ef s, with the
corresponding term ti. We represent the resulting term by ts, £

5
iz called an instance of t.

Let $1={{t1,x1], (to,x50,  «.uy (t,+x,)} and so={lty,y,),



{tETYEJ’ ceey {tm,ym}} be two substitutions. The composition
substitution of 54 and  S,, denoted by 51*52, is defined as
follows:
(1} If (t,x) is included in s,, then (t ,¥) is in s, %s..

1 55 172
(2) 1f (t,x) is included in s, and {t",x) is not included in s,,

then (t,x) is also in 51*52.

[Example 1] For a term t:f{x1,gix233, instances of t under

substitutions s1={{gixgl,x1} Ex1,12}} and szziih{alfx1}} are

tsi:f(g{xgl,g(x1jl

]
and

tsezf(h{al,sixeij,
respectively. The composition substitution of them

51*52=L{g{x2],x1}, {hEa},xE}}. Thus

tS s =f(gExE},EEh{a}}}.
T T2
A substitution s is called a unifier for t1 and t2' if and
only if t15=t23. We also say that t1 and t2 are unifiable when
there is a unifier for them. More general, we can define a

unifier for a set of terms {t1, t t,} as a substitution s

;;!: LA
which makes t13:t25=...=tn5.

A unifiers for a set {t,, &5, ..., t,} is said to be a most
general unifier (MGU), if and only if for every unifier s' of the

set there is a substitution s" such that s'=s#s",

[Example 2] For terms
t1:f(w1, Blx.), nia))

and

tg:f(Efxa}, g(hixg))y xyly



a substitution s:{{g{xB},x1}. {htx3],x23, (h(a),x,)}} is the most

general unifier for t1 and tz.

L term £ can be represented by an acyclic directed graph

G=(V,E), called a term graph, as the following manner:

(1) Each vertex v in V has a label p in 2%, No two vertices have
a same label in X, and the outdegree of them are 0. A vertex
having a label in Ai (igﬂ] has 1 outgoing edges each of which
is labeled by a distinct positive integer j in {1, 2, ...,
i}.

{2) A vertex with 1label p in AGUX represents term p (p is a
constant or a variable}.

(3) A vertex v with label f in A, (121) represents term f{t1, Loy
en ey ti] where tj is a term represented by the vertex pointed
by the j-th outgoing edge of v.

We sometimes call vertices with labels in X variable vertices,

and ones with labels in A function vertices.

4 term graph G=s(V,E) 1is encoded in the following set of
tuples,
v, pyvysVyreas vy )i v Is & vertex in V, p is the label of v,
and {v,vj] [1§J§i} in E has the label j}

We consider a binary coding of the tuple sequence $G6. Let n be

the number of vertices in V and m be the number of edges in E.

3ince each vertex v and its label p can be coded by r1052n1 bits,

respectively, the length of the binary coding is O(m log n +

n log n) bits,



Fig,l A Term Graph



[Example 3] In Fig.1, an example of term graphs is illustrated.
The term represented by the rooct vertex v1 is

fig{h{a,x1l,x2}, X3 h(a,x,), xul-
How we will define the unification problem formally.

[Definition 1] The unifiecation preblem (UP) is defined as
follows: For a given coding $G of a term graph ¢ and two vertices

v, and Vs in G, find, 1if it exists, a most general unifier s

for terms t and ¢

1 5 which are represented by v and Vs

1
respectively.

(Definition 2] The unifiability decision problem (UDP) is defined
as follows: For a given coding $C of a term graph G and two
vertices vy and vy, in G, decide whether or not ty and t, are

upnifiable.



3. COMPUTATION MODEL AND HYPERGRAPHS

7.1 Parallel Computaticn Model

In this paper, we adopt combinaticnal logic circulls as =
medel of parallel computation. Combinatignal logle circuits are
the most fundamental compenents of digital systems and many

researches have been carried out on the complexity theory of

legic functiens realized by combinationzl cirecuits[(7]. There is
two measures to evaluate the complexity of circuits, size and
depth, which correspond to the number of rescurces and the
computation time spent in the computation respectively. In the

following secticn we will mainly consider the depth of a circuit
that computes UDP and UP.

