ICOT Technical Report: TR-018 WL es3

A Transformation Svstem
for Logic Programs
Which Preserves Eguivalence
by
Hrsao Tamak

(Tharaki Taiversity.Yharaki Japan)

Taisuke Satao

(Blectroterhnical Laboratoery, Tharaki.Japan)

Wi Kokusai le, U1 0o d o=] 5

A Palilas, . HEE B
IDD I 1-2n Mt 1 -Chme Foles JCVT A3 204

T o .
Mimato-ky Dobve Db g

Institute for New Generation Cﬂﬁiﬁuter Te:::hnoiog;

A Transformation System for Logic Programs

which Preserves Equivalence

Hisao TAMAKI

{(Ibaraki University, Ibaraki, Japan)

Taisuke SATO

(Electrotechnical Laboratory, Ibaraki, Japan)

ABSTRACT

A program transformation system for logic programs based on the fold/unfold

technique is defined and proved to preserve the equivalence of programs.

* This is a completely rewritten version of the earlier draft dated Nov. 1982,

1. Introduction

One claim in favor of legic programming languages like Prolog[Cl] is
That they support a declarative programming style; the programmer only
specifies the relation between input and output, leaving the processor to
deal with how output is computed from input. But this advantage is not
sufficiently exploited in current programming practice in Prolog. Anyone
who writes a non-trivial program in Proleg is forced to consider control
aspects in detail, if he wishes to achieve reasonable efficiency.

To make the declarative programming style a real advantage of logic
programming, we need a programming environment where lucid, specification-
like programs are automatically or semi-automatically transformed into less
lucid, efficiency-oriented programs. Fortunately, the semantics of {pure)
Prolog is simple and clear, making programs easy to manipulate mechanically.

This paper aims to give a system of basic rules for program transformation
and prove that they preserve the equivalence of programs., Our system is
similar to that of Burstall and Darlington[Bu] which is for programs written
in a functional language. Their system consists of a small set of basic
transformation rules including the well-known folding and unfolding rules.
They present many examples to show the practical power of their system.

We are not concerned here to repeat the same set of examples to prove that

our system is equally practical. (For a practical comparison see [Sal.)
Rather, our emphasis is on the total correctness of transformation, which

is not guaranteed in their system. Though all the examples they give are
totally correct, their formulation of the system does not allow a general
correctiness proof. To make a general proof possible, we need a more elaborate
formulation and a formal semantics of the language. What we present here is
such a formulation, in a language with an especially simple formal semantics,
namely pure Prolog. We suggest later that a similar reformulation is possible

in their own language.

2. Pture Prolog

The logic programming language we choose is pure Prolog, which is a
Prolog without 'cut', 'not', 'assert' or any other extra-logical features.
It is essentially the language in Kowalski's proposal [Kow] of logic
programming.

Te desceribe the syntax of pure Prolog, we first assume three sets of
symhols: the set of predicate symbols, the set of fumetion symbols, and the
set of variables. As meta-symbols to represent the symbols, we use letters
F and ¢ for predicate symbols, f and g for function symbols and x, y and z for
variables, all possibly with subscripts. Each predicate or function symbol
has a fixed arity.

A ferm is either a variable or an expression of the form it L)

77w

where f is an m-ary function symbol and tj,..,tﬂ are terms. A term consisting
of a nullary function symbol is called a eonstant.

An gtomic formula is an expression of the form Pftj...,tﬂJ where F is
an #-ary predicate symbol and ﬁj,..,tn are terms. An atomic formuela is also
called a goal. A goal set is a finite multi-set of goals, i.e., we allow multiple
occurrences of a syntactically identical goal in a goal set.

A definite claguse is a pair consisting of a goal, called a head, and a
goal set, called a body, In this paper, we refer to a definite clause simply
as a elause, A clause with an empty body is called a wnit clause. A program
is a set of clauses,

We use letters &, & and ¥ for goals, T and & for goal sets, é, B and
for clauses and 5§ for programs. A clause whose head is G and body is T =
fﬂj,--,ﬂﬁi is expressed as & + Gj*"’Gn or O+ T.

