ICOT Technical Report: TR-026

TR-026

An Enhanced Inference Mechanism for
Generating Relational Algebra Queries
{Extended Absiract)

by
Haruo Yokota, Susumu Kunifuji,
Takeo Kakuta, Nobuyoshi Mivazaki,
Shigeki Shibayama and Kunio Murakami

Oetober, 1983

983, 1COT

Aita Kokusal Bldg 2F (05 456 3191 =5

H :D | 1-2% Mita 1-Chotne Telex ICOT J 52964
Minato-ku Tokwo 108 Japan

Thstitute for New Generation Computéf '-'i'echnolngy

An Enhanced Inference Mechanisin for Generating Relational Algebra Qucries

Harvo Yokotn, Susume Kunifuji, Takeo Kakuta,
Nobuyoshi Miyazaki, Shigeki Shidayama, Kunio Murakami

Instiewte for New Generation Computer Technology (1COT)
Mita Kokusai Duilding, 21 T
1-4-26 Mita, Minato-ku, Tokyo 108 Japan

ABSTRACT

A system for imterfacing Preleg programs with
relational algsbra is prescoted, The system produces
relational algebea queries wsing o deferred evaluation
approsch. Least (LFP} queries are
autnmatically managed. An optimiration smethod for

removing redundant relations is zlso presented,

fived point

L Intreduction

Japan's Fifth Generation Compuier System (FGCS})
project ix mimed =t constructing & wseful knowledge
information processing symem [6]. As the firsl stage of
hlding the system, we are developing 8 working modsl
of a relational database machine (RDBM) called Delta
[9.12], which will accep: refasional algebri-based queries,
and wohng models of personal sequential inference
(PS1) machines [11] weed for involing programs written in
a Frolog-based logic programuning language called the
Fifth Generation Fernel Laaguage 8. Dehta will bea
hardware backend machine comnceted to a number of host
PSi Machines. Possible physical
connections betwesn the PSI machines will be by a Jocal

machines, mainly

ares network of & thared commaon memory om a bus. See
Figure 1.

Under this environmem, w form a sofiware
development support system usinfp large-icale databases,
we must develop & logical interface between Prolog and
relational algebra =, We will collsct experimental datz on
the connestions fos use in constructing 2 knowladge base
mechanism during the next stage of the project,

In this paper, we propose 2n efficlem igterfare
between Prolog and relations! algebra. By adding simple
specifications to the program, users are sble o handle
least fixed point (LFP) operations [LIDRL Well lzowa
LFP examples are the ancestor finding problem and
airline conascring Nights problem, neither of these can be
handled by relstional alpebra nor by relatiomal caleulus.
Our interface is capable of retricving large-scale databases.
An inference wechanism capable of Landliog largescale
darahnees ix the st siep towards building a knowledge

base mezhanism

The imerface program for the PSI Machines

s Osdinary Drelog queries can be seen as highdevel
daisbase queries, which derive unswers one by one from a
emall database in main memory.
describe, and with a
sutematizally recsives the answer to his query, when the

Using the system we
sipgle Prolog query, a user
datakase it kemt in both main memory and external

storage

generates oplimized gueries and seads them to Delta for
a Prolog query, Using this interface, host-machine users
can write Prolog programs in 8 natural way, etilizing
cut-gperator, not-pradicars, evelunble predicaies, and
crdinary predicates. They must explicitly specily which
Prolog predicates are stored in Delta. Otheswise, a wser
can make & slight modification to the system 1o ollow 3t

ta sei the specifications for those location.

1. A Proleg and Kelational Algebra Interface.

A number of papers have proposed soveral
approcches 10 an intsriace beotween logic programming
languzges and relational databases (35513 Their

approazhes call for dividing Prolog programs {which are

treated a5 a collestion of Horn elavses) into two pasts: -~

an extensional darahase (EDH) which collecis the
majoriy of the Preleg faces (unit Horn clauses
epnrrining no variables), and an intersipnal darabase
{IDE} which colleeis 2 Prolog rules (Horn clavses
except {acis} and 2 few Prolog facts for temparary use.
According 10 the idea proposed by Chakravarty [3], we
developed an enhanced | in7arence mechanism which
ceduces Frolog goals using only the intensionzal database,
undsr the assumption that the predicates located in the
cxtensional databass normally exist, a.'s_d simulienscusly
generates gquery plans for the extensional datzhase
Tanaka [13} proposed a similar partial evaluation approach
which also calls for dividing a Prolog program into two
parts. To deduce a guery using the intensional database
and extensional datzbase, our system defers the evaluation
of the predicates in the extensional databage; Tanzka uses
g partial evalvaninn method We eall rthis a delerrad

