ICOT Technical Report: TR- 005

TR T
ESP

as a Preliminary Kernel Language

of Fifth Generation Computers

by

Takashi Chikayama

Mita Kokusai Wlde 211 3y 456-3191~-5

IGD I 4-28 Mg 1=-Chome Teles 12T J32064
Minato-ku Tokve 108 Jagon

Institute for New Generation Computer Technology

B e R L T T T

ESP
as a Preliminary Kernel Language

of Fifth Generation Computers

Takashi CHIKAYAMA

Institute for New Generation Computer Technology

Research Center

Mita Kokusai Building, 21F.
4-28, Mita 1-chome, Minato-ku, Tokyo 108

ABSTRACT

In the first three-year development stage of the fifth
generation computer systems project, a series of high-performance
personal computers called seguential inference machines are being
developed at ICOT Research Center. The machines have a
high-level machine language called KLO, which is a PROLOG-based
Togic language with various extensions. In the software
development of the sequential d4nference machines, ESP, a
software-supported yet Mhigher level language compiled into KLO,
is used Instead of directly using KLO. This paper describes the
design the Tlanguage system of sequential inference machines.

Description will be centralized on ESP with an overview of KLO.

1. Introduction

In the first three-year development stage of the fifth
generation computer systems project, a series of high-performance
personal computers calied sequential inference machines are being
developed at ICOT Research Center, the first versicn of which is
called PSI . Various application softiware systems as well as the
operating system and programming systems for itself will be
developed on these inference machines in this first stage, and
will be used as development tools for more advanced systems in
the succeeding stages of the project.

The machines have a high-level machine language called KLO
(Kernel Language version-0), which is a lTogic language based on
PROLOG with various extensions and certain features omitted.
Omitted features are supplemented by the software-supported
language ESP, which 1s compiled into KLO. A1l the software on
the machine., including even the most basic hardware-oriented
portions of the operating system will be described in ESP,

Main features of the ESP language other than those of PROLOG
are:

o Module Structure,
o Macro Expansion, and
o Global Data Definition.

The relationship of ESP and KLO parallels the relationship
of so-called system implementation Jlanguages and machine
languages on conventional computers.

This paper first describes the design principles of the
total language system of the sequential inference machines

including ESP and KLO, then the design of KLO briefly, and then

the design of various features of ESP.

2. Design Principles

Basic design objectives of the language system of sequential
inference machines are the following:

o Sufficient Power required for describing the objective
;;;Lware systems.

o Brevity and Consistency for ease of both implementing
and learning the language, and

o Reasonable Efficiency of implementation.

Not all the features of the language system have to be
attained by the hardware-supported language KLO. It would be all
right if they could be attained by the total system consisting of
KLD and ESP. Therefore, features rather simple but requiring
efficiency are included in the machine Tlanguage KLO, while
features rather complex or requiring flexibility are implemented

by the software system ESP.

3. An Overview of KLOD
KLOD is the machine language of the seguential 1inference

machines, It 1is based on PROLOG with various extensions and
certain features omitted, The main extensions to PROLOG are:

o Extended Control Structure,

o Multiple Processes,

o Operations with Side-Effects,. and

o Hardware-Oriented Operations,
while significant omitted features are:

o Database Management, and

o Name Table Management.

3.1 Data Types

KL0 has five basic data types, namely, symbols, integer and
real numbers. strings and wvectiors.

Symbols are mainly used for representing symbolic 1literal
atoms of PROLOG. Symbols in KLO have basically no association
with character strings used in textual representation of programs
and data. nor with predicate definitions eassociated with a symbol
when used as a predicate name. When such attributes are required
to be attached to symbols, they should be implemented by some
software systems. KLO is a more primitive language than having
such attribute mechanisms builit-in, It merely provides random
access data structures and & standard hashing function for
supporting hash table implementation of such attribute
definitions. Symbols of KLO exist only for the sake of its
identity.
h_---E;;eger and real numbers are provided for efficiently
executing arithmetical operations. Lrithmetical operations in
KLO are not bi-directional: Addition and subtraction should be
effected by individual operations. The hardware provided
numerical types are only of fixed bit width. Arbitrary length
integer numbers (bignums), arbitrary precision real numbers, and
probably rational ;u;é;;; are to be implemented wusing exception
handlers: When operands that are not numerical objects are
passed to built-in aritkmetical predicates (machine instructions,