A substitution is a finite set of variable-term pairs such that no two
pairs share a common variable part. The result of nppi}‘ing a substitution

to a term T, denoted by t8&, is ¢ in which for every pair [x{. ti} in g each

occurrence of T is replaced by :‘;I.r A term tois an tmetomes of a term ¢! if

there is some substitution & such that ¢ = £'8. Composition of two substitu-

tions 8 and o, denoted by 8o, is a substitution such that (t8)o = t(Bg) for every
term . A substitution 8 is called a unifier of two terms t, and £, if

tIE =t 8. It is a most general wnifier (mgu) if any unifier @' of tI and tg
can be represented as Oc by some substitution o. Substitution, unifiers etc.
for goals and clauses are defined similarly.

Let (' be a clause ¢+ T, H a goal in 7, and C' a clause ¥ <« A such that
and K have an mgu 8. Resolution[Ro] in our context is an operation which

deduces a new clause T8 +« (T - {#})8 U 40 called a resolvent from C and c'.

We say the goal # is resclved upor in the resolution.

To define the standard semantics of pure Prolog, we regard a program
as a ground atomic theory, where a clause is considered as an inference

rule to deduce a ground (variable-free) goal from a ground poal set.

Definition 2.1 Derivation
A finite set T of finite trees whose nodes are labeled with ground goals
is called a derivation in § if for every nonterminal node, labeled with
7, and its son nodes, labeled with GI""Gn’ there is a clause { in 5

such that the clause G « G?""Gn iz an instance C0 of .

We say that the clause C is wsed in the derivation at the node labeled with &,

with substitution 8. We define some notations:

I'fT} : the multi-set of labels of all roots of 7
A(T) : the multi-set of labels of all terminal nades of T
EfT) : the set of all subtrees obtained from T by removing all roots.

If A is a subset of 8¢p) such that every goal in A(T) - 4 is an instance

of a head of some unit clause in &, then we say 7 is a derivation of (T}

Sfrom A in S,

Definition 2,2 Conecatenation of derivalions
Let Ti' T, be derivations in £ such that TKTI) and F(TEJ are identical
&
as sets (not necessarily as multi-sets). Then the concatengtion of TJ

and TE is a derivation of TrTTJ constructed by replacing every terminal

node of Ti by .a tree in Tg whose root is labeled with the same goal,

Definition 2,3 Proof
A derivation T in 5 is called a proof of I'(T) inS if it is a derivation
from an empty goal set. In other words, if every goal in A(T) is an
instance of a head of some unit clause in 5. If T consists of just one

tree, we call it a single proof.

If a ground goal set T has a proof in § then we say it is provable in 5.

Now we define the semantics of pure Prolog.

Definition 2.4 Meaning of a program
The meaning M(5) of a program 5 is the set of ground goals defined by

M(5) = {G{G is a ground goal such that {#) is provable in S},

¥(5) so defined coincedes with the minimun Herbrand mode]l of S[Em].

Two programs 5, and S, are said to be equivalent if M(S,) = M(5,).

Note that if a goal set is provable then it has a proof T which satisfics

the following condition.
{*) If a goal & labels more than one node of T, then the corresponding
sub-procfs of ¢ are all identical.

So in the sequel, we consider only proofs which satisfy (*). This restriction

is necessary to validate the arguments about the goal merging transformation

rule introduced later,

3. Example

The follewing is & program for Fibonmacci numbers.

1. F(O,1) +
cZ. F(1,1] =
C3. F{x+2,n) + F{x+1,n1),F(x,n2},Plus(nl,n2,n)

Here we abbreviate successor function aplications s(0), s(x), s{x(x)) as

1, »+1, x+2, We assume the program includes a subprogram Sprﬁw for primitive
predicates such as Plus for natural number addition, = for equality and % for
inequality. This program requires an exponential number of additions when
executed on ordinary top-down interpreters. We transform it into a linear

order program. (Cf. the example in [Bul)

First we define a new predicate G by the following clause,

4, G(x,nl,n) + F(x+1,nl),F(x,n2),Plus{ni,n2,n)

Then unfold C4 at the first goal F{x+1,nl). That is, replace C4 by the
set of all possible resolvents resulting from resolving upon the poal.
C5. G{0,1,n} = F{(O,n2},Plus(l,nZ,n)
Cé. G(x+1l,nl,n) + F(x+1,n3),F(x,n4),Plus(n3,n4,nl),

F{x+1,n2),Plus(nl,n2,n)

Unfeld C5 at the first goal and then at the second goal.

