ICOT Technical Report: TR-020

TR-020

Implementing an OR—Parallel Optimizing
Prolog System (POPS} in Concurrent Prolog
by
Hideki Hirakawa, Rikio Onai,
Koichi Furukawa

August, 1983

Mita okuza Blde. 2IF Wt 45h-3191 5

H :C] I 4-28 Mita 1-Chome Teles TCOT 112061
Amato-ku Tokvo [OE Tapan

Inétitute for New Generation Computer "i'echnn"l;g_ﬁ

Implementing an OR-Parallel Optimizing Prolog System
(POPS) in Concurrent Prolog

Hidekl Hirakawe, Rikio Onal, Kohichl Furukawa
Institute for New Generation Computer Technology

Abstract

This paper describes a computational model of an OR-Parallel Optimizing Prelog
System(POPS) based on a graph-reduction mechanism and multi-processing POPS has the
following features; 1) Programs are executed in OR-Parallel, 2) The same sub-computations
are shared, YLeft recursive rules can be handled without entering infinite loop At
present, POPS is implemented in Concurrent Prolog which supports AND-Parallel execution of
subgoals and process synchronization mechanism.

1. Introduction

Programs based on the Horn logic {logic programs) represent two types of logical
relations between predicates (AND-relations and OR-relations) and operational meanings
cuch as computation sequencing. A logic program in a declarative sense may express an
AND/OR tree. This implies a number of execution methods can be devised for logic
programming language. In Prolog, a program is executed serially from top to bottom and
from left to right. This corresponds to the top-down depthfirst search of an AND/OR tree
The other method is parallel execution of a logic programming language, which is basically
equivalent to the approach of searching an AND/OR tree in parallel There are two 1ypes
of parallel-execution: AND-paralielism and OR-parallelism. AND-parallelism is introduced
to describing concurrent processes s shown i, for example, Concurrent Prolog [Shapiro
83}, while OR-parallelism corresponds to parallel execution for nondeterminism, &
characteristic of the logic programming language

We have designed a calcultion model that executes AND-relations serially and
OR-relations in parallel, and implemented a system called OR-parallel Optimizing Prolog
system (POPS) according to the model In the POPS model, OR-parallelism is accomplished
by multiple processes and communications among these processes Also, the POPS model has
adopted the concept of graph reduction [Turner 79] characterized by the concept of
self-modification of & term and that of shared modification, graph reduction mechanism has
the simularity 1o the execution process of logic programming languages Modification
sharing means the sharing of the same computation by multiple processes; this mechanism
permits the POPS to bypass FProlog's inherent problem, re-execution of the same
computation In Prolog, executing 4 program that contains a derivation cycle enters an
infinite loop. On the other hand the computation sharing mechanism of the POTS prevents

Page 2

the same derivation from being repeated

At present, the POPS is implemented in Concurrent Prolog Concurrent Prolog uses
AND-parallelism to describe processes running concurrently, and performs interprocess
communications via variables shared by concurrent processes Concurrent Prolog can
simplify the description of a multiprocess and interprocess communications; it also
permits the processing system of the POPS to be created as a very compact program.

Section 2 of this paper discusses the graph reduction mechanism and computation models
of POPS Section 3 describes how the POPS is implemented in Concurrent Prolog Finally,
Section 4 discusses enhancements to the POPS and its implementation oo a multiprocessor,
and gives a useful application for the POPS, ie, syntax analysis in natural language

processing
2. Basic Computation Model

This section describes the graph reduction mechanism and the computation meodel in
POPS

1.1 Graph Reduction Mechanlsm

A Prolog program is executed by repeatedly generating resolvants from parent clauses,
in other words, in the execution process of a Prolog program, goals modify themselves by
applying reduction rules [Turner 79} This is a definition of reduction; we find
simularity between the execution process of a Prolog program and the reduction mechanism
There are several types of reductions. The graph reduction mechanism is defined ax “The
evaluation of an expression is shared by pointers Therefore, an expression is evaluated
only once and the result is reported to all processes which share the expression "
Applying the graph reduction mechanism to the execution process of a Prolog program
permits the evaluation of a term to be shared by pointers, thereby avoiding repetitive
computations of the term and detecting a derivation cycle As described in detail in a
later part of this paper, in POPS, a term is detected on the 'board and the evaluation of
the term is shared by multiple processes through communication channels of Concurrent
Prolog The reduction results of the term are reported through channels to all the
processes waiting for the results

2.2 Pure Prolog and Its Interpretation

The language targeted by the POPS is Pure Prolog generally consisting of a group of
definite clauses in the following format