evalvation approach,

1
ROSH “bel1a™ p—— P31 Hachine
Local Area . i
Katworh ! |

Fi1 Hacking

PRI Maching

P51 Hachine |

Frgare % Overvies of 7s0 Stage FGOS

We have already deseribed this principle and
developod an experimental system in DEC-10 Prolog [8].
The systom ilustrated in Figure 2 s composcd of & plan
penerator, @ plan converter, and a Dehte simulator which
executes relational algebra commands vsing o Prolog fact
as @ relation's tupbe. Here, notice that the Delia
simulazor simulates only fenstions of Delis, but it does

not simulate the internal behavior of Tela

The plan generaror ** deduces Prolog goals vsing enly
the intensional database. Ar the same time, it gonerates a
plam, whizh is a sequence of FProlog predicates in rha
sxtonsional database, This sequence of predicates are
verified using the relational database machine. The plan
converter converts this plan into a sequence of relational
algebra commands, which is =2ccopred by the Delia
simulater. This procass is repeated lo oblain the entire

set of answers,
For example, the predicates

fdbiifanceston X, 1) :- parent(X, X2 (1)
idhlifancesionf X, Y} ;= parent{ X, Z),
ancestor{ Z, Y1) (7

-~ projep’s Goal. Sealence
1
[Plan Gerarator et (06 |
—_—r
[FT R —
1
1
Relational-Algebra Comnand Seauence.

&
felational Algebra
Cozpand Execytion

(Oeltal Siwlamr!
|

Relational |

latabase

(EDE) §

i e Backtrack

Figure 2 #revious SvsTeg Gonfiguration

= This plan generator §5 based on Bowen's {2}
meta-predicate deme, vsed to represent provability in

logic. Sec also Chekravarthy [4] Kunifuji [8).

are given in the iatensional databage as o Prelog program
to relate an ancesior with @ parent. The predicate of
greestorf Y, Y) means ¥ s he ancestor of X and the
predicste of perentX, ¥} means ¥ is the parent of A If
the parenr predicates are located in the extensional
database as & relation, the following elause is added to

the intensional <atabase to indicats this fact,

idbl((rarent(X. ¥) ;= edblparensfX, Y211 {3}

The clauses stored in the intensional database wiil be
modified into one-argument uvnit clauses which must be
ideatifisd 25 a user program in the intensional database.
Thus we ecan recognize different worlds in our system
using different functor names, for example, &b and b2

{Figure 3).

If we invoke the plan generator for the gquery
“f-ancestor{taro, X" to find the zncestors of raro, we
will pet a plan which invokes a search for the parents of
tarp as follows:

fpareniftarc XN {4)

Then the plan converter converts this into relational

alpebra commands as follows:

[sefection{pareni fij=tare, templ),
projection{ templ f2] tempZ), (5]
getitempl) 2ea

and s=nds them to the Delta simulator, The simulator

‘ - [08 ~rmeme e]
D oo

Fegurea 3 Multiple idb Wolrds

=2t Tn the relational 2lgebrs commands used in this paper,

fn] means n-th atribute of a relation.

searches the relation named perent Tor wiples, the first
attribute of which is saro, and forms a relation templ as
the collscnion of those twples, Then 1 forms a relation
templ which has only the second attrnibute of rempl, as =
candidats for the results of the guery. 17 the result is
net satisfactory to the hueman, we request a backirack,
Hut the simulator and plan converter have no alternative
resulis for the plan, 5o the backiracking arrives at the
plan generator. Then the plan generator gencrates the
next aliernative plan which again invokes a search for the

grandparents of rero as follows:
[parent(tare X1} parenti Xl X} {8
The plan converter translates this into

fseleciionf parent fIi=taro, tempd),
Joinftempd parent (2f={1] ternpd),
prajection{tempd [4]. temp), {7
get(temps)]

The simulator then forms another relation fempld. If 2
new backtraczk tak-s plaze, another plan, such as
[parent(iaro X1) parert{ X1, X2) parens(X2, X} (8}
is formed, and so on. The processes of potting a result
are coniralled by the human, Dacie plan yiclds several
results, A detailed deseription of this system can be

found in [E].