7. 6G(0,1,2) «

Case split C6 by n2=n3 and n24n3.
Ca. G(x+l,nl,n) « F{x+1,n2) ,F(x,nd4),Plus(n,nd,nl),
F(x+1,n2),Plus(nl,n2,n)
co, Glx+1,nl,n} + nZin3,F(x+1,n3),f{x,n4),Plus(n3,n4, nl),
F(x+1,n2),Plus{nl,n2,n)

-5a

Delete C9 knowing that it always fails.
Merge identical poals in C8.

C10. G(x+l,nl,n) + Flx+1,n2),F(x,nd4),Plus(n2,nd4,nl1),Plus(nl,n2,n)

Fold C10 by C4. That is, we recognize the first three goals of C10 as an
instance of the body of €4, and replace it with the corresponding instance of
its head.

C11., G(x+1l,nl,n) + G(x,n2,n1),Plus(nl,n2,n)

Fold C3 by C4.

Cl12. Fi{x+2,n) + G{x,nl,n)

The resulting program is
1. F(0,1} +
c2. F(1,1) +
C12. F{x+2,n) « G{x,nl,n’
c7. GL0,1,2) +

C11. G(x+l,nl,n) + G{x,n2,n1),Plus(nl,n2,n)

together with S?rim'

The theorem proved in the next section ensures the equivalence of

the final program with the original one plus C4.

4. Definition and Correctness Proof of the System

Before describing each transformation tule, we sketch the transformation
process as a whole,

We start from a basic program 5@ and a set U of clauses which define new
predicates in terms of predicates in Sg' We let 5, = Sh D and transform
51 into 52’ SE into SS’ and so on, using the transformation rules described
below. The correctness proof of our system consists in showing that every
Si i =1,2,..) is equivalent to 5]' The discrimination of definitions from
other clauses plays a central role in our formulation and proof.

In practice, we wish to expand the set I during the process to introduce
auxiliary predicates, as we did in the example. This causes no problems bhecause

we can treat every definition introduced during the process as if it were in

D from the first.

Definition ¢.1 Definition set
Let 5 be a program and F an n-ary predicate symbol not in 5. We

say a clause 5+ ' is a definition of F over 5 if & is of the form

P(zl,..,zﬁJ
where Tyaees®, are distinct variahles, and every predicate symbol of
T occurs in the head of some clause in 5. Those variables in T other
than Tyaeea¥, are called the internagl variables of the definition,

()

A finite set D of clauses is a definition set over § if each clause

in D is a definition defining a distinct predicate over 5.

Definition 4.8 [-ezpamsion
Let & = Prt?""tnj be a goal whose predicate symbol P is defined
in a definition set D over 3 by a definition Ffm?,..,xﬂJ + T,
A D-prpaneion of ¢ is an instance I's of T where & is a substitution

which maps each z. to ti and internal variables of the defintion to

arbitrary terms. It is a most gemeral D-expansion if 6 maps internal
variables to distinct new variables. We refer to those variables as

internal variables of the most gemeral D-expansion,

Note that any D-expansion can be obtained by substituting some terms for
internal variables in a most general D-expansion.

For example, let D be {C4} with C4 as in the example in the previous
section. The goal set {F(2,2),F(1,1},Plus(2,1,n)} is a J-expansion of the
goal G(1,2,n). The goal set {F(2,2),¥(1,n2),Plus(2,n2,n)} is the most general
expansion of the same goal where n2 is the internal variable.

Each of the following transformations carries a program § into a new
program 5'. We assume that there is a fixed set of predicate symbols called
primitive predieate symbols and those parts of programs which implement primitive

predicatres are not subjected to transformation.

