ICOT Technical Report: TR-003

TR-003

A Subset of Concurrent Prolog
and Its Interpreter
by
Ehud Y. Shapiro
(Weizmann Institute of Science)

February, 1983

Mita Mokusai RBldg. ZIF {03) 456-3181~5
IGDT 4-28 Mita 1-Chome Telex ICOT J22964
Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

A Subset of Concurrent Prolog
and Jts Interpreter

February, 1883

Ehud Y. Shapiro
The Weizmann Institute of Science
Rebovot 76100, ISRAEL

This is & revised version of
Techpical Report TR-003
ICOT — Institute for New Generation Computer Technology
Mita Kokusai Bldg. 21F, 4-28 Mita 1-Chome
Minazo-ku, Tokyo lle, JAPAN

Table of Contents

Abstract - - . - - -

1 Introduction . . . e e e e e

9 Logic programs anc sequentml P'ru:rlug Coe
9.1 The logic programs computation model

2 An example of & logic program. . . . C .

2. 5 Difference-lists: an example of a logie pmg;rn.mmlng techque
9.4 An example of a computation
2.5 Controlling nondeterminism at the experlqe r:rf -::mnp}eteuess

2.6 Sequential Prolog« . . oo e e

2 Concurrent Prolog . . . -« « « o e o e h e e e
3.1 Basic concepts and s}nta.x .
3.2 A sketch of & distributed Concurrent Pr{alﬂg mterpreter .
3.3 An example of 2 computation .
4 Programming Examples
4.1 Divide and conquer with r:ornmunma.tmn
4.2 Perpetual processes with internal states.
4,3 The readers and writers problem
4.4 An girline reservation systermn. «

4.5 Merging streams

4.6 The MSG message-sending s}stem ..
4.7 A Unix-like shell . .

4.8 Queues.

4.0 A simulator of 2 mulhp'ocessnr Cﬂncurrenf Fro‘og m:u:hme
4.10 Priority queues. . . .

4.11 A spm}lc'

4.12 An bm plementauan o’ *he SGJ‘._I\ d.El-’ -arm schedleg ulzontbm :

4.13 Datallow computations and cyelic communication streams.

5 A certrelizec Concurrent Prolog machine and its Prelog implementation

5.1 Control.
5.2 Unification
5.3 Optimizations. :
6 Comparison with other mncurrent programmmg la.ngu.d,rres
6.1 The relational language of Clark and Gregory .
6.2 Concurrent functional programming languages.
6.3 Dataflow languages .
6.4 Monitors .
6.5 Actors . . .
7 Relation to suquentnl Pmlug
8 Future research ,
Acknowledgements . !
I A Concurrent Prolog mterpreter :
I Some Utilities

o = N N .]

Do oo

on cfa

ED B B B b = e
=1 e BD = =] OB

Cod G D 0 Q2 w3
g o oo o1 D =

P s B = A L B =L T B L TS "N S -
L 3 WY S TR T L R e e o 5 e S

th ooy O
[FER o s]

Program 1:
Program 2:
Program 3:
Program 4:
Program 5:
Program 6:
Program 7:
Program 8:
Program 9:
Program 10:
Program 11:
Program 12:
Program 13:
Program 14:
Program 15:
Program 16:
Program 17:
Program 18:
Program 19:

it

Programs

A Concurrent Prolog implementation of quicksort .

Summing the elements of a stream . .

Numbering the leavesof atree.

Astack process.. o000

Testing balanced hists

An airline reservation system.

Merging two streams

The M3G system

Agqueue e 0. .
A simulator of a multiprocessor Concurrent Prolog machine .
A priority queue (first trial).

A priority queue (second trial).
Aspooler C e e e e e

A SCAN disk-arm scheduler

A simulator of a 10-track disk controller.
Generating the Fibbonachi series
Computing the connected components of a graph. .

A centralized Concurrent Prolog interpreter
Unification of terms with read-only annotations, .

