'\COT Technical Report: TR-006

—————

TR-006

Interprocess Communication
in Concurrent Prolog
by
Akikazu Takeuchi, Koichi 'urukawa

May, 1982

alitg Mokusar Kldg. 21F (04 456-3141 3

IGD 1 =28 Mita 1-Chome Telex ICOT 4264
Mingto-ku Tokyo 10 Japan

Institute for New. Generation Computer Technology

Interprocess Communication
in Concurrent Prolog

Akikazu Takeuchi Kouichi Furukawa
Research-Center
Institute for New Generation Computer Technology
' Mita-Kokusai Building, Z1F
4-28, Mita l<home, Minato-ku, Taokvo 1C8
Japan

Abstract

Concurrent— Prolog is a logic-based concurrent
programming .. language which ~ was designed and
implemented on DEC-I0 Proleg by E. Shapiro. In
this paper,.we show that the parallel computation in
Concurreat Prolog is expressed in terms of message
passings among distnbuted activitiess and that the
language can describe parailel phenomena .in the same
way as Actor-formalism does. Thes we examine the
expressive power of communication mechanism based on
shared logical variables and show that the language
can express both unbounded buffer and bounded buifer
strearn communication oanly by read-only annotation
and shared logical wvariables. Finally the new
feature of Concurrent Prolog 1¢ presented, which
will be very -useful in describing the dynamic
formation and reformation of communication network.

1. Introducticn

Concurrent Prolog was designed and implemented.on the. DEC:10 Prolog-by E.
Shapiro (1] for concurrent programming. AS the Relational Language [2],°
Concurrent. Prolog adopts Or-parallelism as a basis for non-deterministic’ processing,
and _And-parallelism for description for parallel processes. - Shared variables are
used. with some control information “variable annowution’,.as communication
channels among concurrent processes. -

In the Relational Language, thers are two kinds of the variable annotauon, input
and-output, which are used for input suspeasion and cutput suspension respectively.
On the contrary, in Concurrent Prolog, there is only one annotation, read-only
annotation, which is a geperalized.idea of input annotation .and by which we can
also express the output suspension when an output buffer is full. This will be
explained in the section 4.

In the-cection 2, we review the Concurrent Prolog. In the section 3, the
compuration model of the language is presented and in the section 4 we examine
the basic communication mechanism based on shared logical variables and derive
the technique for implementing the bounded buffer communicaticn in the language.
In the section 5, we introduce the concept of the incomplete message as a new
programming paradigm and explain briefly. “In the section 6, we present a new
fearure of Concurrent Prolog which is very useful In describing the formation-and-
reformation of the communication. nerwork. -

2. Review of the Concurrent Prolog
2.1.Syntax of Concurrent Prolog

In Conecurrent Prolog, a program is represented as a list of guarded clauses. The
form .of a guarded clause is

A = GL....Gnl.BlL, . Bm._.. == (),

A guarded clause must have a guard bar 7. The left hand side of guard ‘bar-is
called the guard sequence and the right hand side is called the goal sequence. The
guard bar can be omitted when the guard sequeace is empty, that is 2=0. G's and
B's are both lists of literals:connected by logical AND.

There are two kinds of logical AND's, which are parallel-AND and serial-AND. ™

serial-AND &
parallel-AND 7

Théir logical meaning are -the same; but-the-way to interpret and execute:is
different. As it is clear from their name, goals connected by serial-AND must: be::
executed. in sequential order.(left-to-right), and goals connected by parallel-AND ..
must be executed in paratlel. As for the operator. precedence...

A

i lower than “&", that is,

f&g , p&a is equivalzar to (f&e) . (p&q).

Current implementaticn of Concurrent Prolog caly provides sequential-or mede.

Therefore, alternarive clauses are tried in the text order.

On the notation, we adopt DEC-I0 Prolog-like convention, for example, a word
beginming with a capital letter denotes a varable.

In Concurreat Prolog, variables can be accompanied with seme special control
information. “read-only” annoration, which can control the unification. Read-only
apnotation is denoted by “?" and can be attached to variables in the following way,

X1 where X is a variable,

The meaning of read-only annotation is that a variable annotated by "?" must not be
unified with a non-variable term. The anpnotation can be attached to each
oceurence of a variable, and will vanish when the variable will be instantiated.to 2
non-variable term. Generally read-only annotation can be attached to the variables
shared by concurrent processes in order to restrict the direction of data flow, where
the process which annotates the shared veriable can not instantiate the variable and

wait for. the variable to become instantiated by the other process which dees.not
annotate it. This will be explained later again.