Transformation 1. Unfolding
Let £ be an arbitrary clause in § with an arbitrary goal & in its body.
Ler CI',..,ﬂk' be all the clauseés in:S whose heads aré-unifiable with (.
Then
g'= (5 - {CH) U {CJ,..,Ek]
where each €; 1s a resolvent of € with Gi'.
Note. Variables in Ei' should he renamed so that they are not shared
by C.

Transformation 2. Folding
Let C be an arbitrary clause in 5 of the form G « T, and ¥ be a goal
with a predicate symbol defined in D such that I' includes a most peneral
O-expansion & of H. We require the following two conditions to he

satisfied.

{1) Internal variables of 4 do not occur in G or T - 4,
(2} ¢ is not in O, or

' - & is not empty.
Then

S'= (5 - {CH U {c'}

where &' is a clause with a head ¢ and a hody T U {H} - 4.

Transformation 3. Deletion
S'= 8« {7)

where © is a clause in § such that no proof in S uses (.

Transformation 4. Goal merging
S'= (5« {CH) U {c"}
where © is a clause in § whose body contains more than one capy of a
syntactically identical goal and C' is the result of merging those

copies into one,

Transformation 5. Case splitting
We say two predizate symbols P and & are complementary in 5 if
(1} F and § are of the same arity n, and
{2) for any pround terms Eraents Pftlj..,th is provable in &
if and omly if Qrfl,..,tﬂi is not provable in 5.
Let © be an arbitrary clause of the form G + T in S, ¢, and C, be

2

clauses

G+TU {Pfti,..,th}

Geruigit,..,tJ)
where P and ¢ are complementary primitive predicate symbols in & and
51,,,,t” arbitrary terms. Then

-
St =1(5 - {cH) u 1y, CE].

“he following lemma corresponds to the partial correctness of Burstall

and Darlington's system informally stated in [Bu].

Lernmg £.1
Let Sﬂ he a program, D a definition set over SG’ and § a program
equivalent to S, U D, If 5' is a program obtained by applving one

0
of the five transformation rules to 5, then M(3') < M(3).

Proof

Let I'' be a proof in 5§'. We must show that there is a proof 7 in 5
such that TWT) = T(T"). The cases of deletion, goal merging and case splitting
are trivial. For the case of unfolding, it suffices to note that any single-
step derivation which uses a resclvent can be converted into & two-step derivation
using resclved clauses.

In the case of folding, we arpgue by induction on the structure of T7.
The only non-trivial case is when T’ is a single proof and the clause used at
the root of T'" is the clause ¢" introduced by the folding transformation,
Let O, T, 4, G and # be as in the definition of the folding rule. Remember O =
G+ T is the folded clause, A € T the goal set folded into the goal #. let & he
a most general substitution such that T(T') = {#8} and T(L(T'}) =
(T - #Jo U {Ha). Note that & does not affect the internal variables of the
D-expansion & of A, Let T,' be the proof of {#8]} included in I(7"). By the

induction hypothesis there is a proof T, of {FAa)} in 5. Because 5 is equivalent
P P q

1
to 5, U 0, there is a proof T;"" of {H8} in S‘:r U D, The clause used at the
roat of TI" must be the definition involved in the folding. 5So there is a
substitution g which instantiates the internal variables of the D-expansion 48 of

Ha such that E(TI"J is a proof of p8s. Again by equivalence of 5 and Sﬁ u g,

there is a proof TE of Afo in 5.

Now applying the induction hypethesis to I(T') - I',', we get a proof T, of

(T - 4)8 in 5. Concatenating a single step derivation using ¢ with the proof

-10-

Ty U T, of Tho, we get a proof T in § of {Goo), which is actually {Ge},

See Fig. 1. [end of proof)

To prove the other direction M(5') D M(5), we need a stronger condition for
& than werely being equivalent to 5, U D. To present the idea clearly, we

first ignore the last transformation rule, namely, case splitting.

Definition 4.3 D-simulation
Let D be a definition set over a program 5, Tb a proof in Sﬂ, G a goal
and T a proof of {C} in some program S. T is called a D-simulation of
Tg if the following two conditions hold.
(1) Trng = {f} or

PfTﬁJ is a D-expansion of G.