{a) H ¢<—~ Gl, G2....,Gn (n> 1)
(W) H ¢~ true

Page 3

H and Gi (1¢= i €= n) are equivalent to Prologs literals and ‘true’ is = special
literal representing “true” Like Prolog, {h) may be described by omitting "¢~ true”
Pure Prolog does not include the execution contral opérator ‘cut’ and evaluable predicates
cuch as 'mot' POPS executes Pure Prolog serially for AND connections of subgoals and in
parallel for OR connections of subgoals For example, assume (a) and {b) above made up a
program. In this case, literals forming the right side of (a) cannot simultaneously be
computed, (ie, Gn+1 cannot be computed before Gn is computed), while {a) and (b) can be

evaluated simultanecusly.
2.3 System Components

As shown in Fig 1, the POPS is made up of four components — processes, channels, =2
board, and a Horn Clause Databass{ HDB),

Srmmm————— - mmmmmmmmm= + generator
| | channel | pProcess
| v v |
processl process? processd ... processn |
| | #mmmeneo
A i + | | |
|access dmmmmm = |======-- + | |
I ! I | v v
4-=smmmmmmmm + S Salaiieiie b + consumer consumer
|Horm Clause | | Board [process process
|Data Base | | |
== smmm———— + Fommrm—mm—emm—— +
Fig. 1 POPS Configuration Fig. ¢ Process/Channel

A process plays a key role in computations. Any number of processes can be generated
in a system. A process corresponds to a clause being computed and includes a clause, such
az He--G1.GL The computation environment 15 maintained by instantiating an actual value
to @ variable in a c¢lause There are two types of processes, the active and waiting
processes. The waiting process waits until it receives data from another process

The channel is a communication path between processes and s dynamically generated
during computation Data transferred through a channel is called a message. A message is
passed from a process named a "generator” 10 a process named "consumer.” The distinction
between a penerator and a consumer s relative, and a single process can simultaneously
play two roles One generator process can simultaneously send a message to multiple
consumer processes via 3 channel (See Figl). Similarly, one consumer process can be

connecied to multiple generators

Page 4

The board is a storage area accessed by processes, and stores all the subgoals
currently being computed as well as channels through which the computation results
{messages) for these subgoals are transmitted For example, suppose that, when the
subgeal a(X) s invoked, a channel, C, is generated for the subgoal In this case, a(}0)
and C are saved as a pair on the board The channel C is then used to pass solutions to
the subgoal a(X), for example, a(l), a(2),... The data pair consisting of a channel and 2
subgoal (term) is called a channel head pair, which is described in the following format

ChannelsHead

The Horn Database (HDB) is a set of Pure Prolog clauses and is accessed by processes.
A process can fetch a set of clauses which have the heads unifisble with a certain term.
We call this fetching operation “selection” The selection about term P is called

P-related selection
2.4 Execution Mechanism

In POPS, computations progress while multiple processes are exchanging messages. This
subsection provides a more-detailed description of the process, shows simple examples, and
presents the execution mechanism of the POPS To simplify the discussion, all predicates
are assumed to have no arguments. For arguments, see Subsection 2.8

A process is defined by five components Status, Head, Goals, Input-Channel, and
Output-Channel--and shown in the following format:

processiStatus, Head, Goals Input-Channel, Output-Channel)

‘Statue indicates the state of a process and is either ‘active’ or 'waiting' An
active process can carry on computation by itself, while a waiting process can perform no
processing before receiving a message. 'Head' is a predicate (term) and represents what
the process must eventually compute 'Goals' is either null, "true’ or a sequence of
predicates and shows the predicates to be computed to compute the Head For example, if
the HDB includes “ac-=b,c” there muay be a process as follows

process{Status, a, (b,c), Input-Channel, Output-Channel)

In addition, if the predicate b has been computed, there may be a process as follows
process{Status, a, (¢}, Input-Channel, Output-Channel)

‘Channel is used to transfer messages among processes as earlier described A process

appears as a consumer for the Input-Channel, while it functions as a generator for the
Output-Channel Next, we will define the operation of a process

Page 5

[A) Active process

The operation of an active process is either derivation or termination. In derivation
mode, head of the subgoal is expanded using inference rules in HDB; the active process
are maintained after the derivation is completed. By contrast, termination means that
inference reaches ‘tru¢’ or the application of an inference rule fails; in both cases,
the process is immediately deleted

Operation_in_derivation mode

Assume processlactive, H, G, L, OL If G is neither null nor "true’ and G is in the
form of either P or (P,...) where P is a predicate defined in the HDB, then the process
references or registers to the board for the channel head pair I+P (*1).