A basis is a finite set of logic functions. A combinational
logic circuit C over a basis B is a labeled acyclic directed
graph. Vertices with indegree 0 are input vertices each of which

is labeled with an element in {xi, Xos veey X g, 1}. OQutput

nt
vertices each of whieh 1is labeled with an output variable have
indegree 1. Other vertices are computation ones each of which 15
labeled with a logic function in B. Indegree of a vertex labeled
with an i-variazble function f is just 1i.

keversing the direction of all edges of & combinaticnal
circuit C over a basis B, we can obtain a term graph G, on {x1.
o, HUBU

Koy eesy X {0}, where O means an identiecal function

n!
assigned to each output vertex. The output function of each input
or computation vertex in C is represented by the term
carresponding the vertex in GE' The cutput function of an output

. )
vertex v is represented Dby O(t) which is the same functien



with ¢t, where £ is the label of vertex v' such that the edge
(v',v) is in C (i.e., v is adjacent to v'),.

For a function £:{0,1}"=>{0,1}", we say a combinational
logic circuit C computes f, if there exists a labeling of input
vertices and a sebt of output vertices U:{v1, Vos  ees ,vm} in ¢
such that f equals to the set of leogic functions represented by
terms in V.

Levels of computation vertices in a circuit C are defined in
the following way: the level of each input vertex is 0; the level
of a computation vertex v 15 one greater thanh the maximum of the
levels of the vertices to which v is adjacent.

The size of a combinational cirecuit C, denoted size(C), is
the number of computation vertices in C, The depth of C, denoted
depth(C), is the maximum level of the computation vertices in C.
When we assume that the delay of computation only depends on the
delay in each computation vertex (gate) and they have same value,
depth(C) is 1linearly proportional to the delay of computaticn on
c.

The combinaticnal (or circuit) complexity of a function f
relative to a basis B, denoted CE(f}, iz the smallest size of a
circuit over B that computes f. The delay complexity of
relative to B, denoted Dp(f}, is the smallest depth of =

c¢ircuit over B that computes f.

3.2 Directed Hypergraphs and Reachability Problem
In the algorithm for UP and UDF in the next section, we will

transform UP and UDP to the reachability problem on directed



hypergraphs which is introduced in this paper. Here we define the

directed hypergraphs and 1its reachability problem.

[Definition 3] A directed hypergraph H is denoted (V,E), where V
is a set of vertices and E is5 & set of directed hyperedges. A
hyperedge e is an ordered pair of a set of vertices Ue in V and a
vertex v_ V-V _, denoted Eve,ueh. The number of elements in V, is
called the rank of hyperedge e, The rank of the directed

hypergraph H 1is defined by the maximum rank of all hyperedges in

E-I

A directed  hypergraph with rank 1 is just a directed graph. In
this paper, we sometimes distinguish hyperedges with rank 1,
called simply edges, from hyperedges Wwith rank meore than cone.

An incidence matrix of a directed hypergraph H={(V,E) is an

n¥*m matrix ), where n=i{V, and m=jE!. Each entry a

1 1
represents a relation between the vertex vy gand the hyperedge
ej=EVEj,vej}. Ifr vi=vej then aij:E, ir vy is included in Uej then
aij=1’ and otherwise aijzﬂ. We can encode {aijl into binary with
O{mn} bits.

Now, we will define the reachsbility problem on directed
hypergraphs. The reachability problem is a generalization of the
reachability problem on directed graphs which has been examined

in detail in the theory of computational complexityl[T7]178&].

[Definition 4] 1In a directed hypergraph H=(V,E), v in V is said

to be reachable frem a subset S of V if and only if v is the



Fig.2 A Directed Hypergraph



member af S or there exists a hyperedge {Hc, v} sueh that zall

vertices in ve is reachabple from 3,

[Definition 5] The reachability problem of directed hypergraphs
(DHGAP) is defined as follows: For @& given incidence matrix 3$H
of a directed hypergraph H and a subset of vertices 3, obtain zll

vertices in H wnich are reachable from 5.

[Example 4] Fig.2 shows a hypergraph H. Edges are illustrated by
arrows and hyperedges with rank more than one are drawn by dotted
lines. The rank of hyperedges e, and g5 is 2 and 3, respectively.
The rank of the  hypergraph H 1s 2. In H, all vertices

reachable from {uT, UE] is shown as black nodes.

12



4., A PARALLEL UNIFICATION ALGORITHM

4.1 4 Unification Algeorithm

First we show an algorithm for UDP.