(2) Let L(T)

T} Uu.. u Tn where each T{ is a distinct single proof. Then

there is a derivation Tﬂ’ and proofs I}',..,f;' in Sﬁ such that

(a) Tg is a concatenation of Ta’ with Tj’ u..u Tﬂ', and

(k) each IE is a D-simulation of Ti' {i=1,..,nlk.

When n = 0, (a) and (b) uncoenditionally hold for Tﬂ‘ = Tﬂ, which makes

the base case of the inductive definition.

Fig. 2 shows an example of D-simulation.

Definition 4.4 D-ertencion

et 5, & and [he as in definition 4.3. 5 is called a D-exrtension of

.L-F’
SG if the following two conditions hold.
(1) For any single proof Tﬂ in Sd‘ there is a proof T of P(TﬂJ in 8

which is a D-simulation of Tﬂ'

{2) For any proof T, in Sﬂ such that FfTHJ is a D-expansion of some poal

G, there is a proof T of {G} in & which is a D-simulation of TG'

-11-

o el
If 5 is a D-extension of Sb then M{S) = Hrﬁg u o).
Proof

Let Tﬂ be a proof in Sﬂ o of {G}, If the predicate of ¢ is defined

in D, then T(I(TJ)) must be a D-expansion of G. Morecover I(T) is a proof

in SG. S0 there is a D-simulation T of T(T} in 5, which is a proof of {G}.

The other casc is trivial by definition. (end of proof)

Now our problem reduces to the following lemma.

Lemma 4. 3"
Let Sﬂ be a program, I' a definition set over Sﬂ, and £ a D-extension of
SG' If 5'is a program obtained from &, applyving one of the first four

transformation rules, 57 is also a D-extension of Sﬂ.
Proof
If the rule applied is deletion or goal merging then the proef is ohvious,
So we deal with only cases of unfolding and folding.
Imfolding.
Let ©, CI""’EEF’ CI,..JCi and & be as in the definition of the unfolding
Tule, We inductively define a mapping u from the set of procfs in & to the
set of proofs in &5'.
{case 1) T is an empty set.
ulT) is also an empty set.
(caze 2] T consists of just one tree.
Let {H} be T'(7) and T be T/L(T)).
(case 2,1) H + T is not en instance of ¢, the unfolded clause.
u{T}) is a proof determined by -

Ifwf?)) {HY, and

LiulT)) = w(z(T}),

-12-

(case 2,.2) H + T is an instance of &,

There must be some G' in T which is an instance of the goal ¢,
the unfolded goal., Let T' be a single proof in I(7) whose
root is labeled with &F,

u(T) is a proof determined by

T{uiT})

{H} , and

Dfufl)) = ulL(T) - T') U ulziT')).

{case 3) T consists of more than one tree.
Ler T he Tj u..u Th where each T, is a sinpgle proof.

uf{t) = uff}) Uu., 0ulr .
n

To show that ui(T) is realy a proof in 57, it suffices to note that in
case 2.2, the clause with head ¥ and bedy (T(Z(7J)) - {&'}) U T(E(T'})) 15 =an
instance of some Ci which is introduced by the unfolding transformation.

It is obvious that if a proof T is a D-simulation of a proof Tys then

so is ufT). This means that if £ is a D-extension of Sﬂ then so is 5°,

Folding,
We define a well-founded ordering < on the set of all pairs of a proof

in Sb and a proof in 5. We let fTﬂ,TJ < fTa',T*J if and only if

size of Tg < size of Tﬂ" ar

size of Tﬂ = gize of TEI and size of T <« size of T7,

We show by inductien based on this ordering that for every proof Tﬂ

in SG and a F-simulation T of Tﬂ in §, there is a p-simulation 7' of Tﬂ

in &' such that T/P') = (T} . Let £{T) be TI v.. U Tﬁ where each Ti is a

single proof. By the definition of U-simulation there is a derivation Tﬂ' and

proofs T ’,,.,E;’ in Sg such that

(a) Tﬂ is a concatenation of To’ with T&’ u..u T2

(b} each Tﬁ is a P-simulation of T£’+

', and

Let Eﬂ be the clause in 5 used at the voot of T with substitution o.