11
16
17
19
20
23
24
28
30
32
37
a7
38

]

43
44
47
41

I'igures

Figure 1: A logic program for quicksort. 5
Figure 2: Concepts of Sequential Prolog a
Figure 3: Concepts of Coneurrent Prolog 10
Figure 4: A schematic solution to the readers and writers problem 22
Figure 5; The M3G system 28
Figure 6: A shell that handles an abort interrupt . . . C 20
Figure 7: A shell that handles background and fu:uregmund pmcc-tses C 20
Figure 8: A multiprocessor Concurrent Prolog machinpe 33

Figure 0: Aspooler Lo 40

A Subset of Concurrent Prolog
and Its Interpreter

Ebud Y. Shapiro
Department of Applied Mathematics

The Weizmann Institute of Science
Rehovot 76100, ISRAEL

Abstract

Concurrent Prolog is & verient of the programming language Prolog, which is
intended to support concurrent programming and parzllel execution. The language
incorporates guarded-command indeterminacy, dataflow-like synchronization, and a
commitment mechanism similar to nested transactions.

This paper reports on a subset of Concurrent Prolog, for which we have developed
a working interpreter. It demonstrates expressive power of the language via Concurrent
Prolog programs that solve benchmark concurrent progr amming problems. It describes
in full detail an interpreter for the language, written in Prolog, which can execute these
prﬂg‘ram&

CR Categories:

Key words and phroses: logic programming, concurrent programming, object-

orinted programming, operating systems.

1. Introduetion

Due to its expressive power, simple semanties, and amensability to efficient
implementation, Prolog is a promising language for a large class of applications. Proleg
also has another, as yet unexploited, aspect: it is a sequential simulation of a parallel
computation model.

There are two reasons for exploiting Prolog's underlying parallelism. One 15 to
improve the performance of Prolog in some of its current applications, pernaps using
novel computer architectures. The other is to incorporate, in the range of Prolog,
applications that require concurrency. Concurrent Prolog is concerned with both.

Concurrent Prolog is currently under design by the author. This paper reports on a

subset of the language for which we have developed a working interpreter. This subset
is a variant of sequential Prolog, but does not contain sequential Prolog properly.

When Japan's Fifth Generation Computers Project chose logic programming as its
basie framework, there was some concern it would have difficulties intezrating ideas and
techniques of object-oriented programming. Our example programs show that
Concurrent Prolog is an object-oriented programming language par ezcellence.

The synchronization mechanism of Coneurrent Prolog — read-only variables — can
be viewed as a generalization of dataflow synchronization [1] from functiona! to
relational languages. It is possible that Concurrent Prolog may be a suilable
programming language for dataflow computers [43, 48]

One need not wait, however, until datallow computers become available. Our
experience with implementing Concurrent Prolog, and the example programs below,
suggest that this language may be & practical programming language for implementing
operating system [unctions even on today's computers.

Two controversial features of sequential Prolog, namely the cut and side-effects, are
cleaned-up in Concurrent Prolog. Concurrent Prolog's commit operator [11] achieves an
effect similar to cuf in increasing the efficiency of the program, but has a cleaner
semanties due to its symmetry, much the same way as Dijkstra’s guarded-command [15]
has a cleaner semantics than the conventional if-then-else construct. Concurrent Prolog
eschews the use of side-effects such as asserf and refracf to implement global data
structures, since they can be implemented by perpetual processes, executing side-elfect
[ree programs.

The paper is organized as follows. Section 2 introduces logic programs and
sequentisl Prolog. Section 3 defines the subset of Concurrent Prolog usad in this paper,
henceforth referred to as Concurrent Prolog, and sketches a distributed interpretation
algorithm for it.

Since the programming style and concepts of Concurrent Prolog are rather different
— both from sequential Prolog and from other concurrent programming Ianguages —
we suspect that the only way to gain a true understanding of the language is to study,
or to develop, Concurrent Prolog solutions to nontrivial concurrent programming
problems. Section 4 includes in full detail several Concurrent Prolog solutions to many
such benchmark problems, including:

e a concurrent implementation of the quicksort algorithm,

a recursive concurrent program for numbering the leaves of a tree,

e an airline reservation program,

s programs for merging streams using various scheduling strategies,

e 2 simple message-sending operating system,

fragments of a Unix-like shell,

-

shared FIFO and priority queues,

e a simulator of a multiprocessor Concurrent Prolog machine,
e nn priority queue based multiple-printers spooler,
an implementation of the SCAN disk-arm scheduling algorithm,

an implementation of a concurrent algorithm for finding the connected
components of a graph.