When referencing the board:
The process changes its status to 'waiting.’

When registering to the board:
The process performs 2 P-related selection in the HDB
to obtain a clause set, S, generates active processes
for all the components of 5, and connects each process
with itself through Channel I {each process functions
as a producer). It also changes its status to 'waiting.’

There are two types of termination: success or failure terminamnon Success
termination occurs when derivation reaches true, while failure termination occurs when
selection for the HDB fails The failure termination corresponds to Prolog's ‘fail’

Success termination

When G is either null or true, the process sends H via channel
O and deletes itself,

Failure termination

The process deletes itself.

(*1) Reference or Register : The board stores channel head pairs Cl+H1, C2-H1..., Cm+Hm
When a desired channel head pair, C'H, has already been saved on the board {ie, H and Hi
arc equivalent where 1¢si<=m), C is identified with CL This is reference. Otherwise, C+H
is added to the board (register) We define equivalent as follows;

Teren T1 and T2 are sguivalent if there exisis a substitution § such that T1 5

= T2 where S{X1/Y1L... Xo/Yn}, Yj (l<=j=n] is variable and k 15 not

equal to m implies Yk is not equal to Ym

Page 6

(B} Waiting process

Having received a message (term) M via channel I, a waiting process generates G, a
copy of its Goals G, in the format P or (P, Pl,...), and unifies the head element P
with M (Transfer of the computation results) Then, it establishes News, ' with its head
element removedd When G contains only F, However, Mew(contains true. Then, the
waiting process generates the following active process

process(active, H, New(s, r, o
Where ' is a new channel

The waiting process will be maintained in the origina! form.
The entire computation mechanism terminates, when all the
existing processes enter waiting mode. This termination
condition is called “deadlock termination.”
2.5 Computation Examples
This subsection presents a simple example to show the way the POFS is executed In
the following fipures the activc process p, waiting process q and channel c are denoted
by {...)p.[--.]q and =——c--3, respectively. (p.q and ¢ may be omitted) The Head H and
Gosls G are shown in the format H<--G. The status of the board is enclosed by)
Assume that the HDB is given as [ollows
HDB = {A<--B,C B<--D De--true C<--true}
To compute the predicate A, the following process is generated as the initial process
<==cl-- [A<=-A)pD Brda={}
"Ac--A" semantically equals"¢-—-A.* Head A shows the message the initial process should
return. A message output through c0 is the solution. Since pll is an active process and

has the Goals A, it performs selection to generate a new process, pl, and then changes the

ctatus from active to waiting At this time, p0 registers the channel head pair to the
board

<==c0== [Ac--A]p0 <-cl- [A<--B.C)pl Brd={cl+A}

Similarly, pl works to gencrate p2,
Brd={cl+A,c2+B}

<-c0- [A<--A7pD <-cl- [A<--RB,.C]pl <-ci- (B<--D)p2

Page 7

and pl works to generate pl.
Brd={cl1+A c?+B, c3+0}

<-- [A<--A] <-- [A<--B.C] <-- [B<--D]p2 <-c3- (D<--true)pd

p3 has “true’ as its Goals and is equal to an active process in termination mode, it
sends message D through channel ¢3 to p2, which in turn generates a new process, pd.
Message D will be maintained in a channel head pair on the board after the process pd has
been deleted

Brd={c1+A.c2+B,c3+D}

== [h:-—h} <= [l{"B.C}Fl ek [B<"D}p2
|c2
#- (B<--true)p4

Since pd is also & process in termination mode, it sends a message B via channel c2 to
pl, which in turn generates an active process, pi

Brd={c1+A,c2+B,c3+D}
<= [A<--A] <-+- [A<--B.C] <--- [Be<--D]p2
[el
+- [A<=-C)p5
Subsequent computations proceed in the stame manner.
Brd={ci+A, c2+4B,c3+D, c4+C}
<== [A<--A] <-+- [A<--B.C] <--- [B<--D]
lel
+- [A<--C] <-cd- (C<-=true)pb
Brd:{:l+ﬂltz+a ,ta"'nl C'.+C-}
<== [A<--Alp0 <-+- [A<--B,C] <--- [B<--D]
lcl
+= [A<==C]
!

+- [A<-—true)p?

p7 sends message A to pl), which in turn produces pd.