2.2 Reducton

In this section, the precess of redection 18 explained. Suppose. that the goal A
and the following program arc given.

Al - Gl ! BL
A2 - G2 | B
An - Gn | Bn.

where Gi and Bi (1 =< i1 =< n) are a guard sequence and a goal sequencs
respectively.

Fach clause is classified into one of the three following classes with respect to
the goal A.

1. Candidate A::- GilBu
when, without instantiating varizbles annotated
by 7" o non-variable terms, A and Al can-be unified

and Gi can be solved.

2. Suspended Aj:- Gjl Bj.

when, except for instantianng read-only
variables to non-variable terms, A and Aj can be
unified and Gj can be solved.

3. Fatlure
otherwise.

Each clause is checked in a text order whether it can be a candidate, and the
clause that is found to be a candidate first is selected. The selected clause, say A :~
GilBi., is used to reduce the goal to the goal sequence Bi. Once the goal 1s reduced,

checking of the rest of clauses will be abandoned. In this sense, the guard bar "
acts as a cut symbol.

When the goal has no candidate and has at least one suspended clause, it will be
suspended until at least cne candidate will be found or it will be failed {ie. ail the.
clauses will be classified into the failure).

Since the instantiation of shared variables can be undoed by the backtracking
befare the guard sequence is sclved completely, the values of the shared variables
will be hidden from other processes until the guard sequence s solved completely.

Although Concurrent Prolog adopts And-parallelism, consistency check of values
of shared variables will be replaced by the restriction that the process instantiating
the shared variables must be ome. However, which process can instantiate a shared
variable need not be specified before the execution, as long as it is guaranteed that
there can be only one such process even if it is determined dynamicelly in.a
non-dererministic way.

3. The Computation Model

In this section we present the Actor-like model [3,4] of the parallel.
computation in Concurtent Prolog. For the simplicity, we assume that every goals
are solved in Or-parallel mode, that is, all the alternatives are checked in parallel.

First we define the term “event’ which is a basic concept in order to formalize
the computation model.

“An event is a successful vnification betwesn a goal
and a head of a clause and 2 successful solution of the
guard sequence of that clause.”

Using this definition, we can specify the eondition for an event to arise.

"The condition for an event associated with a goal to
arise is that the. goal can be unified with a head of ..
some clause .and its guard sequence can be - solved
successfully.”

Given a goal A aad a clause A’ :- Gl...,GoBl,...Bm, we denote the evenr by
:‘L!,"‘L..

Once a goal A is unified with the head A' of a clause

Al - Gl GalBlLL.. Bm.
that is, the event A:A’ happens, then A is reduced to the poal seguence Bl... Bm
which in turn begin to invoke other events, say BLBI,...Bn:Bn'. In this way,
generally an event causes other events except the case 1o which a goal is unified .
with a clause with empty goazl seguence, in this case the event causes nothing,

Let's define the causal relation among events more precisely.

"An event B, A:A' causes an event E', BiF,
if and only if B is includad in the set

{Biil =< i =<n}
where A' is a head of the clause
A" = 1BlL..Bn "
It is clear from the definition of an event that there can be no circular causal
relarion amonyg events.
We denote the causal relation “E causes E7 by
E => E'

Generally an avent causes more than one events.

_El
P

E = E2
¥ g3

The reflexive transitive closure of the causal relation => is denoted by ==> By the
relation ==>, an event El can be related to the event EZ2 mrhrgct!:.r cauzed by the
event El. For example, El => E2, E2 => E3 then El ==> EJ and so on.

Note that the relation ==> also can be interpreted as the semi-order relation of
an activation of an event. "El ==> E2" can be read as that an activation of an even’
EI precedes an acuvation of an event E2...

Now we define the term "process”

“A process initiated by an event E is a chain of events-
connected by the relauon =>."

