Average Size of Turners Translation

to Combinator Programs

by

Terun Hikita

(Tokyo Metropolitan Universitv)

Abstract.

L. A. Turner proposed in 1979 an interesting method of implementaticon for
functional programs by first translating them to combinator expressions and
then reducing the graphs they represent. J. K. Kennaway has recently shown
that the worst case of the size of this translation is of order n2 where n
ix the size of an original program. In this paper we study the average
size of the translation and show that the order of the average is bounded
by nlfz. Results on lower bounds of the average are alsoc shown in the casc
of programs with one wvariable. Finally numerical stalistics for the
average zize are exhibited,_shawlng that the size expansion is of

reasonable range.

k. Introduction

Turncr [6] showed in 1979 that use of combinators can be a neat and
efficient method of implementation for functional programs. In his
implementation of the applicative language SASL fFirst a user's Program is
translated, by syntax-desugaring and abstracting variables, into an
expressicon composed of constants, predefined functions and sevoral special
kinds of combinaters. Then the graph which the translated expression
represents is transformed (reduced) to a result value. Among these specizl
combinators some are classical in combinatory logic [2], and the others
devised by Turner, the latter playing an essential role in preventing the
exponential growth of the size of the transiated expression [7]. One of
the advantages of this method of implementation is a coherent and efficient
treatment of higher order functions. Several implementations both by
softwarc and hardware have since then appeared along this line [5].

5t1ll, 1in general, the sizes of the translated expressions expand, and
the analysis of this expansien has fundamental importance siﬁce the sige
dircctly relates with the time and space of the translation. Kennaway [3]
has recently shown that in the worst care the size of the translated
expression is of order n2 where n is the size of an original program.
Burton [1] has shown that a certain pre-transformaticn of original programs
can reduce the size expansion to a linear one, provided the programs de not
contain global variahles.

In thisz paper we study the average behavior of the size of Turner's

translation. In particular we will sheow that the order of average size of

: . . 2 .) .
translated expressions is bounded by |:1jalr - We will also give some partial
resulls on the lower bounds of the average size in the case of pPrograms
with one variable. Finally we will exhibit the numerical statistics of the

average size obtained by computer computation.

2. Turner's translation scheme

We will not explain here the basic facts of l-calculus and combinatory
logic, but the reader is referred to an excellent expesition in [6]. wWe
will, however, show a small example of translation of a funetion pick which

selects and returns the n—-th element of a given seguence s.

Example L.

In Example 1, first the syntax-sugaring of program (1) is removed and
a tree-like program (2} is obtained. Here, and throughout this paper,
assoclaticon of application is to the left, which is usual in combinatory
logic; thus zbc means {ablc. Next the variable s is eliminated by
"abstraction" in the righthand-side expression of (2} using the translation
scheme explained later, obtaining program (3). Finally the varisble n is
abstracted 1n (3) and program (4) is obtained, which is the object program
for graph transformation. In this example the size of the original program
(£} is 12, counting the number of constant values, variables and constant
functions, while that of the translated program (4} is 18, counting
constants and combinators.

In general, an original expression consists of constants and variablec
composed by the operation of application. The translaticn proceeds by
abstracting each variable successively from the expressiocn, and the f£inal
result consists of constants and combinators. although Turner [61, [7]

gives the way of translation in detzail for functicnal programs to

combinator expressicons, the description there does not scem to be clear
enough to be stated without ambiguity. Kennaway [3] thus gives the
translation schemé 1in a more decisive way. We here state the scheme in the

following form as Scheme T.

schems T.

In this scheme the variable of the current abstraction is dencted by
#, and abstractions for subexpressicns E, F and G are dencted by E*, F* and

G* respectively. The definitions of the combinators used are as follows:

K = Axy.x, I = Ax.x,
E Z Guve.xiyz), C = AXYEZ.MNEV, 5 = Axyz.xzIly¥z),
B' = dwxyz.wxiyz), C' = JAwxyz.wixzly, 5' I Jlwxyz.wixz){yz).

Bote that all the cases in the scheme are exhaustive and mutually
exclusive. The abstraction by a wvariable proceeds by recursively applving
the scheme toc an criginal expression.