The programs are concise, elegant, and, once the Concurrent Prolog programming style

is grasped, are also easy to understand.

Instead of studying someone else’'s programs, one is better off trying to develop
some of his or her own. To facilitate such an endeavor, Section 5 describes a centralized
Concurrent Prolog machine, and its implementation in Prolog-10. The implementation
is 44 lines of code long, and performs about 135 process reductions per CPU second
(LIPS) on a DEC-2060. The initiated reader, who has an access to a Prolog
implementation, is invited to type this interpreter in and gain some first-hand
experience in programming in Concurrent Prolog.

Section 6 compares Concurrent Prolog with other concurrent programming
languages, including the relational language of Clark and Gregory [11}, by which we
were strongly influenced.

Section 7 compares Concurrent Prolog with sequential Prolog, discusses deficiencies
in the subset of Concurrent Prolog described in the paper, and explore possible
extensions to it.

Section 8 explores future research directions relating to econeurrent logic
Programming,.

The listings of the full Conecurrent Prolog interpreter, which contains a trace and
statistics package, together with some utility programs, are included as an appendix.

2. Logic programs and sequential Prolog

2.1. The logic programs computation model

Both sequential and concurrent Prolog are approximations to the computation
model called logic programs. A logic program is a set of universally quantified [irst-
order axioms of the form

A« B, By ... B

n

where the A and the B's are atomic [ormulae, also called alomic goals.” Such a clause
reads “A il B, and B, and ... and B ". A is called the clause’s head and the B's are

called its body.

A computation of a logic program amounts to the construction of a proof of an
existentially quantified conjunctive goal from the axioms. It can bave two results:
suecess or failure. If the computation succeeds, then the values found for the variables
in the initial goal constitute the output of the computation. A goal can have several
successful computations, each resulting in a different output.

The computation progresses via nondeterministic goal reduction: at each step it
has a current goal A;, Ay, ..., A; it arbitrarily chooses a goal A,, for some 1 <i<n; it
then nondeterministically chooses a clause A" — B,, B,, .., B, k20, for which A and
A' are unifisble via & substitution #, and uses this clause to reduce the goal. The
reduced goal is (A,,..., A;_;, By By App i A)8. The computation terminates
when the current goal is empty.

This deseription readily suggests two forms of parallel execution: the reduetion of
several goals in parallel, also called and-parallelism, and a concurrent search of the
computation paths resulting from different nondeterministic choices of the unifiable
clause, also called or-paralleliam.

Different orderings of the goals to be reduced need not be investigated since they
are immaterial to the result of the computation [2]. However, the chosen ordering can
greatly affect the degree of nondeterminism in the computation. Hence the major
concern of a practical logic programming language it to provide the pregrammer with
control facilities with which he can reduce this degree of nondeterminism. Typically,
such facilities enable the programmer to influence both the order in which goals are
reduced, and the clauses they are reduced with.

2.2. An example of a logic program

An example of a logic program that implements a variant of the quickscrt
algorithm is shown in Figure 1.

The program is adapted from the Prolog-10 manual [4], and so are our notational
conventions: Variables begin with an upper-case letter, all other symbols with lower-
case letters. The binary term [X[Y] (read “X cons Y™) denotes the list whose head (car)
is X and tail (cdr) is Y. The term [X, Y]Z] is & shorthand for [X|[Y|Z]] — the list whose
car is X, cadr is Y, and cddr is Z. The constant [] (read “nil") denotes the empty list.

guicksorl{Unsoried, Sorted) :—
gsort{Unsorted, Sorted—[]).

gsort(|X|Unsorted|, Sorfed—Rest) :—
partition(Unsorted, X, Smaller, Larger),
gsort(Smaller, Sorfed—|[X|Sortedl1]},
gsort(Larger, Sorted1—Rest).

gsori(]], Resi—Hest}.

partition([X]|Xe], A, Smaller, [X]Larger]) :—
A<X, partition(Xs, A, Smaller, Larger).
partition([X|Xs], A, | X|Smaller], Larger) :—
Az X, partition(Xs, A, Smaller, Larger).
partition({l, _, [}, [I)-

Figure 1: A logic program for quicksort

Underscore “_" stands for an anonymous variable that occurs only once, and hence

does not deserve a name.