in conventional sense). an exception is raised: its handler can

gxamine the arguments, do appropriate operations if arguments are

5
something expected by the exception handler, call the error
handler 1f not, and then resume normal execution,

Strings are a one-dimensional array of small positive
integer data. Its element size, which constrains the value range
of elements, varies from one string to another. Strings with
1-bit elements are wused for representing bit arrays, such as
memory-mapped graphic display images: those with 8-bit elements
are for ASCII character strings: those with 16-bit elements are
for character strings containing 16-bit Japanese character codes.

Vectors are a one dimensional array of arbitrary KLO
objects. A vector can contain arbitrarily many elements as long
as the storage capacity allows. Indices for vector elements are
from zero up to the length of the vector minus one. Thus, the
first element of a vector has its index value zero. It is calied
the principal element of the vector. Elements of a vector can be
accessed by its index value in a constant time regardless of the
stze of the vector.

As vectors are the only composite structure in KLO ‘language
which allows arbitrary type elements, they are used for
representing almost everything. Thus, compound terms of
PROLOG-11ke languages such as "f(X.¥Y)" are, of course,
represented by a vector, with its principal element being the
principal functor and the rest of the elements being the
arguments. In PSI, when & vector is not very long. its length is
stored in the tag attached to the pointer word minimizing the
required Storage,

Vectors are also used for representing LISP-like linked list

structures, A Tist is a sequence of vectors linked by their

£
First elements. Thus, when a vector 1s treated as a binary 1list
cell, jts Tirst element is interpreted as 1ts cdr and the second

as its car. WUsing this scheme, 1ist structures can be accessed
more e;;;ciently. in terms of number of memory references
required, than when represented using compound terms with cons as
their functors as seen in several PROLOG 1implementations.
Storage required does not differ wmuch {1f & structure sharing
implementation should be wused. There can be no ambiguity
between Yists and usual compound terms if the terminater of lists
should be restricted to a certain object, say, a symbol nil, and
that terminator should never be used as a functor of compound
terms: The principal element of a compound term is always a
non=nil symbol, while that of a 1ist cell is the 1ist terminator

nil, another Tist cell, or uninstantiated.
There are several other data types not mentioned here for
internal system management purposes, which may not be very useful

for ordinary users.

3.2 Allocation of Data

There are two kinds of vectors in KLO, stack wvectors and
heap vectors. Though both are trcated to be of the same type and
may be unifiable. there are certain differences between them.

Stack vecters are allocated on a stack dmplicitly while
unification process so that the allocated area can be freed on
backtrack. They may contain wuninstantiated Jogical wvariables,
values of which are determined through unification and retracted
by backtracking. Structure sharing method is adopted for stack

veclors in our first machine PSI,

7

Heap vectors are allocated by explicit operations in a heap
area which s not freed on backtrack. They are ground literals
without logical variables, but assignment to them as side effects
15 provided by built-in predicates. The effect of assignment is
not retracted by backtracking.

Heap vectors are mainly wused for implementing databases
where side-effects are reguired for efficient implementation.
Another important purpose of allocating vectors in heap areas 1s
for communication between processes. As each process has its own
:.2Ck area which grows and shrinks independently, stack areas
should never be accessed from other processes to avoid the
problem of dangling pointers. Thus, inter-process communication
has to be effected using heap vectors.