Fage B

Brd={cl+A,c2+B,c2+40 c4+C}

<-4- [A<--A] <===--- +- [A<--B,C] <--- [B<--D]
|c0 el
+- [R<--true)pd *= [A<--C]

p8 terminates and sends the message A via the channel ol This means that a solution
to A is obtained. The following figure shows the entire processing situation at this

polnt

Brd={cl+A, c2+0, c3+D, c4+C}

<-- [A<--A] <-+- [Ac==B,C] <--- [B<==D]

|
+= [Ac--C]

Since all the existing processes are in waiting mode, the deadlock termination
condition is satisfied to stop the computation In this example, there is always only one
active process throughout the computation, because no two predicates have the OR-parallel
relation If OR-parallelism is present among predicates, multiple active processes will
simultanecusly appear.

2.6 Derlvation Cycle

When there is a derivation path containing a cycle, a normal Prolog program enters an
infinite loop. By contrast, in the POPS, a predicate, once having been computed, is saved
on the board; when the same predicate reappears in a derivation process, board reference
is performed and ne new process is generated. Therefore, instead of entering an infinite
loop, the whole system detects deadlock, resulting in deadlock termination. For example,
consider the Horn Database, HDB,

{A<--B B<--A...}

containing a cycle A -> B> A ... In this case, the computation progresses as
follows

(1) <=== (h<--A) Brd={}

(2) «=== [A<--A] <-cl- (R<--BE)pl Brd={cl1+A}

(3) <=-- [Ae--A] <=-- [A<--B] <-c2- (B<--A)p2 Bra={cl+A,
c2+B}

Page 9

[(8) <--= [Ac--A] <-+- [A<=-B] <---- [B<--A] Brd={cl+A,
lel [c2+B)

In the course from (3) 1o (4), p2 references the board for A, since cl+A has already
been saved on the board; ¢l is used as the Input-channel of p2. (4) satisfies the
deadlack condition terminating the computation

When there are an infinite number of solutions, however, the deadlock condition is
naturally not satisfied and the computation continues endlessly. For example, if the HDB
in the above example includes "Bé--true,” an infinite number of derivation paths, or
solutions, are possible, and the system will not terminate. Also, when a goal contains a
variable, it is possible to write a program that changes the condition every time a pgoal
is invoked: as a result, no termination occurs. For example, "a(X)—-al[sX])" does not
terminate. Although the POPS and other systems cannot detect such infinite loop, this
kind of program will be extremely special

2.7 Computation Sharing

The board not only can assure that a program centaining clauses that form a cycle will
terminate computation, but also prevents the same computation from being repeated
Consider the following programe

HDB={...A<--B.C D<-=B,E...}

A and D have the same subgoal, B. Assume that, in the course of calculating a
predicate, both A and D are computed In the normal top-down-serial strategy, the
computation of B is carried out twice; for A and D. By contrast, the POPS computes B
only once The computation process in the POFS is schematically shown below. When two
active processes, pl and p2, have A and D as the head element of their Goals, pl =nd p2
generate pd and pd, respectively, as follows

[W<--A,U]Jpl <-c1- (AR<--B.C)p3 Brd={..,c1+A c2+D,. ..}
[Xe--D,¥]p? <-c2- (D<--B,E)péd
Both p3 and p4 try to save a channel head pair to the Board When pd first succeeds
in saving, the entire condition becomes as follows
Brda={..,cl1+A,e240,..,c3+0}

[We--A,U]pl <-cl- [A<--B,C]lp3 <-cd- (B<--...}p5

[X<--D,¥]p? <-c?- (D<--B.E)p4

Page 10

Then, instead of saving 1o the board, p4 references the board; as & result pd is
connected to p5 via cl
Brd={...cl+A c2+D, .. c3+08)
[We--A,U)pl <--- [A<--B.CJp3 <-+- (B=<--...)p3
|3
[X<--D.¥]p2 <=== [De--B.E]pd <=+

Then, messape B output from p5 is directed to both p3 and pd, causing each process 1o
generate a new corresponding process Even if message B is sent from p3 before pd and ps
are connect via ¢}, p4 will get the message as soon as the connection is set up, because
the message remains in ¢3. Thus, the computation of B is carried out by p5 alone, and the
result is shared by pd and pd

2.8 Manlpalation of Variables

To execute 2 Prolog program containing variables on an OR-parallel basis, it is
necessary to ensure the independency of variables in unifying a subgoal with OR relation
clauses. For example, suppose that subgoal WX, 10} is to be computed in the following
program:

(1) a(X)<-- b(X,10). c(X)
(2] bB{Y.U)<-- d{Y.U)
(2) bB(Z.V)<-- e{Z.V)