{Algorithm 1] UNIFY

Input A binary coding $G of a term graph G=(V,E) on KUA, and
vertices Vy and Vo in V wnich represent terms ’c..l and tE,
respectively.

and t

Output If t are unifiable, the output is '"i1'., Otherwise

1 2
it is "0".
Methaod
Step 1. Generate a directed hypergraph H=(V',E') from G as
follows:

(1) For every pair of vertices vy and ”j in V, there is a

] -
vertex ?ij in V' where “ij'”ji‘

(2) If vi and vj have the same label in & and the h-th

outgoing edges of them points  to v and v

q r
respectively, an edge {vij, vqrj is in E'.
(3) If the label of vq is a variable in ¥, a hyperedge
({viq,vjq}, ?ij} is in E'.
Step 2. Compute the reachability problem of H from {v12] in
parallel.
Step 3. If there exists a vertex v,. 1in V' such that it is

ij]
reachable from Vo and vy and Vg have different labels in

&, output '0' and stop.

St . 1 i . 3
ep 4 For all ?ij 3 which are reachable from Vis and vy or vJ

13
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Fig.3 Execution of UNIFY



kas a label im X, add edges into G by the followlng way.
We call resulting graph G'.

(1) If the label of v (vjj is in X and the label of v.

i J
[vi] is in A, then add edge {?i,vj} {(vj,vill into G.
(2) If both Vi and vj have distinct labels in X, add edge
Eui,vJ] inte G, where vy is assumed to be asszigned
the smaller Iinteger than v, in the coding.
wl

Step 5. Examine whether the graph G' is aecyelic in parallel. If

G' iz acyeclic ocutput '"1', otherwise '0',

[Example §] Fig.3 shows an executicon of UNIFY for term
f(xi'E(xE‘KE}'xE’bJ
and
f{gfh{a,xS),xE},x],h(a,qu,xul.
{a) is a term graph representing these two terms, In (b}, a part
of the hypergraph H reacnable from vertex (1,11) is illustrated.
The hyperedge ({(2,10),(3,2)}, (3,10)) means that in the term
graph G vertex 3 and 10 should zlso be unifiable because vertex 2
{(representing variable x1) must be unifiable beth 3 and 10. In H,
each black node represents vertex where 2t least one element of
the label corresponds to a wvariable vertex in G. (¢) is the final

graph G'. Dotted lines express edges added in Step 4.

[Theorem 1] Algorithm UNIFY computes UDP correctly.
(Proof) For s given G and Ev1,v2}, t1 and tE are unifiable if and

only if wvertices in G are partitioned by an eguivalence relation
satisfying the following conditions [67:

(1) ir two function vertices are equivalent then their
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corresponding sons are eguivalent in pairs;
(2) each equivalence class does not contain the vertices with
distinct symbols In Aj
(3) a reduced graph by the equivalent relation is acyelic.
We define an eguivalence relation frem the hypergraph H In Step 1
and Step 2. Namely, if Uij in H is reachable from v,,, Vv, 1S
equivalent to “j in G. slgorithm UNIFY stops at Step 3, if and
only if the relation does not satisfy the condition (1) and (2).

The condition (3) 1s checked by the acyelic test in Step 5.

Q.E.D.

It is easy to obtain a most general unifier from graph G'
which 1is constructed in algerithm UNIFY. Thus we have an

algorithm for UP by trivial modification of UNIFY.

[Algorithm 2] UNIFY=2

Input A binary coding $G of a term graph G=(V,E) on KUA, and
vertices V4 and Vo in V which represent terms t1 and tz,
respectively.

Cutput &4 most general unifier for t1 and tz. The mgu is
represented by a term graph and a set of pairs {{vi, xi]}
where Vs is a vertex in the graph and Xs is a variable in
X.

Method

gtep 1. By algorithm UNIFY, generate & directed graph G'" in Step

4 of UNIFY.



Step 2. For all pairs {vl, vjj's in G', if there is a path from

vy Lo ”; in which all vertices except vy and vj have
labels in X, connect v, with vj directly.
Step 3. For every vertex v with a2 variable label x, if there is
an outgoing edge from v, make a pair (v', x) as follows:
{1) If all ocutgoing edges from v are pointing only
variable vertices, make pairs (v', x)'s for every v!'
pointed by one of these edges.
(2) If there are function vertices pointed by outgoing
edges, select a function vertex v' in them and
generate a pair (v', x).
Step 4. Delete all edges from variable vertices.

Step 5. Delete all vertices that are not reachable from vertices

in the pairs obtained in Step 3.

[Example 6] From the graph G' in Fig.3 (¢}, we obtain the most
general unifier {(g(h(a,b),h(z, }},x1}, (h{a,b),x
).