)

Given a goal A and
event A:A' can be though

From this point view, it 1

a clause A" :- G1...GnBl..Bm., a process iniriated by the
t as the solution process of the goal A using that clause.
s clear that the time when a process terminates is the time

when the goal A is solved completely.

Since an even! cal cause more than ome event, the chain of events (= process)
looks like a tree (ses figure).

AF

The terminal nodes of the tree correspond to the events each of which is a
unification betweesn a goal and a clause with an empty goal seguence,

4. Interprocess communication

Tn Concurrent Prolog, interprocess communication is realized by variables
logically shared among processes. A process can send a message to other processes
by instanating a variable shared among them to the message. 3ince a destructive
assignment to a logical variable is not permitted, communication using one variable
cannat be done more than once. However, in general, because there is no
restrction about the number of the processes sharing a variable, the message to
which one of the processes instantiates the shared variable will be sent to the rest
of processes at the same time. Therefore broadcasting of a messags has been
realized without any additional mechanism.

Shared variables are created when, for example, a process forks to subprocesses.
p(X) = | g(3Y). r(Y?).

In the example above, the variable Y is shared between the processes, which are
solution processes of the goal q and r respecuvely, and 1s used for communication
berween them.

However, as mentioned above, communication using one shared variable caonot
be done more than once. Therefore in order to enable the successive
communication among processes, thers must be some mechanism o create a new
logically shared variable dynamically. Maost general method for this is the technique
of the stream communication which is well known by the work of Clark and
Gregory [2].

In the stream communication, & shared variable is instantiated to a data structure
which contains a message and a new uninstandated variable. In the Relational
Language, a list was used for such structure.

[<message>l<variabie>].

A variable contained in the structure is sent with a message from the sender to the
receivers, becomes a new shared variable among processes and will be used far the
next communication. Conseguently 25 long as a process sends a message in this
way, every time a message is sent, a new shared variable 15 created, so that the
successive communication is established.

In general, the successive communication consists of two phases.

Phase | A shared variable is ipstantiated to a
Message.)
Phase.2 . A new.shared variable is created.. ..

In the phase 1, the action most essential to communication is performed. In then.
phase 2, what enables a next communication is performed. In the case of the

stream communication, both phases are performed at the same time in the samen-
process, the sender. However there is no reasen for two phases to be performed -
the same process and no restriction. on the

execution order betwesn the phase | and the phase 2. If we treat the rwo phases
separately, we will be able to find several kinds of communicadon style based only
on logitally shared variables and read-only annotation. As an example, we present
in this section the bounded buffer communtcation based on shared logical vanables,
which is implemented without introducing another annotation like the Relauonal
Language. Before that, we summarize the unbounded buffer stream communicarion.

[The Unbounded Buffer Communicarion]

In the stream communication, both phases are performed at the same time in
the sender of messages by instantiating a shared variable to a pair of a message and
a variable. Therefore every time a sender sends a message, it gets @ new shared”
variable, so that it can sead a next message as soon 2s it sends a message. On the
contrary, a receiver can read a message only alter it 1s received and the receiver has
to wait when it tries to fead a message and no message is received yet. This “wait’
mechanism is implemented by making the shared variable in the receiver read-only.
Recapse there is no mechanism for inhibiting the sender to send a message, this
type of communicaticn realizes the unbounded buffer communication. Note that
the essence of unbounded buffer communication is in the fact that both phases are
performed in the same process, the sender of messages.

As an sxample of the stream communication we show the program which
describes the siruation where there are two communicating processes, one of which
sends an integer every time the process generates it and the other prints out am .
integer every time the process recsives it.

Goal:: integers(ON} , outstream(N?).

Program-1 =
integers{L[EN]) =- : . [gend]
plus(I1J} | integers(J.N).
outstream([IIN]) :- ... [receive]

write{I}) | outstream(N7).

Note that "outstream” will be suspended when the varizble N 18 not instantated to a
non-variable term, because of the condition for read-only variables. In the example
above, message sendings and receivings are processed at the unification betwesn a
poal and a head of a.clause. We could write the same program in more abstract
level like below.

Goal:: integers{O,N) , outstream(N}.

Program-2 :
integers{IN) :-
send(IN M), plus(LL)} | integers(J,M).
outstream(N} :-
receive(IN7 M), write(I) | outstream{M).