Symbols and numbers do not require storage allecatien
because they are embedded in a pointer word. Strings are always
dllocated in heap areas. The reason of representing strings by a
separate type. vrather than wusing wvectors, 1s nothing but to
minimize the required storage: it is no use allocating stack
wlrings whose elements can be variables and thus require one word

coaed

2o fantinl Structure
The cantrol structure of KLO 1s basically that of PROLOG,
depth-Tirst <earch of an AND-OR tree. In addition to this, KLO
provides several more flexible control primitives.
A mechanism is dntroduced for delaying execution of a
program segment until the instantiation of a specified variable,

which can be found in PROLOG-II as freeze.

a

An extended version of cut operation called remote cut g
introduced. For remote cuts, the point up to wn;;;-;;ter;;tiwe
branches are pruned can be arbitrarily specified by marking the
point with a label using a certain built-in predicate and specify
that label as anm argument of the remote cut operation. This
point may not necessarily be an ancestor node of the node where
the cut operation is carried out. Any point whose execution s
sequentially prior to the cut operation (and not backtracked) can
be specified. This feature, along with failure, can be used to
implement a dynamically scoped non-local exit mechanism similar
to that provided by catch and throw contrel structures seen 1in
several LISP systems.

On the other hand, the semantics of uvsual cut operations is
slightly changed so that it prunes alternatives up to the most
recent ancestor OR-node, in stead of wup to the most recent
ancestor predi:aE;-E;?;. By this change, OR-nodes appearing in a
clause body can always be transiated into a call of a separate
predicate. This «consistency makes definition of macros far
custemized control structures easier. The original scmewhat
awkward semantics seems to be required for controiling the scope
of cut operations, which is more generally solved by remote cuts
in KLD,

ESP provides another catch and throw control structure which
throws success wup to a Tlabeled point, rather than throwing
failure, fhe labeled ANC-node completes successfully, with
pessibly remaining intervening AND branches ignored temporarily.
When backtracking came back to the node which succeeded by this

success throw, the throwing of success is assumed to be a failure

and the execution process continues as usual.

Exception handlers can be defined dynamically while

execution of programs for both predefined and user-defined
exceptions. The handler is5 called 1in the context of tihe
exception. After fixing the problem, it can continue the program
execution by either succeeding or failing the predicate caill
where the exception took place. Exception handlers are intended
not only to handle program errors, but also to handle cases which
is not a bug but cannot be handled by the hardware and it 1is
inefficient to always watch for such cases by the software. One
typical example 1s implementation of more general arithmetics
mentioned above.

Predicate definitions are represented by code type objects.
Basically, a predicete call is represented b;q;-painter to this
code object with its arguments following it. However, this
pointer 1s allowed to designate the code object via arbitrarily
many indireclion words. This mechanism 1s convenient for
implementing module structure of ESP. By providing & vector of
entries for each module and restricting module entry accesses to
those through that vector, representation of module entries can
be revised by rewriting only this entry vector without changing

the codes which use the module.
4, MNotation of ESP

4.1 Names
Names are used tc denote various entities of ESP programs.

A name 1is either a short name such as "a", or & full name

10
prefized with the module name where the entity is defined and a
colon like “m:a". Entries defined in the same module, or those
defined in modules declared to be wisible by a wisibility
declaration, can be accessed by their short names. Other entries

must be named using their full names.

4.2 Structures

A vector is denoted by enclesing list of 1{ts elements by
braces. For example, a vector with 3 elements "a”, "b" and “"¢"
is denoted by "{a., b, c}". This is the most basic notation for
structured data of ESP. Other notations are merely a short-hand
of this vector notation. The first (index 0) element of a
non-null wvector it called the principal element of the vector.
When the‘principal element of a vector 1s a symbol, 1t is
csometimes called the principal functor of the vector.

There are three kinds of strings in ESP. They have 1-bit.
8-bit and 16-bit dnteger elemenls and are called bit strings,
byte strings and double-byte strings respectively, Byte strings
and double-byte strings have a character string format to denote
their values, like "ESP". Strings of all three types can be
denoted in a form similar to wvectors: The string type name
followed by 2 1ist of component 1integer values enclosed in
braces, like "byte{69,83,30}".