Remark . The scheme T in [3] is slightly different from cour present
scheme T:; in [3], (1) is replaced by “El containsg variables"™ and (2) iz
replaced by "E consists of constants and combimators®. The size of the

translation by the scheme T of [3] is slightly smaller than that by our

scheme T, and the difference is marginal.
In the scheme T the extenszionality rule (n-rule)
AXLMx = M (% does not occur in M)
is incorporated in several places. This rule is entirely removed in our

gsecond scheme U, which will be useful in the analysis of the size as an

intermediate step [3]. Again all the cases in the scheme U} are hoth

exnanstive and mutually exclusive.

gchems U.

d. Results by Kennaway

In this secticn we briefly review the results by Eennaway [3], which
will be utilized in the following sections. Threughout the paper we often
regard an expression as a binary tree where each interior node stands for
application znd each leat node is labelled by a constant, variable or
combinator name. Let =(E, #%) dencote the minimal spanning subtree in the
tree representing an expression E such that the subtree shares its root
with the tree and it contains all occurrences of & variable x at the leaf
nodes. We denote by |[E| the size of the expression and by |s(E, x)| the

number of interior nodes of the subtree s(E,). Kennaway has shown the

following key lemma for the translation U. ’

Lemma 3.1. Let ¥ be the set of variables occurring in an expressisn E.
Then the size w(E} of the translated expression of B by abstracting the
variables in ¥V from E using the scheme U is

w(® = || + [{sw x].
xeW

Using this lemms Kennaway has shown the following results. Let E K
n,

dencte the set of expressions of size n with k distinct variables.

"

- - N . . =
Theorem 3.2. For an expreszien E in En e we have
'

SE] 5 (k+l)n - (k =k+2) /2.

Let t(E) be the size of the translated expressicn of an exprossion E

by using the scheme T af Turner.

Theorem 3.3. For the translation scheme T we have

P o — g
c{E) = Zn 1 if B & E!‘L,l
R 2]
B(E) £ 3n - 3 ifEe
n,2
E(E) £ (k1) - (k2-k+6) /2 ifE e En N
i

o
re
me
-
m

n.k be the set of expressions of size n.
¥
Corollary 3.4. We have
- 2
t(E} = (n” + 3n = &)/2

"
for EE E_ , n 2 3.
n

Remark. The equality in Corollary 3.4 is achieved by the expression

% fxzi.,.{xn

. %) eea))

-1
Lemma 3.1 tells us that in the case of the scheme U the ordeyr of
abstracticns of the distinct variables in an expression does not affect the

final size of the translated expression. However, in the case of the

scheme T the order among variables crueizlly atfects the size of the

resulting expression, as will be seen in a later example.

4. an upper bound of average size

The average of the sizes of translated expressions is taken owver all
distinct original expressicns of fixed n and k, where n 1s the size of the
expressions and k is the number of distinct wvariables in the expressions.
We assume that each of these distinct expressions ocour in egual
probability. For example, when n = 2 and ¥ = 1 we consider three
eXpressions ax, ®Xa and xx, while when n = 2 and k = 2 there are two: Xy
and yx. When n = 3 and k = 2 there are 24 distinct original expressions,
which are shewn in Example 2 together with their translations by the
schemes U and T: there are only two cases when the translations by the twe

schemes coincide, which are indicated by asterisks. The average sizes

under U and T in this case are 6.50 and 3.79 respectively.

Example 2.

For fixed n and k, 1 £ k £ n, there are Cn distinct rooted binary

-1

. 2n=-2
oridered trees with n leaves where Cﬁ = |

-1 L n_l]fn is the (n-1)-th Catalan

numier. And there are

no fo-r n=r_ =...-r,
v =1 () ()
1 A

assignments of k distinct variables in the n leaves of each tree. Thus
there are in total c"-l * A(n, k) distinct original expressions of size n

with k distinet variables.

Let u(n, k) and E{n. k) dencte the average sizes of the translated

. . . L
expressions of all distinct original expressions in En K under the schemes
r

U oand T, respeoctively. Pirst we need a definition. The external path

length of a tree is defined to be the sum, taken over all leaf nodes, of
the lengths of the paths from the root to each leaf node. The following

lemma iz known (see e.g. (4], Sectiom 2.3.4.5).

Lemma 4.1. The average of external path lengths over all binary trees

with n leaf nodes is asymptotically neam.

Proposition 4.2. We have E{n, nl v nYan.
Proof ; When k¥ = n original expressions consist entirely of variables and

each wvariable occurs just once. By Lemma 3.1 the szize of the translated
expression by the scheme U in this case is egual to the external path
length of the tree which an original expression represents. Thus the

proposition follows from Lemma 4.1,

Theorem 4.3. The order of the average size of the translation U is

pounded by n3f2.
Proof: This follows immediately from Froposition 4.2 and the obvious fact
that
uln, klj 2 uin, kz}
whenaver & = k

1 2’

- 11 =

Theorem 4.4. The crder of the average size of the translation T is

o
bounded by nlrL

Proef: This follows immediately from Theorem 4.3 and the cbvious fact

that E[n, k} is always less than El{n_ k).

- 12 -

3. Lower bounds of average size

In this section scme partial results on the lower bounds of average
slzes will be giwven; those in the case of original expressions with only

one wariakle.

Proposition 5.1. we have ﬁ{n. 1T = _%_ n Lifn z 2.