3, Ieprovemcent

In this paper, we desoribe the refinement of the

efficient one which generates

system inlo a more
optimized plans much faster than our old system and

which can automatically handie LFP operations,

Fach time Prelop processes a query, it returns the
next answer which satisfies that query. Tt has achieved
this vsing only information {rom the intensional daabase.

There are other plans which cam also sarisfy a given

query. Figere 4 illustrates an example of the relationship

between a search tree and plans.

1n our previous system, to get all the results, 3 wser
had 1o constamtby interact with the process, invoking
compuleory backtracks as well as interactive Prolog
deduction. It was difficult to know when all the resuits
had been

backiracked, the result would be a recursive program

obtaiged, If the auiomatically

SysTEm
which could not be automatically stopped. For instance,
the c¢lause presented in (3) means that the parent
predicate always exists in the extensional database and
that the recursion of (2} has no stop<condition. From
another point of view, program =(11(2)1(3)- ean be
regarded as an LFP operation. Our older implementatian
I8! did not handle LFP operations in a complately

AULDITAiEs wdy.

To handie LFD gperations automatically, the system
must always inveke a cempulsory backtrack to obtain 2n
alternative plan and distinguish zn empty-backirack from
a nonempty-backtrack. The empty-backtrack is generatzd
only if there is no pew tuple satisfying the plan,
Aho I}

presented an iterative procedure (Figure 3) to suppod

otherwise the nonempty-backtzack is generated,

LFP cperations. The nonempty-backirack corresponds o
the while loop because of dissatisfaction of the condition
(£=#), and the empry-backirack corresponds to the <ase

of szrisfaction of the condition (&°\=47),

Prolog cannot discriminate among causes of the
backtrack because the binding information of variables are

freed when backtracking occurs., We decided 1o use

ancestor

oparent parent, ancastor
T<Plani> L. :
opSCERT,mATEntsT parent, parent,ancestor
TPlaniy : L
“parent; parent; parent’
T <Flands

Figure 4 Search-tresfFizn Relation

K <- Ry

i

Re-K
Ro<-RUJIR}
while (17 j= 8)

Figure 5 Tterative Procedure of LFP operation

side-effects of Prolop such as assert and retract to
diserimirare between the two types of backtrack. When
ne new tople is detected for a relational aigebra
command sequence, an empfy predicate which acts as a
fap is asserted (created) to indicate the empty-backtrack,
hefore a backirack takes place, When at lenst one new
teple is found. nothing is asserted to indicats the
nensmpty-backirack, before the backirack takes place,
Figure 6 shows the new process flow. Figure 7 shows the

main part of the new system program.

1
Irgroves Flan Genereior

| feT=4top fyrrent Recersive C2ld I_—L!'B%.
5

" . }
Lli=tontiune Careent REourilve Lall p——————

i

]

--.; _—l.- E

Mo Aiternate Plan Pian
1 L

[Flan dotizizer

L 4

Toptieized planc !

Termingle

ren i oguenge
Fl
[Ralational algezs’ [felatiom:]
| Cezaang EXECULEOR bt [rtslzie |
: iFelfta) _ti_u:l:_la[zlr]] [Fn:_s]” i
. I
Chesel TR Teton: i
it
B

B~ R U Eetelt Redation
IR 2 Bi7: Are there Any nee Teplas?
[w BERT, = ERT)

figure & Improvad Systes Configuraticn

Eo{ 100, Goal) = generate{ DB, Goal,_, Pian),
aptimize{ Plan, Optlilan),
canveri{ OpePlan, Command),
deltal Command, Relation),
backtrack{Relation),

goi_,_} o= listinglout)

backrrackiRelation) -
deltaffcopwour,ourl)
urionfRelation out)
equaliout!cut} eg_ans),
eq_ansing}, !
retractiempry), foil,
backtrack{_) :- eq_ansiyes) !
assertfempry}, fail,

Figure 7 Main Part of System Program

The predicate generare (Figure 7) which corresponds
to the plan generator generates plans by checking whether
emply is asserted or not. I there is no empny, the plan

¢nerator grows the branch along which the previous
result exists. EF there is empsy it prows other branches
and retrasts the ety by checking it next. This ehacking
works a5 a check of siop conditions for the recursive
program. The time when checking takes place depends
on the structure of the program. It is necessary to add a
few specifications to recursive prezrams as stop
conditions. We decided 1o use 2 predicate check for
indicating that timing. When a wuser asserts a clause
which iz a recursive program, he must add this check
predicate to the top of condition parts of that clayse, in
order to make the plan generator check the existence of
the predicate empy when 1t grows the search tree. For

instznee, clause (2) is chanped into

feblfancestonfX, ¥ := check,
parent(X T} ancestor(Z, Y11,)