BX, 10) is derived using (2) and (3), and unified with their head (ie, X=Y and 10=U,
as well as X=Z and 10=V), Unification of variables through variable binding must be
ensured in the similar manner to identify of variables with the same name within the same
clause. In addition variables Y and Z in OR relanon clauses must be entircly independent
with each other, POPS satisfies these requirements with copy (¥2) and unification
functions Thus when a subgoal is derived with OR relation clauses, POPS generates a copy
of the carrent subgoal to perform derivation, having received a message showing the
computation result, having POPS produces a copy of the Head and Goals that include the
subgoal, and unifies the subgoal in the copy with the message For the program example
above, the computation proceeds as follows

{a)] <--- {a{X)<=-b(X.10),c(X))p1
(b} <--- [a{X)<--b{X.10),¢(X)] <-+- (b{Y.10)<--d(¥.10))p2

le1
= (b(Z,10)<--a(Z,10))p3

Page 11

If p2 carrics out a computation faster than pl and sends the message 1,100 to pl
through ¢l, then pl gemerates a copy of the Head and Goals, "a(X'}—BX,10,0X)," and
unifies the head element of the Goals B{X,10), with message B{1,10) to generate a new

process, pd.

(c) <—+- [a(X)<--b(X.10).c(X)] <=+- [b(¥,10)<--d(Y,10)]p2
| 3
4= (a{1)<--c{1})p4 +- (b(Z,10)<--e(Z.10))p3

Thus, POPS can ensure the identity of variables in the same clause, variable binding
during derivation, and the independency between OR relation clauses, by executing the copy
and unification function when necessary.

3. POPS in Concurrent Prolog
This section describes the POPS implemented in Concurrent Prolog [shapire 831
3.1 Concuerrent Prolog

Concurrent Prolog adopts AND-parallelism to describe concurrent processes and
OR-paralielism to describe nondeterministic actions of processes. While Prolog implements
OR-parallelism with backtracking, in Concurrent Frolog, once a clause is selected, the
choice of other clauses is ignored. Concurrent Prolog uses variables shared by processes
running in concurrent for interprocess communications (For further details of Concurrent
Prolog, refer to [Takeuchi B3], This subsection gives s simple program example to
provide the necessary information for later discussion. The program outputs, if person

‘X' is a man, his daughter, and, if "X is a woman, her son

(2} opposite_sex_child{X):- man{X) | daughter{X, Y], output{X, Y?).
(b} opposite_sex_child{X):- woman(X) | sonlX,¥),output{X, Y7L

The symbol [and " appearing in the program are inherent to Concurrent Prolog The

comma "," in Concurrent Prolog has the different meaning from that in Prolog The symbol

" is called a goard bar and separates a guard sequence from a goal sequence. The guard
bar has the meaning similar to Prolog's 'cut’ and cuts another alternative clause. ""
denotes parallel-AND relationship and is a logical equivalent for the ordinary AND. In an

operational sense, however, it differs from the ordinary AND; "P,Q" means that P and Q

(£2) A copy of a structure (for example, § for structure 8§) is generated by replacing
all wvariables in § with different variables If & variable is eguivalent to another
variable in the original term, their coresponding variables in the copy will maintain the

relatnon

Page 12

are processed in parallel Concurrent Prolog uses a symbol "&" to express perial-AND
relation. =™ means “a variable attached with 7 should not be instantiated to a
non-variahle term ™ In the case of (a), "7 indicates that Y is instantiated by the
‘daughter process and the ‘output’ process uses Y for reading purpose only. "7" is
called ‘read-only annotation,’ and a *-attached vanable 15 referred to as a ‘read-only
variable.' The read-only annotation function permits shared-varinble-based ¢ommunications
hetween two concurrent processes (interprocess communications). Also, in Concurrent
Prolog, a process with a read-only variable waits until another process instantiates a

value to the variable {process synchronization).
3.2 Describing a POPS Process in Concurrent Prolog

With the POPS implemented in Concurrent Prolog, a process is expressed by the
following term:

process(Status, OutputChannels InputChannel« Head¢—Goals), Board)

Generation of a process is performed by parallel ANDs as with the case “process :-
processl,process),” and deletion of a process is expressed by termination of the process,
“process :- true.” A channel is implemented with variables shared by concurrent processes
of Concurrent Prolog, und process synchronization is achieved with read-only annctation
The board that is accessed by all processes is implemented with the variable 'Board
shared by all the processes The ‘Board” can be configured in any manner as long as it
provides the function of referencing or registering channel head pairs Qur systems has
configured it using & binary tree [Warren 80) Although not shown in this paper, our
system comstructs the HDB using a meta representation, “ax{Horn clawse),” in the internal
database of Concurrent Prolog

The descriptions of POPS processes in Concurrent Prolog are shown below.