A compound terms such as "f(a.b)" is used to denote a vector
whose principal element is a symbol, The length of the vector is
the number of arguments in the argument 1ist of the compound term
plus one. Its principal (index 0) element is the functor symbol

and following elements (index 1 and up) are the arguments. For

11

example, a compound term of the form "f(a,b)" is interpreted as a
vector "{f, a, b)}".

List structures, which actually consist of binary vectors,

can be denoted using 1ist notations. A 1ist notation of the form

"[X | ¥Y]" is a short-hand of "{¥, X}" (note that elements are

reversed). A Tist notation of the form "[X, <o]" s a
short-hand of "{ [... 7 | X }". A null list denotes a symbol
"1, Thus, a 1ist notation "[a, b, ¢]" 95 a short-hand for

UL {0). e}l b)Y, a)n.

4.3 Operators

Operator applications also are used to denote vectors with a
symbolic principal element. A prefix or a postfix operator
application denotes a vector with two elements whose principal
(index 0} element 1{s the operator itself, and second (index 1)
element is the operand. An infix operator application denotes a
vecter with three elements whose principal element 1{s the
operator itself, the second element, the left hand side operand,
and third element, the right hand side cperand. The order of
operator applications is determined by their precedence relation.
Operators can be defined along with their precedence using
operator definitions given in modules.

In ESP, precedence relation between operators 1s determined
based on precedence relations between two operators explicitly
precedence value to each op;;gié;. This scheme 15 adopted
because 1t expresses the programmer’s intention in a more direct

manner.

12
Precedence relation is affected by whether one operator

appears left or right te the other operator. For example, the

infix operator "+" precedes "-" when "-" appears to the right of
the appearance of “"+", but 1s preceded by "-" in a reverse
situation. This makes "A + 8 - C" interpreted as "(A+B) - ("

and "A - B + C" as "(A - B) + C".
Suppose two operators X and Y appears textually dn this
order. In this case, the problem is whether X precedes right Y,
or Y precedes left X, or neither. In such & case the precedence
of operators X and Y 1s determined according to the following
rules:
(1) Precedence Definitions
_lf there is a precedence definition for X in the ovperator
definition of X saying that "X precedes right Y, then X
precedes Y. Otherwise, if there 13 a precedence
definition for Y saying "Y is preceded by left X", then X
precedes right Y.
(2) Transitivity
If X precedes right Z and Z precedes right Y. then X
precedes right Y.

Operators defined in a module other than ithe current one 1is
assumed to be defined when the name of the defining module is
given in the visibility declaration. To avoid cases where two
cperators precede each other, a precedence definition resulting
circular precedence 1s erreoneous: Defining an cperator 1o be
preceding another operator which, according to already given
precedence definitions and the transitivity rule, precedes the

original ogperator. is checked oul by the compiler.

13

5. Macro
Macros are used for writing meta-programs, which specify
that programs with so and so structure should be interpreted as
such and such programs. FEven ctomewhat complicated macres can
easily be defined 1in forms of ESP programs fully utilizing the
pattern matching and Jogical inference capability of the legic
programming language. Macro expansion of ESP does not only
replace the macro invocation with the expanded result, but also
can augment the program part dncluding the dYnvocation with

certain runtime conditions.

5.1 Definition

The syntax of macre definition 4s shown in figure 2.
Basically a macro definition consists of the invocation pattern
and the expanded pattern, PBoth are usual terms and may dinclude
Togical wvariables. When cne appears in both, they refer to the
same entity. A sub-term in an invocation of this macro, which
2ppears at the position corresponding te a wariable in the
invocation pattern, will be included in the expanded result at
the position where that same variable appears in the expanded
pattern.

The optional runtime conditions can be specified to augment
the program part dincluding the macro dnvocation so as to be
executed when Lhe expanded result 45 executed. They are meant to
be wused for either generating or checking the value or some
component of the value of the expanded result., The way they are
expanded will be described in following sections.