The best way to understand — and to document — a logic program Is to state the
relations it computes. The procedure quicksort{ X, ¥} computes the relation “sorting X
gives Y~ (or, “Y is an ordered permutation of X"). The procedure gsort{X, ¥) computes
the relation “the difference list Y is an ordered permutation of the list 277, pariition{X,
Y, £, W) computes ihe relation “the list Z contains 2ll elements of the list X less than or

-

equal to Y, in the order they appear in Y, and W contains all elements of X greater
than Y, in the order they appear in X",

The first clause of partifion reads, using Lisp jargen, “partitioning a list whose car
is X and cdr ie¢ X¢ according to element A gives the lists Smaller and X cons Larger, if
A is less than X and partitioning X according (o A gives the lists Smaller and Larger™.

Other clauses are read similarly.

2.3. Difference-lists: an example of a logic programming technique

The quicksort progrem illustrates an important logic programming technigue, used
throughout this paper, called difference-lists [12]. A difference-list represents a list L
as the difference between two lists X and Y. As a notational convention, the term X=Y
is used. But since logie programs do not evaluate logical terms, cnly unily them, the

name of the binary functor representing & difference-list can be erbitrary. as long as it 15

used consistently.

Difference-lists increase both the efficiency and brevity of logic programs. They
increase their efficiency since, in some cases, two diflerence lists can be coneatenated in
constant time, and without copying data structures {“comsing”™). A difference list
X1-X?2 is compatible with Y1-¥2 if X2=¥1. Compatible dilference lists can bhe
concatenated using the following single-elause logie program:

concatenate(X=Y, Y=Z, X—2).

concatenate(X, Y, Z) computes the relation “concatenating the difference list X to the
difference list Y is the difference list Z if X and Y are compatible”.

One way to ensure that the twe difference lists X1—X2 and Y1—-12 are compatible
is to keep the value of X2 undetermined. In such a case the concatenate call is executed
in constant time, independent of the length of the lists. I'or example, the result of the
call concatenate(|a, b, ¢|X]=X, [1, 2]=[], ¥) is X=[1, 2] and Y=]a, b, ¢, 1, 2]—]].

Difference-lists increase the brevity of logic programs by eliminating the ueed to
call concatenate explicitly, as in the quicksort example. The unification of the tail of
the first list with the head of the second is done implicitly, by calling them with the
same name, Sorfedl, and the construction of the concatenated list is then immediate.
Hence one would typically find neither the code of nor a call to the concatenate
procedure in a logic program that uses difference lists.

Difference-lists are the logic-programming counterpart of Lisp's rpled [36], which is
also used to concatenate lists in constant time and save “consing”. There is a difference
between the two: the former are side-effect free, and can be discussed in terms of the

abstract computation model, whereas rpled is a destructive operation, which can be
described only by reference to the machine representation of S-expressions.

2.4, An example of a computation

A successful computation of the gquicksort program on the goal
quicksort([2, 1, 8], X) may proceed as follows. First the goal is reduced to
guicksori([2, 1, 3], X—[]) using the only clause of guicksort. Then the recursive clause
of gsort is invoked; this is the only applicable clause, since the head of the second clause
does not unify with the goal. The reduce goal is:

partition([1, 3], 2, Smaller, Larger),
quicksort(Smaller, Sorted—|2|Sortedl]),
quicksort(Larger, Sorted1—[]).

To solve partition{[l, 3], 2, Smaller, Larger) we nondeterministically choose

pariitions’s second clause, and reduce it to 2>1, partition(|3], 2, Smallerl, Larger),
while unifying Smaller with [1]Smailerl]. The > test is solved immediately, assuming
that arithmetic is represented as a large table (simulated by the machine arithmetic
operations, or by a suitable logic program). The recursive call to pariifion is solved by
two more reduections, at the end of which Smaller] is unified with || and Larger with [3].
We next turn to the two recursive calls to gsor{l, which are now instentiated to

gsort([1), Sorted—[2|Sortedl]), gsort([3], Sorted1—[]).