- I rzn-E'] , , . ,

Proof: There are in total (2 -1} - lJIn distinct original expressions
n

in E The following argument is independent of the shape of a Eree

n,1l’

which represents an expression. Let r be the number of occcurrences of the
unigue wvariable in the expression, thms 1 £ *r 2 n. When 1 2 r 2 n - 1,
from Lemma 3.1 we can easily see that the size of the translated expression
is at least n + r. When r = n the size is always 2n — 1. Thus, averaging
the translated sizes over all 2 -1 expressions which are represented by

S50me Tree, we have

- - 1 - lu
4fn, 1) 2 —— [(avl) [2} + (n+2) [g} b+ {211-1][“1:‘1)1 + {2n=1)}
27-1 °
1 -1
= n+— (n-2""" - 1)
2°-1
3
S
= —2 .
Lemmz . 2. We hawve
1 - -
5 {uin, 1) = n} £ t(n, 1) - n.
Froof: Fix a tree with n leaf nodesz. Then, by changing the assignment of

ocourrences of the (unique) wvariable at the leaf nodes, the tree can
represent 2"-1 distinet expressions with one variahle. There are n-1
interior nodes in the tree. We divide these interior nodes inte the
following four classes according to whether each of its two scn nodes is a
leaf node {constant/variable} or an interier node (application), and we
compare in cach class the ilncreases of the size at the node under the
translation schemes U and T. In the following a and b dencte a constant or
a wvariabple, E and F an application, and x the {(unigue) wvariable.
class 1. ab. (Both sons are constant/variable)

This class is further divided into four subcases according to whether
each of a and b is constant or wvariable. The increases of the sizes under
U and T, and the probability p that each subcase occurs in the class, are

summarized as follows.

x¥a, x¥b x#a,x=b x=a,x#b ¥=a,¥=h
u 8] +1 +1 +1
T 0 =1 +1 +1
_2 T =" - -
P (2" 7201 2" 22" 2" 21y 22, (5"
class 2. Eb. (Only right son 1s constant/variable)

The situation of subcases is summarized as follows.

xER, x#b ®EE , x=b xeE , x#¥b ®eE , x=h
H| o +1 +1 +1
T 0 -1 +1 +1
po< 2" Py < 2"y s 2"y s 2™ ey

class 3. aF. (Only left son is constant/variable)

The increase of size at the node is 0 when = # a and ® F F, and +1
atherwise. The same under U and T.
class 4. EF. (Both scns are applications)

The situation is similar fo class 3.

Wow, summing up the increases of sizes over interior nodes for the
aczhemes U and T and averaging over 271 cxpressions which are represented
by the fixed tree, we cobtain the lemma.

Froposition 5.3. We have t(n, 1) 2 n 1f n 2 2.

o

Proct: This follows immediately from Proposition 5.1 and Lemma 5.2.

The lower bounds of Propositions 5.1 and 5.3 are nol wvery tight, as

will be seen in the numerical statistics given in the next section.

& Numerical statistics

In this section we exhibit the results of numerical statistics
cbtained by computer computation. Table 1 shows the average zize of the
translated expressions under the scheme U in the range 1 2 n £ &, and

Table 2 is the corresponding one under the scheme T.

Table 1.

Table 2.

Figures 1 and 2 are drawn from Tables 1 and 2, respectively.

Figure 1.

Figure 2.

These tables and figures indicate the following facts.
1) Whnen k is fixed, the average size is almost a linear function of n,
both under the schemes U and T.
2} The coefficients of these linear functions, which specify the size
expansiaon of the translation, are of reasonable size under the scheme T:

the coefficients are v 1.7 when k = 1 and ~ 2.2 when k = 2.

Whor, n is fixed, the average size is "less than" a linear function
al Compar ing the average sizes under the schemes U and T, we can see that

the extensionality rule plays an essential role in reducing the translation

zize, at least when n is small.

T. Concluding remarks

In this paper an initial study has been performed on the average size
of the translation of functional programs to Turner combinators from both
theoretical and empirical viewpoints. Some remarks drawn from our results
are in order:

i) While the order of the translation size is n2 in the worst case, it is
at most :-.J"j‘2 in average. Of course the definition of average is subiject to
discussion, but this result is of some walue in indicating the overall
behavicr of the translation size.

ii) Wwhen the number k ol distinct variables appearing in a program 13
small, which seems common in real situaticns, the average size is almost a
linear function of n and its coefficient is of reasonable size: v 1.7 when
k=1 and v 2.2 when k = 2.

These conclusions assure us that the method of implementation by
combinators can be effective, at least concerning time and space of the

branslation phase.

£1]

[2]

[2]

(4]

(6]

{71

References

F. W. Burten : A linear space translation of functional Prodrams to
Turner combinators, Inform. Process. Lett., 14 (1982), 201-204.