2], {h[a,b],xE},

(b,xui, Eb,x5

4.2 Depth Complexity of Algorithm UNIFY
In this subsecticn, we analyze the depth of a combinational
logiec eircuit which computes UDP according to algorithm UNIFY.
Let n be the number of vertices in a given term graph G, n'
be the number of vertices with labels of variasbles, and m be the

number of edges in G.

16



[Lemma 1] The reachability problem of a2 hypergraph H in Step 2
can be computed by & combinaticonal cirecuit with depth D{lugzn +
n'log n'l.

(Proof) First, we compute the reachability problem of each node,
only considering edges in H. This computation performed DY &
cireuit with depth D(loggn) [T1. We connect every pair of
vertices v and v' by a directed edge (v,v') when v' is reachable
from v only alcong edges. After this operaticn, we consider with
reachability along hyperedges. From a subset 2 of vertices; we
can obtain another subset §' such that for each vertex v in 5!
there exists a hyperedge ({vi,vj},v} where v, and “j are in 5. It
is eclear that it requires only & constant depth circuit for this
one step traverse of hypercdges. Since 2 hyperedge

[ },vij} means v “j and vq in G are contained in the

Yig' ¥ jq i’

same equivzlence class and vq must be a variable vertex, at most
[lﬂgEn‘] nyperedges are consecutive in the computation of Step 2.
Thus we construct each egquivalence class by at most TlogznTT
steps of traversing hyperedges. There are at most n' eguivalence
classes containing variable vertices, ©because no varlable verteax
is contained {in more than one eguivalence class. Then we can
compute the reachability problem on H by n' times alternating
executicon of flogznl1 steps hyperedge traversing and one step
edge traversing. %o we can construct a combinational logilce

2

gircuit with depth O0(leg®n + n'log n'l.

17
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[Lemma 2] We can construet a combinational legle ceircuift with
depth ﬂ{logznj which decides whether a2 graph G' in 3tep 5 is
acyclic.

(Proof) Using D(lugzn] depth circuit for reachability problem of
directed graphs [71], we can construct a circuit with depth

Dflogenj for acyelic test.
Q.E.D.

From Lemma 1 and Lemma 2, wWe directly obtain the following

theorem.

[Theorem 2] Algorithm UNIFY is implemented by & <combinational

logic ecircuit with depth G(lﬁgzn + n'log n'}).

Since Step 2-5 in UNIFY-2 requires a cireuit with depth O(log

n'), we have the following corollary.

[Corollary] Algorithm UNIFY-2 is implemented by & combinational

logiec circuit with depih O{ngEn + n'log n').



5. CONSIDERATIONS ON THE LOWER BOUND

In this section, we are concerned with the lewer bound of
the depth of circuits computing UDP and UP. It i1s shown Lhat UDP
i5 the hardest problem in problems c¢an be sclved by polynomial
sizve eirecuits in the sense of depth complexity. Namely, it seems
very difficult to design an efficient parallel algorithm for UDP.

Before discussing the lower bound of the depth complexity of
UDP, we introduce several concepts and notations. First, we
define complexity classes of decision problems, Let P be a
problem on alphabet {0,171}, Pn denotes a subproblem of F with
length n, i.e.,

Pn=Prkn,1}“.
Thus Fn can be considered as an n-variable logic funetion. We
define complexity eclasses related with size and depth of leogic
circuits.,

PSIZE={P] For each P, there exists a polynomial p(n} such that

cep d<plnl}

LOGXDEPTH=(P| For each P, D(P_)=0(log*n}}
Since the size of 2 circuit for UDP constructed in the previous
section according to algorithm UNIFY is bounded by 2 polynomial

of the input length, UDP is in PSIZE.

[Definition 6] L problem P i= =aid to be log-depth complete

for P3ILIIZE il and only if £ satisfies the following two

properties:

19



(1) P is in PSIZE.
{(2) For every problem Q in P3IIE, there exists a circuit with
depth O(log n) which transforms Q  to {P1, Pay wes ,Fm] where

m is bounded by a polynomial of n.

It is direectly concluded that if a problem P is log-depth
complete for PSIZE and P is in LOGKDEPTH for a positive
integer k then PSIZE is included in LDGRDEPTH. However, we
have known no evidence to suggest that there 135 some k such
that PSIZE is in LDGkDEFTH. In other words, F 15 the hardest

problem in PSIZE concerned with the delay complexity.