(cl) process{active, QutChe_+Cls,Brd) :-
calli{derivationp(Cls, RemTop, InCh, Brd, Alr_or_not_yet),
new{RemTop, NextGoal) }) |
process wait, CutCh+InCh? +Cls,Brd) ,
process_fork{Alr_or_not_yet, InChe NextGoal, Brd).

(¢2) procesdactive, OutChs_+Cls Brd) -
terminateplCls Mess) |
sendmesst Mess, CutChl,

{c3) processactive, _+_+Cls, Brd) :-
calll {writel'process kilied '),
portray{Cls),

Page 13

oll)

{cd) process{wait,OutCh+] Terminated_GoalfC1}+Cls, Brd) :-
newcls{ Cls, Terminated _Goul, New() |
process(wait, OutCh+C1? +Cls Brd) ,
process active, DutChs _+«NewC, Brd).

(cl) to (c3) define the behavior of active processes, while (cd) defines that of a
waiting process.

(cl) performs derivation The predicate "derivationp’ checks whether the head elemem
of the Goals is defined in the HDB; if =0, it then references or registers to the board
for the element In refercncing the board, "already’ is instantiated to 'Alr_or_not_yet,'
while, in saving to the board, 'not_vet is instantiated to it This information is
necessary for the predicate 'process_fork' When the head element is not found in HDB, the
predicate ‘derivationp fails ‘new’ is the predicate to perform ‘copy.’ When the guard
portion of (cl) succeeds two predicates in the goal portion, ‘process’ und
‘process_fork,’ are executed in parallel ‘process’ is the original process in waiting
mode, and “?" is attached to the variable ‘Inch' ‘process_fork’ performs selection for a
copy of the head element of the Goals of the original process, and generates a new active
process for each of newlyfetched clauses When "Alr_or_not_yet' has been instantiated to
‘already,’ however, ‘process_fork' generates no new processes, because such processes are
already present

{c2) corresponds to a process in termination mode The predicate 'terminatep’ checks
that 'Cl¢ is in the format "X<{-— true" The predicate ‘sendmess' sends a message to the
OutCh This is done by adding a message to the tail of D-List, OutCh Then, the process
deletes itself,

(c3) shows the operation of active processes unable to be described by (cl) and (c2),
ie, the operation in which further derivation become impossible. (c3) outputs the message
‘process killed,' then deletes itselfl

{c4) defines the operation of a waiting process. In (cd), the Input-Chnnel is a
read-only variable; when a value is instantiated to the wvariable (ie, when a message is
received), the process starts operating The predicate 'newels generates copies, H and
G, from the Head and Goals of a waiting process, respectively, and unifies the head
clement of G with the message Then, using G, G with the head element removed, it
generates the Head and Goals of a process to be generated In the goal portion of the
program, 'newcls' forks a copy of the original process and 3 new active process

Page 14

An execution example of the program is shown in the Appendix As described above,
POPS can be written in Concurrent Prolog very easily, because of the high descriptive
ability of Concurrent Prolog. Also this means OR-parallelism can be implemented by

AND-parallelism

4. Discussion

The POPS provides a mechanism to process OR-parallelism of Prolog in parallel When a
solution to a program has multiple meanings, POPS tries to find the entire set of the
solution. For example, in the case of "man{X),” X means all humans In this sense
variahles in POPS are universal By contrast, existential variables are also possible
For example, when knowledge "if a person has a child, that person has got married,” is
expressed by the clause mmarried{ X)<--has_child(X),” the clause outputs a single solution
‘true, irrespective of the number of children that person has, as long as he or she has
at least one child To handle knowledge like this, we can introduce two different
predicates - universal and existential predicates The universal predicate outputs the
entire set of solutions, while the existential predicate outputs only a single solution in
the solution set. In a program, we separate these two predicates by adding an attribute
tag to a predicate or introducing a meta definition predicate.

In the computation mechanism of POPS, the two predicates can be dictinguished by
introducing the concept of ‘channel close’ and sending the message of an existential
predicate through a channel while simultaneously ¢lesing the channel to disable subsequent
transmission of messages In Concurrent Prolog, this can be done by instantiating '[} to
the variable in the D-list (Channell.