This specilicalion is not so exlraordinary, since the
predicate parear in (2) acts as a stop condition of
pecucsion. I0 we intechange this predicate with e

predicate gacesier, 1L means a8 change of program style

from a right-recursive call to a left-recursive eall, This
recursive call cannot be stopped by present i’rniog
processors, 2lthough the program is not logically wrong,
The check predicate is used simply to maoke that s:op
condition clear. This system can also landle the
left-recursive program by using the predicate check. In
that case, search strategy is changed from depth-first to
breadih-first, Whichever strategy we may use, the set of

the lust resulis is the same when we get all the results for

a guery.

There can be any number of recursions in a
program, ail of which use only one type of check 285 2
stop-condition-checking predicate. 7This i3 becauss the
same empny predicate indicates a siop cor fition to the
currently developing recursion. When the currently
developing recursion is stopped by the check predicate,
the program then reterns to the ealler. The caller's
recursive call could also be stopped by the same check
predicate, by this time the ermoty predicate is already
retracted at the end of the farmer stop condition

checking.

To examine the convergence condition of LFP
operations, the systzm has two relations owr and owtf
whith correspond to R and R' (Figure 5), respectively. It
executes a union berween these two relations. The
backiracking predicare {(Figure 7} checks cquality betwezsn
oul anl ol and discriniinates betwezn
nonempiy-backiracks and empry-backiracks, Ininally, owr

and ¢uwld aic cuply.

If the system were to merely check tuple generation
per plan and invoke an empty-backtrack only when there
is no generated tuples, it could mot necessarily stop some
tvpes of recursions even if the program used the check
predicates. If we accept facts which will make the plan
generation eveliz, for example, pareniytargraro) or a pair
facts such as parentrare honake) and parent'hanako. faro)
in the extensional darabase, program {11,03),(5) will not
stop, even i il contains check predicates. Ie thar ease,
the user must check the fnteprity constraints of datohase
[7] tor

carefully specily his ey a5

“f-ancestori XY LX\=Y." Sinee the new system checks not
only tuple generation but also checks whether ihe
generated tuples 2re new or not using the set operatios, it
can handle cyclic data in the daabase without integrily
constraint checking and witheut explicit restricticn of
guery, If the converted relational algebra expression is
monctonic [L), this system 5 not only capable of
ohtaining &!l the wples which satisfy a2 query, but can

also terminate,

One of the prinsipal goals of this improvement 1s
the speedup of plan generation and optimization of the
plan as well as the capebility to handle LFP operation.
We will describe how to implement thal speedep and
optimization in the following secticns, There are a few
other modifications to the system., Our previpus paper [8]
handie evaluable

not-predicate. It did not show how 1o implement them.

showed how o predicates and
Thers was a bug in the plan converter when a p{X.X)
type predicate was given. In the improved system, we
have changed the plan converter to deal wath evaluable
predicates, pot-predicars, and p{X X} type predicates

Thke Delta simulstor is vnchanped

The evaluable predicates contained 1n a user’s gGuery
arz put in the reietional elgebra commands as conditions
of selecrion or joim by the plan converler. The
not-predicare is transformed to difference command by
the plan ennverier, so it tmposes festiletions on the space
uf variables which appear in the predicates placed before
the not-predicate, Hege, 3 not-predizate cannot be placed
on top of 2 goal sequence. In the present Proloz system,
the not 15 impiementsd as "Nepation as Failure" by using
cut-gperater. The not described herein i not same 1o

thot of "Nepation as Feilure”. Tf wsers want to use the

nat in Prolog sense, they should so define the not.

The medified plan convertsr can row be thoeght of
as translaung relational caleulus mnto relational algebra.
Only selectien, Join, and prefection were used In the
converted plan (relational algebra commands) when plans

did not contzin = nol.