H. B. Curry, R. Feys and W. Craig : Introduection to Combinatory
Logie, Wel. 1, Morth-Helland, Amsterdam, 1956,

J. E. Kennaway : The complexity of a translation of A-caleulus to
combinators, School of Computing Studies and Accountancy, University
of East Anglia, Norwich, 1982.

O. E. Knuth : The aArt of Computer Programming, Vol. 1, Fundamental
Algorithms, second ed., Addison-wesliey, Reading, Mass., 1973,

5. L. Peyton Jones : An investigation of the relative efficiencies of
combinators and lambda expressions, Conf. Rec. of the 1982 ACH Symp .
on LISP and Functional Programming, pp. 150-158.

D. A. Turner : A nev implementaticn technique for applicative
languages, Softw. Pract. Exper., $ (1979), 31-49.

. A. Turner : Ancther algorithm for bracket abstraction, J. Symbolic

Logic, 44 (1973}, 267-270.

Example 1. Translation through repeated abstractions.

(1) def pick n 5 = if n = 1 then hd s else pick (n - 1} (tl =)

(2} def pick n s = cond {eg n 1) (hd s) (pick (minus n 1) {(tl s))

{3 def pick n = 5 (B {cond {(eg n 1)) hd) (B {(pick {minus n 1)) tl)
{4) def pick = 5' 5 [C' B (B cond {(C eg 1)) hd)

{C' B (B pick (C minus 1)} tl)

Example

Lliyal)
wlay)
®xlyy)
vixal
alxy)
¥i{xy)
¥ (ax)
a{yx)
viyx)
z{xy)
x(yx)
¥ ixx)
Xy a
KE.}F
xYY
Yra
axy
¥RY
yax
Ay
¥y
MY
Xy

K

-

u

B'"CL{CIa)l
E'CI(Ball
B'CI(81I}
C'BI(CIa)
BE'Ba(B'CII)
S'BILIB'CII)
C'BI{Bal)
BE'Ba(C'BII)
S'BI(C'BII)
B'SI{B'CIT)
B'SI(C'BII}
C'RI(STY)
C'C(B'CITI)a
B'C[CIall
S'C{B'CII)I
C'C{C'EIL)a
B'C(Bal)I
5'C{C'BIINI
C'B(CIall
C'Bi{Bal) I
C'B{SII)I
B'C(STII)1
C'S(B'CIT)I
C'S{C'RIINI

Translations by the schemes U and T (n =

T

B'CI(Cla)
B'Cla
B'CI(S5II)
CB(Cla}
B'Ba (CI)
SB(CI1)
CBa

Ba

SEI
E'STICI)
=1
CR{S1T)
c'ci{cIja
C(CIa)
s'C(CI)I
CCa

Ca

SCI

Cla

a

511
C{sII)
CrE(CiyI
C51

3 and k

b

Translaticn scheme T.

a constant, combinator, variazble # ¥

variable = x

E E is an application., x ¢ E

EF E is not an

E. contalns

application, or E

= E E

172

constants or variables

(2

» g E, %= =F
*x £€E, xeF, x#F
X*x EE, x {F
X EE, XxeF
(EBF)G E consists of combinators
x=F, x¢g G
*=F, % &G
XEF, ®X=20G
x f Fy ®me G, ®x#G
x e F, ##F, x§G
x e F, ®#F, % €&

(1)

and

BEEF™

CE*F

SE*F*

CEG

SEG*

EF

B'EFG*

C'EF*G

S'EFWG™

1+

Ly

Transiation scheme [J.

E] canstant, combinatoer, wvariabhle # x
variable = x
E E 1= an applicaticn, % ¢ E

EF E iz not an application, or E = E.E_ and
£

1
El contains constants or variables
X EE, XxEF
*x £ B, x EgF

X E E; X £ F

(EFY G E consists of combinators

[

¥ EF, ®c

B
m
b
-
"
™
4]

Ka

BET*

CE*F

SE*F™

CUEF®:

S'EF*Ge

1 2 3 4 5 B
1.00 3.00 4.86 6.71 B.57 10.44
&.00 &.50 8.96 11.42 13.91
B.00 10.96 13.90 16.87
12.80 16.15 19.53
18.24 21.98
24 .30
Table 1. Average translation size by the scheme U

for programs of size n with k variables.

e

Fad
L)
=
uh

Teble 2.

2.33 4.14 5.83 150
1.30 1.79 6.17 8.38
3.00 6.17 .96

3.9% 2.39

9.70

Average translation size by the scheme T

for programs of size n with k variables.

13.

14,

5l

20

1=

10

Figure 1.

Average translation size by the scheme U

for programs cf size n with k variables.

O

k

e

-

Frgure Z. Awverage translation size by the schems T
for programs of sige n with k variables.
size
[.
i
15 -
k
k
.rp
;;P k
; k
k
10 7
i
j
|
i
[
5
1 2 3 4 &

(¥)