In both predicates “send” and “receive”, the first-argument is a message the second
arpument is a current communication variable and the third argument is a next
communication variable. The program "scnd" and “receive” are:

send (3, [20M | M).
receive(2 [XM M).

gy

The advantages in using “send” and "receive” are to hide the internal structure to
which the shared variable is instantiated and to modularize programs. In fact, even
if we could use another data structures, say “stream(<message> <variable>)", instead of
the list ‘[<message>l<variable>]", the programs which have to be changed are only
“cend” and "receive” (pew codes are shown below) and neo other programs including
the user programs are kept unchanged.

send (I stream(I,M) M.
receive{l stream{I M) M),

On the other hand, we could say that using "send” and “receive” is to lose the
simplicity of the Pregram-l

[The Bounded Buffer Commurnication]

1n the beunded buffer communication, to send 2 message 1§ suppressed when
messages, the number of which is equal to the size of the buffer, are kept unread in
the buffer of the receiver.

From the above analysis of communication through shared vanables, we can
naturally find the mechanism for this kind of communication. The key idea is the
separation of the actors of two phases:

The phase | (instantiation} is performed by the sender at the moment it send a
message and the phase 2 is performed by the receiver when and only when it reads
(picks up) a message from the buffer. Therefore the sender cannot send messages
mare than the buffer size if the receiver did not read the messages, that is, it did
not generate mew shared variables.

We explain the method when the buficr size is equal to two, veing the previous
example,

Goal:: integers{0,[X,YIZ]) , outstream{[X YIZ]).

Program::
integersiI N} :-
send{ILN? M), plus(L1J} | integers(J . M).
putstream(N) -
receive(ILN M), write(I) | outstream(M).

Note that the second argument of "send" is annotated as read-only, while in the
previous exemple the second argument of "receive” is annotated as such. The
following is a new cade for "send” and “receive” programs in the bounded buffer
commuication.

send(Msg, [Msg™N, wChannel] NewChannel).
receive{ Msg [MsgNewChannel], NewChannel) :-
wait{Msg)lupdate_buff(NewChannel).

Here again we use the list structure for implementing the stream. "wait(X)" is a
system predicate which suspends when the argument "X is not instantiated yet, and’
succeeds otherwise. "update_buff(X)" is a sequential Prolog program which takes a.
d-list as an argument and instantiates the tail variable of it to a cons cell "[PQ[
where both- "P" and "Q" are uninstantiated variables.

update_buff(X) :- W'EI{K],.',K#R‘U],
updare_buff({XIY]) :- updare_buif(Y).

The second argument of “receive” plays a role of a buffer consisting of slots
(variables) which will be filled with messages by the sender. The buffer is updated
by one slot when and only whea the receiver picks up a message from the buifer,
so that the length of the d-lst (burier} remains the same which corresponds to the
buffar size. Although the sender shares the buffer with the receiver, it can not
update the buffer and all it can do is to fill empty slots with messages if there is
any such slot. When the size of buffer is egual to two, the bufier looks like:

[YIZ]L
For the sender, the buffer looks like one of the following.

(n XY
(2) [¥iZ]
() I

where "X" "Y" and "Z" are all uninstantiated variables. (1) corresponds the case in
which the buffer is empty, that is, there is two empty slots and (2) corresponds to
the case in which there is gne rocm for sending a message. (3) corresponds to the
case in which the buffer is full, that is, there is no room for sending a message.
Because the second argument of "send” is treated as read-only, the reduction of
"send" is suspended in the case (3). The figure below shows the situation where the
sender tries to send three messages, "ab”, "cd” and "ef” when the buffer is empty.

the recaiver the seader
[X.Y1Z] (X Y17

— send "ab" =
[2b,YZ] [YiZ]

= sand “cd" =
lab,cdZ] z

— send “ef’ 15 suspended
— receive "ab" —

fed PIQ] [PI]
— send "ef" —

It is.1.0re convenient when we could parameterize the size of the buffer.
Generally their usage are the following.