Here we claim that UDP is one of such problems,
[Theorem 3] UDP is log-depth complete for PSIZE.
Before proving Thecorem 3, we prepare three lemmas.

[Lemma 3] For any combinational legie ecircuit C over a basis {2-
AND, 2-NAND} with a single output vertex and for any input vector
(x1,x2, - ,xn} for G, there is a hypergraph H with rank 2, =
subset 5 of wvertices in H and a vertex v, such that v, is
rezchable from 3 if and only if C outputs 1 for the input vector.
(Proof) We construct a hypergraph H as follows. For each vertex u
in €, place two vertices Ug and by in H. If u is5 a computation
vertex with label AND and there are edges {(u',u) and (u",u) in C,
make hyperedges E{uﬂf,uu"},ugJ. E[uﬂ‘,u1"},u03, ({U1'.UG"}1UDJ:

and {[uj’,u1"},u1] in H. If label of u is NAND, make hyperedges

20
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b}

E{uU',uﬂ"},u1J, ({ua‘,u1“},u1;, f{u1’.uD"}.u1}. and
E{UT!’u1“}’UG} in H (See Fig.l4). Suppose that v is the output
node of C and is adjacent to u. Generate a edge (ui,v1} in H. Let
w be an input vertex with label X When x,=1 let w, be in 5, and
when xi=0 W in 5. It is clear that v, is reachable from 5 if and
only if € outputs 1 for a given input.

Q.E.D.

Note that the number of vertices and hyperedges (including edges)
are bounded by 2size(C) and 4size(C), respectively, in the above
construction.

L hypergraph H with rank 2 is said to be synchronous if and
only if (1) vertices are partitioned intc d levels; (2) for all
edges (u,v}) and all hyperedges ({u,w}l,v) if v is in level i then
u and w should be in level i-1; (3) each vertex in odd levels has
oenly rank 1 outgoing edges and each vertex in even levels is &
source of at most one hyperedge with rank 2; (4) indegree of each

vertex in even levels is just one; and (5) indegree of each

vertex in odd levels except the first one is positive. We call
vertices in odd levels "AND-nodes"™, and ones in even levels "OR-
nodes™,

{Lemma 4] For any combinational logiec circuit C in Lemma 3, we
can construct 2 synchronous hypergraph H satisfying the condition
of Lemma 3. Moreover the pumber of vertices and hyperedges

{including edges) in H is GEEiZE{C}E} and all vertices in 3 are

in level 1.

21
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(Proecf) It 1is easy to convert C to a synchronous circuit C' in
which all outgoing edges f{rom vertices in level 1 is pointing
vertices in level 1i+1. The size of C' 1is clearly bounded by
siZE(C}E. We generate 2 hypergraph H from C' by the straight way
menticoned in the proof of Lemma 3. It is easy to transform H to
satisfy the conditions of synchronous hypergraph., Thus we obtain
a synchronous hypergraph H with O[size(ﬂ}a} vertices and
hyperedges.
3.E.D,

[Example T] In Fig.S, we show & transformation process from a
combinational eircuit € to a synchronous hypergraph H'. First, C
ig reconstructed as a synchronous ecircuit C' in  (b). By
conversion in Fig.4, we have a hypergraph H in (¢) which
satisfies conditions (1) and (2) of synchronous hypergraphs.
Separating each lewvel into two levels, we can construet a

synchronous hypergraph H' in (d).

[Lemma §] For & synchronous hypergraph H, a subset 3 of vertices

in level 1, and an AND-node W we can find a term graph G such

"|!

that UDP for G is false if and only if v, is reachable from 5 on

1

H.

(Proof) First we put & label [or each vertex in H as follows:

{1) For each hyperedge {({u,v},w) in H, if u#v, assign a distinct
varizsbles in X.

(2) For every AND-node v in H except Vi assign & distinct

function or constant symbol f in A where outdegree of v is

i!
1. Let the label of v be (f,f), Put the label (a,b) for Vi

where a and b are distinect function or constant symbol in A.



(a) Labeling of Hypergraph H'

Fig.6 Transformation from the Reachability Problem on
a Synchronous Hypergraph to the Unification Problem



(b) A Term Graph G

Fig.6 (Cont.)




{3) For every AND-node v with label (f,f) and a hyperedge
({u,w},v) assigned to x, put the label (f,f)} for u if u=w, or
put the label (f,x) for u and (x,f) for w if u#w.