-13-

{case 1) cﬂ is (7, the folded clause.

(case 2}

There is a subset T, of r{T) such that r(Tﬁ) is an instance 40 of A,
the folded goal set. We assume T; =T, u..u T, for some m without
loss of generality. Because none of the predicates of A are defined
in D, rfTI' U..u Th'ﬁ is also a#, which is a p-expansion of the
goal Ho. Furthermore condition (2) of the folding rule ensures that
the size of TI’ u..u qm' is strictly less than that of TG' By
assumption there is a D-simulation T'' of TJ' u..u Fh' in § such
that TIT'") = {Hs}. So by the inductien hypothesis, there is a
corresponding D-simulation T''' in §'. Also by the inductien hypothesis
there is a D-simulation Ti" of each Ti' [f=m+1,..,n) such that
T(Ti"1= F(Tiﬁ. Concatenating a single-step derivation which uses
', the clause introduced by folding, with the proof

THrru TM+IJI Uu..U I%*‘, we obtain a p-simulation 7' of ﬁjin S*.
See Fip., 3.

EG is not O,

We apply the induction hypothesis to each pair EIE'JEEJ to get a D-
simulation Ti" of Ti' corresponding to T.. This is possible
because the size of IE* is less than or equal to the size of Tg and

the size of E% is strictly less than that of T. {end of proof)

The example in fig. 4 illustrates why we had to take the size of D-simulation

into account in the induction.

To adapt the above proof to include the case splitting rule, we must extend

the concept of D-simulation so that any proof obtained by putting a proof for a

primitive predicate to a D-simulation is also a D-simulation. It is clear

that for any D-simulation which uses a clause ¢ at the Toot, there is a

corresponding D-simulaiton which uses either of the case-split clauses of ¢,

-14-

The above proofs for folding and unfolding rules are still walid for the extended
concept of [-simulation and D-extention. Thus, we have the complete version

of the lemma, hence our main theorem.

Loamma 4.3
Let SG be a program, I’ a definition set over Sy, and § a D-extension of
Sa (in the extended sense). If 5' is a program obtained from 5 applying
one of the five transformation rules, 5' i also a D-extension of SQ.
Theorem

Let Sa be a program, I’ a definition set over 5., and & g, U,

0’ 17 Y

Let Si {i=2,..,n) be the result of applying one of the transformation
rules to Si-l' Then each S£ is equivalent to Sj,
Froof

We prove by induction on 1 that S, 1s a D-extension of 5, and
M(s.) < M(5,), which together imply. M(5.) = H(Sj) hy lemma 4,2, The base

case i=1 is trivial and the induction step is nothing but lemmas 4,1 and 4.3,

(end of proof)

-15-

5. Relation to Other Work

We should make clear what made possible the total correctness result
absent in Burstall and Darlington's original system. First, their transformation
rules are rules of introduction while ours are rules of replacement. Remember
that a program consists of a set of equations in their system and of clauses in
ours, Their rules deduce from the old set new equations which can be added to
the set, but tell nothing about which equations can be discarded., As long as
no equation is discarded, and the rules are sound as inference rules, it is
trivial that the new set is equivalent to the original set. But then the result
is 2 redundant program from which we have to extract the mon-redundant part
without weakening the program. So we must introduce rules of removal or refine
the rules of intreduction inte rules of replacement.

Clearly, some of their rules such as instantiation or wnfolding cannot be
used as rules of replacement by themselves. But their examples show that
instantiation and unfolding arc always applied together to perform exhaustive
expansion, which correspends to our unfolding rule,

If we are to formalize transformation rules as rules of replacement, then
the discrimination of definitions from other eclauses (ot equations) become
necessary because otherwise definitions are lest beforc they can be used
in folding transformations,

The ahove observations suggest that reformulation similar to that presented
here is possible in their own language, thus ensuring total correctness.

The case of proving correctness depends on the semantics we choose. For call-by-
value semantics, our result can immediately he applied. To cope with morc

general semantics, some restrictions may be required on programs or on transforma-
tion rules.