In sender :: send{Msg Channel? NewChaanel)

In recsiver Af the first communication
:: open{Channel N},
receive{Msg Channel NewChannel

At the subsequent communications
receive{ Msz Channel NewChannel)

“open” takes rwo arguments, 2 communication variable "Channel” and a size of a
wuifer "N", and it instantiates the variable "Channel” to the d-list with the first "N
arguments of it instantizted to variables. "open” is also 2 sequential Prolog program.

open{X0) :- L
open([3TY]N) - NI is N-Lopen(Y ,N1).

The program above specifies the case in which the buffer size is more than or
equal to one. Implementation of O-Buffer communication is a Lule different from
the above. The predicate "receive” is replaced by the following definition.

receive{ Msg [MsgNew] New).
and their usage becomes:

In sender :x sgame as above
In recsiver 1 receive(Msg Channel NewChannel}),wait(Msg}

The bounded buffer communication is very important when there are several
processes, each of which produces or consumes data in different spesd. Suppose
that, in the example above, the rate of integer gesesation in "integers' is much
greater than that of data consumption in “outstream”, in such case if we use the
unbounded buffer communication between two processes, the huge amount of
unprocessed integers will be produced. The bounded buffer communication is a
simple and efficient method to control and combine processes having different rate
of data producing or consuming by contrelling the production of data according to
the consumption of them.

As an example of the application of this bounded buffer communication, we
can define a 2 x 2 communicarion switch which has two input ports and two output
ports. It can receive inputs from two ports and sends them to the output port which
has at least one empty slot. If both ports are not available, the "switch’ is
suspended.

switch2x2(Inl In2 Out] Cut2) :-

receive{ M_Inl Insl }&send (M, Outl,Qutsl) | switch2x2(Insl In2 Outsl Outl).
switch2x2(Inl In2,Out] Outl) :-

receive(M.In2, Ins2)&send (M, Outl Outsl) | switch2x2(Inl Ins2 Cursl, Outl).
switch2x2({In] In2 Outl Outl) :-

receive(M Inl InsD)&send{M,Out2,Quts2) | switch2x2(Insl In2 Outl Outsl).
switch2x2(Inl In2 Quil,Out2) :-

receive(M,In2,Ins2)&send(M,Out2, Outs2) | switch2x2(Inl Ins2,Outl Qutsl).

P

5. Incomplets Message

As in the actor formalism, Concurrent Prelog is a model of the paraflel
computation and provides a communication methods through shared variables. A
message will be sent by instantiating the shared varizbles. A message which
contains a variable is cailed an incomplets messags [5]. It makes a new variable
shared by the sender and the receiver of the

message, that is, it creates a new communicaticn channel. It means that a
communication channel can be made dvnamically and it can be sent to other

processes also.

The concept of an incomplete message is a large programming paradigm which
includes the basic communication mechanism berwesn processes, so—called pipeline
processing on stream data, and yields new features of Concurrent Prolog. The close
analysis of this concept is described in the paper of Shapiro and Takeuchi [5].

In this section, we review the key features of this concept according to the
paper of Shapiro and Takeuchi [3].

(1} [Strezm] Once a variable is instantiated, it will never be rewritten except the
case where the whole goals fail. Therefore it can not be used as a communicarion
channel in the next message passing phase. In order to enable subsequent
communication, in the stream communication generally a shared variable is
instantiated to a list of a message and a variable which will be used in & next
communication. In this sense, the stream commuzication 1s one of the example: of
incomplete messages and provides a basic communication mechanism in Concurrent

Prolog.

(2) [Pipeline] In addition, incomplete messages make it possible to process partially
obtained data in a pipeline style. Although pipeline processing on stream data'is a
new concept of programming languages, it is included naturally in the paradigm of
the partially defined message. In some sense, usual message passing can be seen as
a kind of pipeline processing om a sequence of commands generated incrementally..

(3) [Response] When a process sends a message which requires a response, the -
response can not be sent through the same shared variable, since logical vanables
are single-assignment. The technique of the incomplete messages is also useful in
this case, in which the sender sends a message .that contains an uninstantiated
variable, and then examines that variable in a read-only mode, which causes it to =
suspend until this variable gets instantated to the response by the recipient of ther:

b2

message. However this is different from the examples above, because the process
which instantiazes a shared variable is the receiver of the message. In this case,
once a message is sent to a process, the sender can run independenty whether the
receiver reiurns the response as long as the sender need not to refer to the
response. When the sender pesds the response it is forced to wait unul it will be
instantiatec.. This behavior associated to a shared variable used in a response takes
an advantage in writing 2 monitor of shared resources and highly reduces the
overhead on the resource manager because the manager will never be locked and
the reguest will never be refused.

i, New Fearurss of Concurrent Prolog

In this section, we explain the another feature of the Concurrent Prolog not
available in other concurrent programming languages.