Make & new wertex v, Wwith label (f,f)} where f is different from

0

all other function symbols used above cperations. Connect UD Wwith

all vertices in 5 by directed edges from v We call resulting

-
hypergraph H'. It is trivial that vy is reachable from 3 on H if
and only if vy is reachable from Vg on H*'. Considering H' as the
hypergraph in Step 1 of algorithm UNIFY, we can construct a term
graph G such that UDP for G and the reachability from Vo to Vs
are equivalent. The constructien procedure of G from H' is as

follows:

(1) Generzte vertices corresponding each variable in H'.

(2) For every AND-nede v in H' with label (£,f), generate
vertices v' and v" in G with label f.

(3) Suppose there is a edge (v,u) in H'. If the label of u is
(g,g) then make edges (v',u') and {(v",u") in G, If the label
ef u 1s (g,x) then generate edges (v',u') and (v",w) where w
is the vertex with label x. Similarly, if the label is (x,g},
then generate (v',w) and (v",u"),

From the construection of H' and G, it is elear that UDP for

(G,VD',vD"] fails if and only if vy 1s reachable from v, on H'.

Q.E.D.

[Example 8] 1In Fig.6, an example of the construction from a
synchronous hnypergraph to a term graph G is illustrated, Foer a
given hypergraph H, we first put labels. On edch nyperedge

distinet variable is assigned. The label of vy 1s (A,B) but other
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AND-ncdes have labels ({,f). Labeling of each OR-node 15 decided

by the rule (3) in above proof. Adding & new vertex v, edges

0
according to S, we get a hypergraph H' in (a). Next we construct
a term graph G in (b). In this example, the reachability problem
is reduced to UDFP for

F(K(J,E(G(A),D(x,C))),Lir,t,H(Z,y))

and

F(K(r,t),L{J,E(G(x),z),s8)).

Note that the number of vertices and edges in G are linearly
proporticnal to the number of vertices and hyperedges in H,
respectively.

Now, we return to the procof of Theorem 3.

(Proof of Theorem 3) For any problem P in PSIZE and every
positive integer n, there are a polynomial p(n) and a circuit Cn
such that Cn computes a subproblem Pn of F and sizeicnj i= not
greater than pin). From Cn, we can construct & simple hypergraph
H by Lemma 4, From Lemma 5, for a given input vector for Cn. We
ebhtain term graph & such that UDP for G is false if and only if
En outputs 1 for the input vectar. According to the construction
of H and G in the above discussion, it is easy to make a circuit
transforming Pn to a UDP with constant depth..Inceed it is enough
the circuit only generates edges of G in the first level from the
input to Fn. Lz shown in the proof of Lemma 4 and 5, these adding
edges in G clearly corresponds to the input for Fn. Thus the

depth of the circuit is a constant independent of n. Moreover, it

has been already shown in the above consideration that the length
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of UDP also bounded a polynemial of n. Thus we conclude that UDP
is log-depth complete for PSILE.

Q.E.D.

By the similal discussion of this secticn, we can alsc show
that unificaticn is log-space complete for PTIME [9]. MNamely, if
we have an algerithm on a Turing machine for unification which
uses O{log n) cells on tapes, we conclude that all problems that
have polynomial time algorithms should be computable In 0({log n)

space complexity.

[Theorem 4] UDP is log=-space complete <for PTIME.

(Proof) The proof is guite similar to the above proof. It is
known that the Circuit Value Problem (CVP) is log=-space complete
for PTIME[10]. The CVP is defined as follows: for a given
combinational circuit C and an input vector for C, decide whether
C outputs 1 feor he input. We transform CVP to UP by the same
manner in the proof of Theorem 3. We only have to consider the
space consumption in the transformation from CVP Lo UDP. We can
easily verify that the space complexity of the transformation is

0{leg o).
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6. CONCLUSION

The unification problem is related with the reachability
problem on directed hypergraph. In algorithm UNIFY, the
unification problem is reduced to the reachability problem on a
hypergraph. Contrary, some kKind of the reachability problem can
be reduced to the unification problem as shown in section 5. From
the consideraticn on the relation between PSIZE and LDGkDEFTH1r it
seems hard to design efficlent slgorithms for these two problems.

However, wWe may be able to implement a hardware which can
compute UDP or UP effectively, because many practical terms for
unification inherently ineclude parallelism that may compute
efficiently. It is impertant to examine the properties of terms
which appear in practical situation for designing & good parallel

unificatien algorithm.
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