POPSs advantages are particularly suitable to computations in multivocal fields; for
example, syntactic analysis in natural language processing In the syntactic analysis of
a natural language, Context Free Grammar rules corresponding to Horn clavses and are
embedded in Prolog in very simple, highly descriptive form as shown in DCG [Pereira 80L
for example. Characteristics of natural language processing, however, require the
following problems must be solved:

(1) Repetition of computation

Syntactic analysis of a natural language often produces multiple solutions and dozens
of different syntactic-analysis results are obtained for an ordinary sentence. The
multivocal characteristic such as this is handled by the backtracking function of Prolog
In general, backtracking based strategy lacks efficiency because it repeats the same
computation. If there are two rules with the same portion, for example, "vp—>vtnp" and
"vp—rvinp pp” backtracking computes the overlapped portion twice Based on the
backtracking strategy, the parsing time for a sentence increases in exponential order
according to its length N.

{2} Derivation cycle

Page 15

Natural languages have a recursive structure by nature Reflecting this
characteristic, their syntax rules tend to contain a cycle and/or left recursive rules
For example, the rule for conjunctions may be expressed by “np--»pp, and, np"
Interpreting rules like this by Prolog's top-down and depth-first strategy causes the
processing to enter an infinite loop; the computation never stops

POPS offers @ strategy to solve these problems We can execute a DCG program with
POPS then, unlike back-track-based system, the same computation is never repeated. As
described in Section 2, the function to check a derivation cycle enables the POPS 1o
handle a grammar containing a cycle and/or left recursive rules. POPS-based execution
process of a DCG program corresponds to the (pseudo) parallel parsing strategy, and is
equivalent to the execution process of Active Chart Parser [Kay B0} Active Chart Parser
can be also implemented in Concurrent Prolog [Hirakawa 83]

In a system where POPS is implemented with a multi-processor, trying to simultaneously
reference all terms on the board or saving a number of terms to the board causes a
bottleneck of access contention Meanwhile, the referencing-or saving-to-the-board
approach, or the graph reduction mechanism, has a merit of avoiding the repetition of the
same computation. Referencing or saving to the board become cffective, if the following
relationship holds

TI*N>TlL+T2*N
Roughly speaking
Tl » T2

where T1 is the time required to process a shared term, T2 is the time required to
reference or save to the board (to be exact, referencing time may differ from saving
time), and M iz the number of processes sharing the term. When a term has been referenced
by only one process, processing the term requires an additionazl time of TZ Therefore,
when referencing or saving to the board, it is better to choose terms which are about 10
be shared and can satisfy the processing relation T1 > T2 than 1o select al' the terms
executing a Prolog program on a partial graph-reduction basis should be considered Also,
a key to natural language processing is investigation of terms which are likely to be

referenced and can satisfy T1 >TL
5. Conclusion

This paper has described the POPS, a Pure Prolog-based processing system adopting
message passing and muluple processes With a mechanism to implement OR-parallelism of
Prolog, the POPS provides advantages of avoiding repetition of the same computation and
handling a program that contains a derivation c¢ycle POPS has been implemented in

Page 16

Concurrent Prolog that has AND-parallelism, interprocess communications, Process
eynchronization, and other capabilities.

Acknowledpgement

We would like to thank Mr. Takeuchi for his valuable suggestions on Concurrent Prolog
and the POPS Mr. Sakai for his discussions on argument handling, and other researchers
at the Second Research Laboratory who have joined discussions We would also like to
thank Dr. Chikayama for his useful advice about preparation of this paper.

Reference

[Hirakawa 83] Hirakawa,H: "Chart Parsing in Concurrent Prolog", ICOT Technical Report
TR-008, {1983)

[Kay 80] Kay,M: "Algorithm Schemata and Data Structures in Syntactic Processing”, Xerox
Technical Report, 1580

[Pereira 80)] Pereira,F. and Warren, D.H: "Definite Clause Grammar for Language Analysis
- Survey of the Formalism and a Comparison with Augmented Transition Networks”,
Artificial Intelligence, 13, (1980)

[Shapirc 83] Shapiro,E,Y: "A Subset of Concurrent Prolog and Its Imterpreter”, [COT
Technical Report TR-003, (1983)

[Takeuchi #3] TakeuchiA: “Let's Talk Cencurrent Prolog”, ICOT Technical Memo
TM-0008,(1983)

[Turner 79] D.A.Turner "A New Implementation Technique for Applicative Languages’,
software-practice and experiance, Na.l, vol 9 (1975)

[Warren 80] Warren, D.H.: "Logic Programming and Compiler Writing", DAI Research Paper
Na 128

APPENDIX A

% OR-Parallel Optimizing Prolog System in Concurrent Prolog

.- op(1200,xfx,¢-=").

process active, OutCh+_+Cls Brd) -
calli{derivationp{ Cls, RemTop, InCh, Brd, Alr_or_not_yet),
newl{ RemTop, NextGoal) 1} |
process{wait,QutCh+1nCh? +Cls, Brd) |
process_fork(Alr_or_not_yet,InCh+NextGoal, Brd),

processtactive, OutChe _+Cls, Brd) :-
terminatep{Cls, Mess) |
sendmess Mess, OutCh).