The interprocess communication based on shared variables is not new method
and has besn implemented generally by sharing physical memory cslls. The
difference berwesn the communication by the shared variables of Concurrent Prolog
and thar of traditional languages is the highly abstracted level of shared object. In
traditional languages, the objects shared are physical objects such as memory cells or
slobal varfables. On the contrary, in Concurrent Proleg, the objects shared are
highly abstracted logical variables which can be objects of the unification operation,
a very high level operation. Because of this high level abstraction, Concurrent
Prolog can express very high level communication style among parallel processes in
a simple way, that is, unifying two communication channels.

The well-known "merge” program is an example of this feature.

merge([AD] Y ALY} - | merge(X?Y 7).
merge(X, [AY][AZ]) - | merge(XY2Z).
merge{[],Y. Y
merga(X [1.X).

Goal:: p(X),a(Y) merge(X?,Y?,Z}r(Z7)

This program merges two input streams into one stream. The first two clauses are
used for this purpose. The rest two clauses describe the situation, where one of the
input stream Fsay "X"} reached the end, and the remaining stream ("Y"} is unified
with the putput sweam (“Z7). After this unificarion, data on the remaining strezm
("Y") are sent to the ourput stream ("Z") without any relay, because the input stream
and the ourput stream are logically the same. The important peint is that this
change of the data flow can be performed only by the unification and that both the
sender and the receiver never know the change of data flow (Figure).

[¥ .

e - o
T N E Y . N
I merge z’L_-:}' r/) __—_> (TR L)
.-'-7"'-,________,_.. S T F \-_-_#f

s \

1az

The next program shows another example.

switch{TonX][] X).
switch(JAX] ATY]Z) - | swich(X2Y Z).

Goal:: p(X), switch(X?2,Y.Z), a(Y), 1{Z).

“switch” takes thres arguments. The first argument is the input stream and the
second and the third are the cutput streams. switch” program keeps the connection
berwesn the input stream and the second aszument unnul it will find the "on”
message in the input stream. When "switcd” receives it, it changes the cannection
and thereafter it wiil pass input data to the third argument. Here again the
important point is that the the data flow can be changed directly by the unification
and it is hidden from both the sender and receivers (figure).

These two examples demonstrate the new feature of interprocess
communication in Concurreat Prolog. Other powerful examples are presented in
the paper [3).

7. Conclusion

In this paper we present the computation model of Concurrent Prolog and
explain main'y the interprocess communication based on the shared logical
variables. 1) From the close analyvsis of the stream communication, we derived the
mechanism for implemenring the bounded buffer communication only by the
read-only annotation. 2) We have shown briefly the basic programming paradigm
“incomplete messages” as a scurce of the powerful programming technique. 3} We
have shown the new fearures of Concurrent Proleg programming which originate
from the logcal power of th: umiflcation.

8. Acknowledgement

We thank E. Shapiro for his many helpful insights and discussion. We would
also like to thank Kazuhire Fuchi, Direcior of ICOT Research Center and all the
other members of ICOT, both for heip with this research and for providing a
stimulating place in which o worlk

g, Referances

[1] E.Y Shapiro: A Subset of Concurrent Prolog and Its Interpreter, ICOT Technical
Report TR-GO3 (1983).

2] K.L.Clark, S.Gregery: A Relational Language for Parallel Programming,
Procsadings of the ACM Confereace on Functional Programming Languages and
Computer Architecrure {1%81).

(3] C.Hewitt: Viewing Control Structures as Parterns of Passing Messages, Artificial
Intelligence 8 (1877).

[4] S.A Ward, R.H. Halstead: A Syntactic Theory of Message Passing, JACM Voll7,
No.2 (1980)

[5] E.Shapiro, A.Takeuchi: Object Orieated Programming in Concurrent Prolog, New
Generation Computing Vol.l, No.d (I1983)