4, Improved Plan Generntor

The implementation of the plan generatar propased
in our provious paper [8] was complex cnough to process
even cnificarions by program, B wos time consuming o
generate a plan, especislly when searching a clouse for
vartables which are unifiable by znalyzing its srruemare,
To penerate plans faster, we implemented a more efficient
plan generator which wtilizes Proleg's bulli-in unification
facility to deduee Prolog's querics. In {7], we developed
an enianced demo predicate [2] based on the execute
precdicate found in A Frolog Interpreter in Prolog”
proposed in [4] which can also deal with Prologs
cul-operator {1). Figure 8 shows the main part of the
new plan generator, geserate, which wses the idea of the
echanged deme predicate. The size of the program has

been reduced to about one fifth that of die previous ons,

The principle of deduction which evaluates predicates
located in the extensional database in deferred manner
has not changed. The previous plan generator deduces a
goal sequence from the top of the sequence. When it
finds a predicate located in the extensional database, it
sends the predizate to the tail of the secvence, This
deduction stops when the predicote which 1s sent et first
appears at the top of the seguence. At this time, the
gequence contains only the predicates Incated in the
extensional darabase, and the sequence repressats a plan
for the goal sequence. Our improved plan penerator is
able 1o deduce the goal sequence as well as our previous
genergtor. When w linds & predicate locsted in the
extensional damhase, it appends the predicate to 2 list for

GuLpul,

In Figure 8 the Tust argument of the geserare
predicale indicates the world name of the intensional
database. Thus the plan generator can dsduce in one of
the multiple worlds {Figure 3} by indicating the world
name as the wvalue of that argument. The sccond
argument takes the I'rolog query as ioput. The last one
gives 2 sequence of transformed geals ps output. We uge
a difference list @73 Y} for output in which X' points to
the head of the list and ¥ points to the tail of the hist w

peverate(IDB, irue, _ (X, X)) - 4
pererare(IDE_ a7X X))
generate({DB, ! cui di X, X)),
generawe{ IDE cheek,_ a(X, X})

{empovt retracifempeyp) fuil-true)
gemerarel IO, eadbl P dEX X -
generate 25 not(P) V.dfnat{ENXL X0 -

! generate(IDB P VL),
generate(DB, (F,Q) VL) -

! (generate(IDB PV L) generate{IDE, 0V, L)),
gererare(IDB(F, 00 V.CrX, Y} -

! generare{IDO P, Cd{ X, Z)),

(C==cut, V=cur, b penerare(IDR, G V,d{Z, ¥)1)
generaie(IDB PV L) -

idd clouse(iDB P.Q). penercte{ OB Q. VL),

{Fe=cur, £ foil; true).
Figure 8 Main part of the New Plan Generator

(Based on [4.7])
make list processing efficient. The third argument is
used as work space to handle the cut-opermor, This
cul-operator only controls the preduction of a plan,
which enables the control of search space, This operator
simulates the control function of the DEC-I0 Prolog
cut-operator. The predicate, sdb_clawse{IDE P, () searches
the intensional database for a predicate which is uaifiable
with P and returns the predicate’s body as @ with the

unified variables,

Motice that certain kinds of evaluable predicates {e.g.
"' "=" "\=") are not evaluated here. Instead, they are
passed through as a condition of sefection or join to the
plan comverter, and evaluated later in the relational
elgebra command execution {Delta) simulator, The plan
generator has no part which directly handles these kinds
of predicates. To pass it to the plan converter, there
needs to be a corresponding predicate in the intensional

database; for example,

idb((X=Ye-edb{X=Y)}). {10)

18 needed Tor the evalunhle predicate ="

This plan pencrator, which s compiled in DEC-0
Prolog on a DEC-2060, generates plans in about 5 to 10
ms (CPL time) for the above examples. This is about 20
to 50 times faster than the previcus plan generator.
Further speadup can be obtained as the depth of the
search tree becomes greater, since the counts of dynamic

leop in the program decrease.

5. Plan Optimizer

In the previous systemn, redundant relarional algebra
commands and redundant temporary refations were
produced. Fo: example, the temporary refation rfempd in
{7) has exactly the same infecmation as the relation
rempl in (5), so selcnoafpareatfl=mrogempd) in (7} s
not necesszry i the relation fempd is kept. This means
that the subplan porentftere, X1} in (6) can be replaced
with femp2{ X1l

To avoid the predection of redundant commands
and relations, genersted plans and relation forms are

stored in pairs. A sample pair for (4) and (3) is

plan({parent(tare, X)], temp2(X}, Iy

A search is made for a match between subplans in the
new plan and in the set of previous plans vsing n string
maicher (Figure 5} made [rom appond pradicates. By
replacing the subplan from the new plan with the
maiched subplan from & previous plan, potential
redundaney is removed. This string matcher can search
subsirings of arbitrary length which can be found
anywhere in the string. The predicate eg_siruct in Figure
9 checks the equality of two arguments’ structures, since
simple unification between two arguments causes harmful

instantigtions,

The plan optimizer is placed between the plan
generator and the plan converier (Fipure 6). Using the
plan optimizer, for eyample, the plan of (8) is translated

into

epamael AN GUTL -
plan{PLI Rel),
apperdl TPL Rest IN)
append! Top PL2 TFL,;,
cq_siruci{ FLLEL2),
PLT - PL2,
appengl Top,/Rell TO),
gpperdl 50, Res:, OUT2),
aptimizel UT? QLTI
gptirmizef X, Y