The expansion condition also is a condition 2ssociated with

14
the macro expansion. It is executed when a macro invocation is
expanded, rather than being included 1n the expansion and
executed 1in runtime,. The execution process of the expansion
condition 1% similar Lo that of the bedy of a clause. The
expansion condition can be used for dual purposes: to determine
whether the macro expansion should be effected or not, and to
determine the value of some of the uninstantiated variables
included in the expanded pattern, depending on the arguments

given in the invocation pattern.

5.2 Invocation and Expansion

A macro invocation 1s any term which can be unified with the
invﬂcatjnn pattern of a certain macro definition and the
execution of its expansion condition succeeds.

When a pattern looking 1ike & macro finvocation pattern
should be interpreted as it is. rather than being expanded. it
should be gquoted using a prefix gperator "'" (back quote). The
quoted te;;--;; not expanded and taken as it 15 except that the
quuting operator """ is eliminated. This quoting 1s effective
only for the top-level of the pattern. Thus, the quoted term has
macro invocations as its sub-terms, they will be expanded as
usuai,

Invocations appearing in a goal in the body of a clause and
those in the head of a clause are expanded in slightly different
manners. Invocations appearing in a clause body., including cases
where goals themseives &re a macro invocation, are expanded as
follaws:

{i) the invocation is unified with the invocation pattern of

15

the macro definftion,
{2) The expansion condition of the macro definition, 1if any, is
executed in the same way as the body of a clause,
(3) The goal including the invocation 1s replaced by a logical
conjunction of following three in this order:
1} Generator,
2) Original goal with the concerning invocation substituted
by the expansion,
3) Checker.
The order of the runtime conditions and the expanded goal 1s
thus defined so as to be able to generate values of the expanded

part before the goal is executed, and check the result of the

goal after iis execution,
;;;-;hird step of the expansion process s different for
invocalions appearing in the head of a clause:

(3) The clause head including the invocetion is replaced by the
original head with concerning invocation substituted by the
expanded pattern. The body 1s replaced by & Jlogical
conjunction of following three in this arder:

1) Checker,
Z2) Uriginal body,
d) Generator.
By this ordering, the value of the argument 1s checked at

the beginning &and generated at the end of the execution of the

body.
Figure 3 shows a macro definition which allows functional

notation of the adding cperator "+", and examples of invocations.

This is a typical example of using & macro for generating values.

16
Figure 4 shows a macro definition of the operator "I|" and example
;;;;;;.- This is a typical example of using a macro for checking
values, Readers may notice the difference in ordering of the
gxpanded result.

Expanded resulit of a macro may dnclude a&another macro
invocation which in turn will be expanded, including the cases
where the expanded pattern itself is another macro 1invocation.
However, macro expansions are tried only in a top-down manner:
Once a term 1s examined and found not being a8 macro invocation,
it will never be treated &s & macro invocation even if later
macro expansions of sub-terms of this term have made the parent

term unifiable with a certain macro invucation pattern.

B, G1u£a1 Data

Global data definitions are used for defining a heap data
structure which can be accessed through its name rather than by
passing it as an argument to a predicate, This global data
belongs toc the module where it is defined., and can be initiated
when the module i5 loaded by the initiator (figure 5).

wWhen a module containing global data de;;;;zqu;: is loaded,
the fdnitiator of each global data definition is executed in the
same way as the body of a clause 15 executed. After the
execution of the initiator, the global data {a term) is copied to
8 heap area if 1t 1s a compound term. By this copying global
data becomes a heap object which can be assigned values. The
term defining the global data may initially contain variables but
they all must be instantiated during the execution of the

initiator. From then on, that data can be accessed using the

17
name of the global data.