processactive, _+_+Cls,Brd) =-
calll (write{' process killed),
portray(Cls),
al} b

processl wait, OutChs[Terminated _GoaliC 1+ Cls, Brd) :-
newelsCls, Terminated_Goal New(C) |
process wait, OutCh+C1? +Cls, Brd) |
process active, OutChe_+ New(, Brd).

process fork{already,) =~ true | true
process_fork{not_yet, OutCh+Goal, Bed) :-
selectl Goal, ClsList) |
forksl ClsList, OrutCh, Brd),

forks[]_,_,) = true | true
forks([ClauseRest], OutCh, Brd) =- true |
processlactive, QutChe _+Clause, Brd) | forks{Rest, OutCh, Brd).

sendmess Mess, Channel) - eall{var{Channel), Channel=[Messg]]} | true
sendmess Mess, Channel) - Channel=[_|C] | sendmess{Mess C).

write_msg{[X[Rest] - calli{write{'Message = ‘), portray{X,nl})
| write_msglEest?).

newclsCls, Terminated, New) -
newd Cls+ Termminated, GG,
{Cr=l Hde--Gr Kest),!;
G=(Hd<--t), Rest=true),
New={Hd¢-Rest).

terminatep{Cls, Mess) :-
Cle={ Mess<-- truel.

derivationp{Clg, NextGoal, InCh, Brd, Alr_or_not_wet] -
reducep{Cls NextGoal),
new{ Nextgoal, NxG), numbervars NxG,{,),
ref_regiTnCh«NxG, Brd, Alr_or_not_yeth,

reducep{ Cls, CurHead) -
(Cls=(_¢==-{CurHe=ad, 1,";
Cle=(_<{--CurHead)),
ol yolaxl{CurHead<—_1), L

ref _reglChGoal, B_Tree,not_yet) - var{B_Tree),,
Brd=bt{ChGoal, _,).
ref_reg(Ch:Goal, bt{Ch+Goal, _,),already) == !,
ref _reglCh+Goal brl_+Goall,Before,),58) - !,
Goal &< Goall,
ref_reg{Ch-Goal Before, S).
ref_reglCh-Goal, bl _-Goall, _, After),5) -
Goal @>» Goall,
ref_reg{Ch-Goal, After, 5.

select{ Head, ClsList) -
bagofl{{ Head<—X), Head {ax{(Head<-- X11), ClsList).

x TOP LEVEL PREDICATES

psolvel XD - true |
process{active, QutChsInCh«{X¢==XJ, Brd) ,
write_msg{OutCh?).

dol 3] - statistics{runtime, T1),
solvel psolve{ X, Res, N, nl nl,
statistics{runtime,[_, T2],
write{'Execution Time = *),write{ T2), writel' ms'], nl
writel' Computation '), portray(Res),
nl, write{'Step = '), portraviN).

APPENDIX B

Some simple programs and the execution examples
(1) Programs

apl[L X, 0.
ap[UX} Y, [UZD = aplX.Y,2).

is_alX, Z) ~ is_al X, Y),is_alY,Z).
is_aldoctor, human).
is_alresearcher, human).
is_alhuman, animarte).
is_alanimate, living_thing).

{2) Execution of the programs

| 7- dolapi]a,blcl K. % 'ap is append
Message = api[a bl[cl{zbeD

Execution Time = 1060 ms
Computation deadlock
Step = 5

K = _52

| ?- dolap(K,L,(a,b,c])

Message = api[l{a,b,c}lab.cD
Message = ap[al[b,cl[ab,c]
Message = apl{a,bl{cl[abe]
Message = apl[a,b,c}[}[a,b,cD

Execution Time = 2538 ms
Computation deadlock
Step = 6

K= _3],

L=_52

yes

| 7= dolis_alX, Y. % 'is_a' is trunsitive relation,
Message = is_alanimate living_thing) X% so Prolog will loop indefinitely.
Message = is_a{human, animate)

Mesgage = iz_alresearcher, human)

Message = is_aldoctor,human)

Message =
Message =
Message =
Message =
Message =
Message =
Message =

is_af{doctor, animate)
is_aldoctor, living_thing)
is_alresearcher, animate)
is_alhuman living_thing)
is_afdoctor, living_thing}
is_a{researcher, living_thing)
is_alresearcher, living_thing)

Execution Time = 5863 ms
Computation deadlock

Step = 6
X = _3,
Y = _52