Figure § Main part of the Plan Optimizer

fremz30X1) perentf XX)] [z}
znd the relational algebra command for {7} is replaced by

Loinftemp2 parent fij=fi] temp3)
projeciiondtompd (3] tempd)] (13

Itz a basic and simple optimization, but it greatly
impraves the efficiency of the Prolog/ralational alpebra
wmterface. This amplifies effectiveness when the program

contains recursive call sezh as in the above cxamplz.

4. Cenclusion

In this paper, we deseribed ap efficient interface for
uss between o logle programming language and relational
algebra. Qur interface provides the means for processing
a useful darabose guery language capable of handiing LFP
operations. We showed hew we impreved the system by
enabling it to hendle LFP oparations, the cut-operator,
evaluable predicates and the not-predicate, We showed
that a faster plen generator and @ plan opthinizer was
possible. Both improvements make this interface practizal
for actual vge.

ATTLENDIX

This appendix shows execution examples of

interfacing program between TProlog and relational

darnbase.

-1 s.;.'i_:'dﬂ yarcesierf bara 4]

mlas 1 [Fabtkss baps, 053

opezlen 1 [facheritare,]

oy | [relectioed fatnar. | U)=tare, teol) prejecsien) e, [2] Lamng)]
wmaas - glandl fater{varo 501), a3y i)

L=]

plan : [rmarer s, 400]
oyt plan @ (emunerdizrs, 23))

cerow o {eleriionitotier, (1)rtan, tempd) prajest ol bt {20 e]
=t 0 puARiLsttker{ e, E0)] neow RO
[- T £

glan ;[fatreritorg, SW),7ather] 210, M0)]

cpt plan ¢ [rem 20 00 fe {275, _53)]

armend [Geinitees® Parer [11 0]) baasS) proiesttoc te 8 18] Vi)]
mime 1 mlast[Fabses{eara, 2107 Fathesf 210,39], beme{_51])

o Al

a1 fresrerare, B5) e 85, 181)

opt_fian 1 (Lo fa)asther 2 _18)]

orrraudd ¢ [Goinltesd oother 1] =00 SempTl pee et Sond teapT [3], L8}]
s 1 plen!] Fathec]tare, 54) medtec FS, 18]), te2i W)

®as o

Han ;[fatme) s, B3, fetherd B8 129], fatherd 1k, 10}

con_pan o [tamp e, Sather 165, W8]

ceopmre ¢ | il beend, fethee [1]2[9) tespd) L preiestion e 1Y) bt]
meom b plac|l felhes(tars, 083, Fattesd A 1891, Setbet 37 130) temial t8])
LR DS

plan : {fatmerttare, B5),fatnes 84, 1800 metnes 19, 1410

ot pian § §repf 186 mother 155, 144]

cmraerel ¢ Dloded bl cothee, [1]=0 1], beep 1 1) peo et oo bap 11 £ 3] | L 12
oenr @ placi [father{tare, F4], Tatter] a0 U§) sottest A0 18], beeptal 1430
[+ .]

glar : [Fazrer{tasc, 4, mcser{ B84, 145}, fackar] 145, 18)]

et plan i [bepl (a9, Jauer 169, 14])

owvend @ [Soinltesd mockerf1)=(1] tapi), prejectiond besi1, 03] wnpia)]
oo placiffather{tars, BU) setner{ B4, 3400, Methes_ii3 _161], tampdf_14))
wmoAm v

ran o [Metteritars, BAY eother(86 149) mothesl S5, 143)

apt poan ¢ [teeogd 48] cebeer(g, 14yl

erwart ¢ Ddea tee onther P1]2[1), neopn D pen fent on] basp S, 03)L L))
o ¢ plani father{tarn BER merker T Tl IR ook TR U] tenpth 8D}
AR o yes

jlan 1 [eotherftzro, 8h) fats, S 24, 1u))

opt _slan 1 [tegpti ES) Fether _fa, L8]]

oxrand ¢ [Soind bersd Tather [§]e[1],bamp T) prodect fond tesp1T [3], espi @Y]
miaws ¢ phinl|sother ters, B2 Tether] B D], BemnlE_ta0)

e ars ;e

plan ¢ [morher{eass, BUY mther! B8, 14])

efinmlan ¢ [tespl BG) seemer By 16)]

cozoer ¢ { joird teapd oochar, [1)=01], et 90 | prodestiond bexni 3, [1], teeneD)]
cie z gl [=ether(o, BN potherd ER LA], a0l 10))