Global data is intended to be used mainly for two purposes.
One 1is to eliminate the number of arguments of predicate calls.
As. in PROLOG, the scope of variables s limited to a single
clause., all the data required for computation must be passed as
arquments. This certainly makes programs easy to read, for the
reader can concentrate on data which is passed as argument, as
long as the number of arguments is not too many. However, for
considerably complicated programs, number of required arguments
becomes too much for the reader to comprehend them all. For
example., standard input &nd cutput streams (or value holders for
them) must be passed as arguments in strictly pure coding style.
Programmers are tempted to always include such commonly used data
in the argument 1ist, regardless of whether they are used or not.
Such coding style merely makes the programs complicated. If they
are represented as global data, programs which use only standard
[/0 streams do not always carry them all around among their
arguments.

Another purpose of using global data is te record computed
result of backtiracked hraqches of execution. Programs requiring
considerable efficiency, like the operating system kernel, are
desired to be programmed 1in a style where repetitions are
implemented by failure, because, using this style, memory area
allocated on the stack can be reclaimed very efficiently. This
optimization can automatically done by the machine optimizer when
repetition are described using deterministic tail recursive calls
with no arguments. In that case, the result of each repetition

can only be recorded in global data as side-effects.

18

7. Modules
An ESFP program 1s a collection of modules. A module is a
collection of definitions which are closely related in a certain
sense. A module definitien consists of several declarations
describing relations with other modules and definitions of
Modules m;;ﬁ-;;fine predicates, macros, giabal data,
cperators and symbols. Among them., only those explicitly
declared to be the entries of the module, c¢an be used from
putside the module. Modules in which such entries should he
used, the name of the modules where the entries are defined must
be declared in the access declaration. This rule is for ease of
development and management of rather large-scaled sof tware

syslems.

7.1 Using Entries of Other Modules

An access declaration makes the entries of other modules
whose names are given in it accessible from the module. Two
modules, "builtin" and "“standard” are always accessible by
default, As module names are unique in the system, entries of
accessible modules can be wuniquely denoted using their full
names. Access declarations are wused by the program database
manager. For example, when one module 1is to be loaded. the
lToader gxamines whether modules declared in the access
dectaration are already loaded., If not, such modules are loaded
automatically. Applying this rule recursively, all the required
modules can be loaded automaticaily.

A visibility decliaration makes tthe entries of declared

19
modules visible from inside the module, f.e., 1f they have a
unique short name among visible entries, they can be denoted by
their short names, without prefixing it with the defining module
name. Two modules, "builtin” and “standard” are always visihle
by default. Visibility declarations do not work transitively.
Jhen a module is visible and another module is visible from
incide that visible module, it does not necessarily mean that the

latter is directly visible from the original module.

7.2 Declaring Entries

Entry declarations are used to make entities defined 1in a
module accessible from outside the module. Entities defined in a
module but not declared to be entries are accessible only from
within the defining module and ﬁre said to be lecal to that
module,

In entry declarations, predicates are identified by the
principal functor and the arity of their heads. Macros are
identified by the principal functer and the arity of their
invocation pattern. Global data are identified by thelr names.
Operators are identified by_their names and types, i.e., prefix,
infix, or postfix. Symbols which are used in the module and not
an entry of other visible modules are implicitly defined 1in the
module. They also can be made accessible by their names from
outside the module using entry declarations.

a sorter. Here. the predicate concatenate is assumed to be

defined in the module 1ist_handler whose name 1is gfiven in the

access and visibility declaraticons.

20

8. Conclusion
ESP, along with its object language KLO, has enough
description power Tor development of programs which are readable
and also reasonably efficient. There seems to be not much
difficulty in dimplementing the language. We will be using the
language in the development of the operating system of our

inference machines as well as various other application systems.

Acknowledgments

The design of the KLO language is & cocperative work of the
author, Minoru Yokota and Takashi Hattori of ICOT Rescarch
Center, Discussions with the members of the Research Center and
working groups of ICOT have been of much help in the design cof

ESP,

21

References

1) S.Uchida, M.Yokota, A.Yamamoto, K.Tak1 and H.Nishikawa:
Outline of the Personal Seguential Inference Machine: PS5SI, New
Generation Computing, Vol.1, MNo.1, Ohmsha and Springer-Verlag

11983).