Scherlis[Scl][5c2] develops a similar transformation systéﬁ in a functioenal
language which allows definitions of axpression procedures, and proves its total

correctness. lUsing expression procedures has a similar effect to distinguishing

-16=

definition (for folding) from other clauses in a program.

Kott[Ko] has also studied the correctness of unfold/fold transformation
and states that a general correctness proof is impossible. This does not contra-
dict our result because his formulation based on recursive program scheme is
different from ours,

Hogger's paper on derivation of leogic programs[Ha] refers to program
ransformation on the source (Prolog] level, which uses the unfold/fold technique,
His correctness argument relies on the fact that if a program 5’ is deduced from
S then what &' computes is correct with respect to §. Accordingly his method in

general ensures only partial correctness,

5. Ceonclusion

We have defined a system of transformation rules for logic programs and
proved that it preserves the equivalence of programs. This provides a firm
foundation for automatic or semi-automatic source-level program optimization.

Our notion of total correctness does not refer directly to termination,
This attitude is completely sound as long as we use a complete Prolog implementa-
tion. Further investigation is required to satisfy ourselves regarding the
usual imcomplete implementations. (An alternative is to search for efficient
complete implementations,)

Tt remains to extend the system to cope with reasonable extensions of

pure Prolog such as negation as fialure and infinite processes.

Aeknowledgement
This work is based on the activities of the working groups of the Fifth

Generation Computer Project,

=17=

Taf iranceas
[Bu] R.M. Burstall, J. Darlington, A Transformation System for Developing
Recursive Programs, Journal of the ACM, Jan. 1977
[C1] W.F. Clocksin, C.S, Mcllish, Programming in Prolog, Springer-Verlag, 1981
|Em] M.H. van Emden, R.A. Kowalski, The Semantics of Predicate Logic as a
Programming Language, Journal of the ACM, fecr. 1976
[Hol C.J. Hogger, Derivation of Logic Programs, Journal of the ACM, Apr. 1981
[Ke] L. Kott, Unfold/Fold Program Transformations, TINRIA R.R. 155, Aug. 1982
[Kow] R.A, Kowalski, Predicatc Logic as a Programming Language, Information
Processing 74, North-Holland, Amsterdam, 1974
[Ro] J.A. Robinson, A Machine Oriented Logic based on the Resolution Principle,
Journal of the ACM, Jan. 1965
[Sa] T. Sato, H. Tamaki, Program Transformation in Prolog (in Japanese)
Logic Programming Conference 83, Tokyo, Mar. 1983
[Scl] W.L. Scherlis, Program Improvement by Internal Specialization,
8th POPL symposium, Williamsbug, Virginia, Jan. 1981
[Sc2] W.L. Scherlis, Expression Procedures and Program Derivation,

STAN-C5-80-818, Stanford, 1980

-18-

o o 1 o6

in &5

ABo (T=A)B

-3

T

[\ T

induction hypothesis

induction hypothesis .
equivalence of

& and S UD
Ha Ha [

equivalence of

. Sand 5 UD
s

in g in &, 0D

Pig. 1

T TG

G(4,5,8) F(4,5) F{3,3) Plus(5,2

NG A7
G{3,3,5) Plus(&,3,8)

ij if F(3,3) F(2,2) Plus(3,2,5)

¥

F(4,5) F(3,3) Plus(s5,3,8)

e

F(3,3} F(2,2) Plus(3,2,5)

¥

F(3,3) F(2,2) Plus(3,2,5)

VANRRVANRRVAN

Plus{5,3,8)

/N

Fig. 2 T is a D-simulation of T, provided T," and T,' are

D=gimulations of T, and T, respectively.

(uoridunsse)

5 up
stsayioddy uworianpur i b
steayioddy uorianpur
2IB[NUTLS ~7
V]
£
i 3
g & n £ =
v
s
SIVTOBTS -(F SIBETMULS =
1l _n_mu wr g,J -
- n_h at n
ol
uorsupdrs-g 811 a9

L8 g5

O AP(x) = Qif(x))}

T P(a)

— Q(f(a)) i

Q(£(a)) ﬁ