The correct nondeterministic choices result in unifying Sorfed with {1, 2, 3] and Soriedl
with [3], and the computation succeeds, with the variable Sorled in the initial gozl
unified with {1, 2, 3.

2.5. Controlling nondeterminism at the expense of completeness

In the computation of a logic program the order in which subgoals are solved is
immaterial, as long as the correct nondetzrministic choices are made. However, 2
careless ordering in the example computation above may require choosing the values of
X ané Y when solving X>Y, a choice that has a rather large degree of noudeterminism.

To avoid makinz such hopeless choices, practical logie programming languages
enzble the programer to contrel the computation, usually at the expense of the
completeness of the resulting proofl procedure. This incompleteness is not a “bug” in
the design of & logic programmivg language, but a conscious design decicion, whose
motivation follows.

A logic program can be executed in several ways, many of which are eurious, but of
little practical value. For example, the guicksor! logic program czn be run backwards,

and generate all permuistions of a lisi; when lnveked with Its iwo nrguments
(=3

[=
=
(=8
L]
-
m
g
E.
i
_I!'-'."h
-
(=2
T
=
4
i
1]
B
=]
="
T
=
w
iy
Ll
—+
s
an
L1
[£3
M
B
&
4T
B2
=
.
=
n
-
priy
o
e
=
=y
—
L]
na
—
i
ifn
=
]
=g

that one is an ordered permutation of the other.

For the sake of efficiency, practical logic programming languages give up the ability
to make such obscure uses of logic programs. Hence we refer to them as approximations
to the logic programming computstion model. Unfertunately, there are not yet any
mathematically elegant characterizations of these approximations; all that can be said
currently is that a logic program, using an incomplete proof procedure, computes only &
subset of its logical consequences, The precise subset of computable consequences can
be determined ouly by reference io the operational semanties of the Programming
language.

This is in contrast with the abstract logic programs computatior medel, which has

al least two other independent characterizations. Van Emden and Kowalski [17] show
that the smallest interpretation in which a logic program is true equals the subset of its
Herbrand universe on which it succeeds. They also associate a transformation with any
logic program, and show that its least fixpoint is equals its smallest interpretation.
Hence we refer to the smallest interpretation in which a logic program is true as the
‘nterpretation of the program. The price a practical logic programming language pays
for controlling non-determinism is that its programs typically compute only a subset of

their associated interpretations.

2.6. Sequential Prolog

Sequential Prolog is an example of an approximation to the logic programs
computation model, especially designed for eificient execution on a von Neumann
machine. Sequential Prolog uses the order of goals in a clause and the order of clauses
in the program to control the search for a proof. In sequential Prolog the chosen goal is
always the leftmost goal, and the nondeterministic choice of the unifiable clause is
simulated by sequential search and backtracking. Given a goal A, Ay oy A and a
program P, Prolog sequentially searches for the first clause in P whose head unifies with
Aj;, and reduces the goal using this clause. It then tries, in order from left to right, to
solve the reduced goal, accumulating the bindings of variables as it goes along. If the
Prolog interpreter ever fails to solve a goal then it backiracks to the last choice of 2
clause made, resets the bindings made since that choice, and tries the next unifiable
clause. If no choices left the computation fails.

In addition to text order, sequential Prolog uses the cuf symbol “I" to control its
execution. A cut is inserted iz a clause as a goal, and when used decently can be
ignored in the declarative reading of a clause. Operationally, a cut commits the
interpreter to the current execution path and to all choices made since, and including,
the choice of a clause in which the eut ceceurs.

Even though it originated in a rather peculiar computation model, sequential Prolog
exhibits some resemblance to conventional sequential programming languages, as
summarized in Figure 1. This resemblance is partially responsible for our understanding
of how to implement Prolog efficiently on a von Neumann machine [45].