2) T.Hattori and T.Yokoi: Basic Constructs of the SIM Operating
System, New Generation Computing, Vol.1, No.l, Ohmsha and
Springer-Verlag (1983).

3) T.Chikayama, T.Hattori, and M.Yokota: A Draft Proposal of
Fifth Generation Kernel Language, Version 0.1, Technical Memo
TM-007, Institute for New Generation Computer Technology, Tokyo
(1982).

4) G.Battani and H.Meloni: Interpreteur du language de
programmation PROLOG, Groupe d'Intelligence Artificielle,
Marseille-Luminy (1973).

5} R.S.Boyer and J.5.Moore: The Sharing of Structure in Theorem

—— e - o

Press ([1872).

6} M.van Caneghem: PROLOG II Manuel D'Utilisalion, Groupe

d'Intelligence Artificielle, Marseille-Luminy (1882).

<operator definition> ==

<operator kind> <operators> { <precedence definition> }
<operator kind> == “prefix” | "infix" | "postfix”

<precedence decfinition> ==

<precedence relation> [<direction>] <operators>

<precedence relation> == ‘precedes’ | "is_preceded_by"
<direction> == “left” | right”
<pperators> ==

<operator>

| (" <operator> {"," <ocperator>} ")

Figure 1. Syntax of Operator Definition

<macro definition> ==
<invocation pattern> "=>"
<expanded pattern> { <runtime condition> }

:-" <expansion condition>

<invocation pattern> == <term>

<expanded pattern> == <term>

<runtime condition> =

"when" <generator> | "where” <checker>

{geﬁcrator} = <goal list>
<checker> == <goal list>
<expansion condition> == <body>

Figure 2. Syntax of Macro Definition

Definition:

(X +Y) => Z when +(X,Y, Z);

Invocation in a Body:

CpX YY),

i
i
W

C e #(XL Y, Z), p(2).

Invocation in a Head:
q{X + ‘f} P,
==> giZ) - .., +(X,Y, 2Z);

Figure 3. Definition and Usage of "+"

Definition:

‘(Pattern ! Condition) => Pattern where Condition;-

Usage in a Body:
ot e, M(XTX > 0), ...;

e R T I(X}, X }{]1 -

Usage in a Head:
sS(X'X>0) - ..
==> s(X) - X >0, ..;

Figure 4. Definition and Usage of !

<global data definition> ==

<data name> ":" <global data skeleton>

[=" <initiator>]

<data name> := <simple name>
<global data> = <term>
<initiator> == <body>

Figure 5. Syntax of Global Data Definition

<module definition> :=
‘module” <module name> "is”
[<access declaration> ";"]
[<visibility declaration> ™"]
{ <operator definition> ;" }
{ <entry declaration> 7"}

<definition item> {";" <definition item> } .
<access declaration> := "with” <module name list>
<visibility declaration> == “use” <module name list>

<entry declaration> =
<entry predicate declaration>
| <entry macro declaration>
| <entry global data declaration>
| <entry operator declaration>

| <entry symbol declaration>

Figure 6. Syntax of Module Definition

%% Definition of Module "QUICK_SORT"

To To
To e From "%%" up to the end of line is a comment.

module quick_sort is

%% Access and Visibility Declarations:

To %o

%% Use Entries of the Module "list_handler”
access list_handler:

use list_handler:

%% Entry Declaration: Only one entry "sort”

predicate sort(Original, Sorted);

%% Entry Predicate "sort"
sort({}. [1);
sort([X|L], R) :-
partition(L, X, L1, L2),
sort(L1, R1), sort(L2, R2),
concatenate(R1, R2, R); %% defined in "list_handler”

%% Local Predicate "partition”
partition([X|L], Y, [X|L1], L2) :-
X<Y, partition(L, Y, LI, L2);
partition([X|L], Y, L1, [X|L2]) :-
X>=Y, partition(L, Y, L1, L2);
partition([], _, []. []-

Figure 7. Module Definition Example - Quick-Sort