LA L M

plan » [eother(taeo, B3} fobhes{ RO 1591, fether 156, 1301

opt_plan @ {bemp1BL tR9) labkes(106, _'3]]

oarard ¢ [join(tespi, Fatbe, [13=[1] teag21] prajess fand teep? [3], teara }]
o Fla."ﬁnr.!t-':t'\-l:-'-_'t-_s"l'-l Farrer BN 1530 faekas (52, 14] 1. vega 3H35

Sl BD . 15%),cather(155 1411

- satkeri ST 3815

ammer @ [Sindteeptd s, 1] 1], W EEE) prodet dan w3 tempai)]
rtns ; planloeerec(lire, B0 fatkee] B, 1550 mmtnes 1551493, womnel_isl)
& onms i ves

plan 1 [cotrer(tase, 2], mouner] 851380 Sather 108,_140]

opr_pman 1 [tom2d{ 159), falker 155, 14]]

oo ¢ [Juird tedD, fazhee [17=(1], Sems), Breeetion! enid [3] tamped))
miam ¢ phod jEmsbar|trm, MUY cocher (B4, 165 Sanker] 155, 12)] LempR{ 141)
Ll T o

man ¢ [oothor{tars, B8] mothe{ 0, 153) etmact_ 153,051

ot plan ; [Lazp20l 159}, cotrer{ 109 _1421)

wrmree 1 [Aoindtemedd sotses, | 1]a01] Senpi 1, see st tonl s T [5], toeepd) D
ey ¢ plesi{etnesitars, FA) mothert B, 159) mmtkerd 196, 180], ve2Dl 18))
e sz yE3

tuth deire).
outl e
b whdEat] .
ensd e inn] .
ouz{ Enbgaidl.
autlgeedal.

7- lastargll 2267, father, sother, Lomp a2)

FECH RS, i S -t S P
L areeazert) 2] i—emeck! trmresr 0, 300 tenoestord 10200,
il iprrert (1, 7] cefethar 1, 2300,

el {{parentl 1,20 -mmoher 1. 250].
seml{{father_1, 20—l fazher(1. 21000,
sesif{monner b, 21:—ab{mechery 1, 211
1l 12 7 el s 2000,
J.L}D‘.[ﬂ__‘;\-'__,?'.-#!LL'.:‘\.:_?_]'.I}-
ALy F reath_ 13 7131,
L2000 Nam bl _13s 2117,

Femi0l_1=q 2:—edbd 124 3100

L ({14 Ar-edt 142000

Fatbmar| b, dokicn),
Fathmrd i, yane).
Fatrmr{faraka, tnigied).

e wers, hamual,
eotner] dendm lmike).
mtser| Farern el .

by, e,

H e T - T

VoPe ol LR peruger_peell, Y01,

siam s [emempe={ 76, G0}, mtldl{enmger] 31, 58) e SR8 e il
SLERk ERH

pon : [Earegerl 38,54, ereger[35, poud, Siee 283

eor_plan : |miregesd 37 _TA) mmmpee 3E, &= P00 i .
[===="1{i IH !,_fmr.t:r.-:;:r.‘.arm".l'l':-[a].bee;.‘.:,mla_-t;m{bﬂ1.12]1--f-'|_,u::'l
£, projezticnl beme [1.2] oaspad | S2E])

mew ¢ phasl[merseerl 38,5t} ou e (38, 2291, 3Wan 200 tedl 38, 551

wii_plan ; [sarmge=(78 _E4), mot [teep?l 32, 5041

comre ;[eintsereger, suoger, | 1120 1] bt) salecsdon bt 2 has [U], Lt
g orodeetiant s, [1,21, sama) il ferenes! sammprr Lot pd, bampil) b fuet Jor
teesa, [1,2], Laens)

b= 5= .'-hr.[[m:btr:_‘iﬁ.juh.rrr.I:.r.-FE{_'!E,._'ﬂ?‘.‘:.w-ﬂfj!JﬂH

L L R

oub e ark. st
" oup (it meting-

¥ =3,
Y= 54

SEE
Uoae Limsipef{idhd mirppe-t] .