Procedure: List of definite clauses with the same head predicale

Procedure cali: Goal

Binding mechanism daia selection and construction:
Unificaticn

Execution mechanism:
Neondeterministic goal reduction, simulated by sequenial
search and backtracking

Figure 2: Concepts of Sequential Prolog

3. Concurrent Proleg

3.1. Basic concepts and syntax

While eomparing several concurrent programming languares, Breant and Dennis
wrote [9]:

“Several issues must be considered when designing programming languages o
support concurrent computation. Of primary importance is expressive power. The
expressive power of a language, in the context of coneurrent svsiems, means the
form of coneurrent operations, the type of commurication, synchronization. and
nondeterminacy which can be expressed in the langusge. A programming language
which lacks expressive power will force the programmer to reiy on a suiiable set of
operating system routines to implement desired behavior. A properly designed
language, on the other hand, should bhave sufficient rickness to express these
functions directly,”

We claim that the computetional moedel of logie brograms embodiss all
mechanisms necessary for & copcurrent Pprogramming lapguage — ConCUrTENCy.
communication, synchronization, and tndeferminacy. All one needs to do is uncove:

i
fra

them.
A system of processes corresponds io a conjunciive goal, and a uunit goal to a
process. The state of a system is the union of the staies of its processes, where the stole

of a process is the value of its arguments, Apd-paralielism — solving several goals
atiempting

simultaneously — provides the sysiem with concurrency. Os-parailelism
to solve a goul in severs! ways simulteneously —- prevides wach process with the ability
to perform indeterminate aclions. Variables shezed between gosls serve us the process
communicetion mechanism; and the synchronization of processes i a system is done by
denoting which processes can “write” on 2 shared varizble, ie. unify it with 2
nonvarizble term, and which processes can only “read” the content ¢: ¢ zaw

10

Y, ie. can unify X with a nonvariable term T oanly after X's principal functor is
determined, possibly by another process. This analegy is incorporated in Concurrent

Prolog, and is summarized in Figure 3.

System: Conjunctive goal
Process: Unit goal
Process state: Values of arguments

Process computation:
Indeterminate process reduction

Process commmunication:
Unification of shared variables

Frocess synchronization:
Suspending instantiation of undetermined “read-only™ variables

Frocess failure: Goal finite-Tailure

Figure 3: Concepts of Concurrent Prolog

Concurrent Prolog adds two syntactic constructs to logic programs. Read-only
annotation of variables, X?, and the commit operator “|"., Both are used to control the
computation, i.e the construction of a proof, by restricting the order in which goals can
be reduced, and restricting the choice of clauses that can be used to reduce them.

A Concurrent Prolog program is 3 finite set of guarded clauscs. A guarded clause is
2 universally quantified axiom of the form

A=G, Gy, .., G | B,, Bz* o, B_, m, n=0

e
where the G's and the B's are atomic goals. The G's are called the guerd of the clause
and B's are called its body. When the guard is empty the commit operator is omitted.
The clause may econtain variables marked “read-only™.

The commit operator generalizes and cleans sequential Prolog’s cut. Declaratively,
it reads like a conjunction: A is implied by the the G's and the B's. Operationally, a
guarded clause functions similarly to an alternative in a guarded-command [15]. It can
be used to reduce process Al to a system D il A is unifiable with Al and, following the
unification, the system G is invoked and terminates suecessfully.

Program 1 below is a concurrent Prolog implementation of quicksort. It differs
from the logic program in Figure 1 in the read-only annotations that occur in the
recursive calls to gsort and parfifion, and in the commit operator in the recursive

clauses of partition.

1l

{0) guicksori{Unsorted, Sorled) i—
gsort{insorted, Sorled—{]).

(1) gsort{|X|Unsorted], Soried—Rest) :—
partition(Unsoried?, X, Smaller, Larger),
gsort{ Smaller?, Sorted—[X|Sortedl]),
gsort(Larger?, Sortedl—Resi).

(2) gsort([], Rest—HRest).

(1) partition(|X|XNs], A, Smailer, [X]Larger]) :—
A<X | partition(Xs?, A, Smaller, Larger).
(2) partiiion([XjXs], A, [X]|Smaller], Larger) :—
A>X | partition{Xs?, A, Smaller, Larger).
(3) partition([], _,], 1]).