T Tt el e PG EI T 1L W) L T M B PR PR e) B
s famemger_sred 1, 2)i-mresgerl 1 Y, Netlsanages sy 20000
ipeat{zarpeert 1,3) teeinl e 1, 20T,
g 1= pr=nkis V= 23]

Rl _the Foeadid 12N 2000,

=0 M R BT B3))

(U Vhe fieesm A= 2100

iesi{_1e firoeni_leg 2370

pamdl 160wt 1 F1NE.

eroperd Sares olaw],
prrrger] jomed, k],
mrnper] jores azith],
st Slaes ollen) .
monyeslslees, torrer).
sarm el ol and, 3005).
shraper(mith Sl

Acknowledpement

The authors thank Mr. Y. Tanaka of Hokkaide
University and Mr. H, Katsuno of the NTT Musashino
Telecpmmunizcations Laborarory for their uwseful
comments, and Mr. D, 5 Anderson of Xytec Sysiems

for his helpful advice on the refinement of the paper.

REFERENCES

[1} Aho, A, V. and Ullman, . Do Uaiversality of Data
Retrieval Langeages. In Proc of ACUSETGPLAN Conf
on ¢f Frogramming Longuages, San Antonio, Jan.
1979, pp NO-17.

[2] Bowen, K. A, and Kowalski, R, A, Amalgamating
Language and Metalanguage in Logie Programming,
1a Clark, K. L. and Tarnlund, S. -A. (Eds.), Legic
Fropramming, Academic Press, 1962,

[3] Chakravarthy, U. &, Minker, 1, and Tran, D.
Interfocing Predicate Logic Languapes and Helational
Datzbases. In Froc of the firsi Int. Lo .o Progre - oning
Conf, Fpoulte des Sciences de Luminy Marseilles,
France, Sept. 14-17th 1982, pp91-98.

[41 Coelho. H., Coua, J. €., and Pereira, L. M. HOW
TO SOLVE IT WITH PROLOG. 2nd. edition,
Laborato'rio MNacional ds Enpenharia Civly, LISBOA,
1550,

[5] Galiaire, M. Logic Datz Bases ws Deduoctive Data
Dases. In Proe of lopic Programming Workshop,
Alzreve/PORTUGAL, June 1983, pp.608-622.

(8] ICOT (Bd.): Outliez of Kesearch and Development
Plans for Fifth Generation Computer Systems. May
1682

|7} Kernel Language Design Growp of ICOT Reseuich

Conceptual Specifization of the Filth

Generation Fernel Lanpuage Version 1 (KLL}, [COT

‘Technical Memorandum {to appear).

Center:

[8] Kunifuji, S, and Yokota, Ho PROLOG end
Relational Daia Base for Fifth Generation Computer
Systemns. In Gallaire, H, Minker, J., and Nicolas, T,
M. [(Eds.} Logicel Bases fer Dala Bates,
ONERA-CERT, Toulouss, Dee, 1981

(9] Murakami, K., Kakuta, T, Miyazali, N Shibayama,
5. and Yokota, H. A Relauonal Data Base Machine:
First Step To Fnowledge Base Machine, In Proe of
10eh Anrnual Ietermazonal Srmposivem on Cocnputer
Architecture, Stockholm/EWEDEN, June 1583,
pp.423-42£,

10 Wagvi, S A, and Henschen, L. J. Syathesizing
Leest Fixed Point Queries inte Non-recursive Iterative
Proprams. In Froc. of 8th JJCAL Karlsruhe/West
Germany, Aug. 1983, pp.253-28

[11] Nishikawa, N., Yokots, M., Yamamaoto, A, Taki, K,
and Uchida, 5. The Personal Sequential Inference

fachine (PSI): Its Design and Aiachine
Architecture, In Proe. of Legie Progromming
Workshop, Algrave/PORTUGAL, June 1583, pp.53-73.

li2] Shibayama, 5., ¥akuta, T., Mivezeki, N, Yokota, H.,
and Murakami, ¥. A BRelational datzbase Machine
with Large Semiconductor Disk and Hardware
Relztional Algebra Processor. to appear in MNew

Gereration Computing, Ohmsha, Springer-Yerl 2, 1724,

113} Tanzka, Y., Hertuchi¥., and Tagaws 3. Cominning
Inference System and Data Base System by a Partial
Cvalustion Mechanism, In Proc. of First Knowledge

Ergineering Spmposium, Tokyo, March, 1983 (in

Japansse).