Program 1: A Concurrent Prolog implementzation of quicksort

The unification of terms containiog read-only variables is an extention to normal
unification |39]. The unification of & read-only term X! with 2 term Y is defined as
follows. If Y is non-variable then the unification succeeds only if X is non-variable, and
W and Y are recursively unifiable. If Y is a variable then the unification of X! and Y
succeeds, and the result is a read-only variable. The symmetric algorithm applies to X
and Y7,

In implementation terms, we represent the read-only annotation as a unery functor
written in postfix neiation, and zugmert Prolog's unification sigorithm to bandle this
term specially. The code thsi implements this extended unification algorithm is showe
in Program 18, Section 3.

This definition of unification implies that being “read-only” is not an inherited
property, i.e. variables that occur in a read-only term are not necessarily read-only.
Stating it differently, the scope of a read-only annotation is only the principsl functer of
a term, but not its arguments. This design decision provides Concurrent Prolog with a
unique and powerful object-oriented programming technique, called pariially
determined messages, used and explained in several of the example programs below.

The definition of unificatian also implies that the success of 2 unification may be
time-dependant: = unification that fails now, due Lo violation of a read-only constraint,
mzy suceeed later, sfter the .principal functor of a shared read-cnly variable is
determined by another process, in which this variable does not eccur as read-only.

3.2. A sketch of a distributed Concurrent Prolog interpreter

The execution of a Coneurrent Prolog system S, running a program P, can be
deseribed informally as follows. Each process A in S tries asynchronously to reduce
itsell to other processes, using the clauses in P. A process A can reduce itsell by finding
& clause Al :— G | B whose head Al unifies with 4 and whose guard svstem @
terminates {ollowing that unification. The system S terminates when it is empty. It
may become Empt};hiﬁsume of the clauses in P have empty bodies.

The computationl of & Concurrent Prolog program gives rise to a hierarchy of
svstems. Each process may invoke several guard systems, in zn attempt to find a
reducing clause, and the computation of these guard systems in turn may invoke other
systems. The communication between these systems is governed by the commitment
mechanism. Subsystems spawned by a process A have access only to variables that
oceur in A. As Jong as a process A does pot commit to a reducing clause, these
subsystems can access only read-only variables in A, and all bindings they compute to
variables in A which are not read-only are recorded on privately stored copies of these
variables, which is not accessible outside of that subsystem. Upon commitment to a
clause Al :— G | B, the private copies of variables associated with this clause are unified
against their public counterparts, and if the unification suecceeds the body system B of

the chosen elause replaces A.

A more detailed deseription of a distributed Coneurrent Prolog interpreter uses
three kinds of processes: an and-dispatcher, an or-dispatcher, and a unifier; these
processes should not be confused with the Concurrent Prolog processes themselves,
which are unit goals.

The computation begins with 2 sysitem S of Concurrent Frolog processes, and
progresses via indeterminate process reduction. After an and-dispatcher is invoked with
S, the computation proceeds as follows:

e An and-dispatcher, invoked with a system S, spawns an or-dispatcher for
every Concurrent Prolog proeess 4 in S, and waits for all its child or-
dispatchers to report success. When they do, it reports success and
terminates.

¢ An or-dispalcher, invoked with a Conecurrent 'rolog process A, operates as
follows. For every clause Al :— G | IJ, whose head is potentially unifiable
with A, it invokes a unifier with A and the clause A1 :(— G | B. Following
that the or-dispatcher waits for any of the unifiers to report success. ‘Yhen
nne such report arrives, the or-dispatcher reports success to its parent and-
dispatcher and terminates.

¢ A unt fier, invoked with a Concurrent Prolog process 4 and a guarded-clausc

13

Al :(— G | B, operates as follows. It attempts to unify A4 with A}, storing
bindings made to non read-only variables in A on private storage. 1f and
when successful, 1t invokes an apd-dispatcher witk &, and waits for it to
report success. When this report arrives, the unifier attempts te commit, as
explained below. If the commitment completed successfully it reports
success, but in either case it terminates.

At most one upifier spawned by an or-dispatcher may commit. This mutual-
exclusion can be achieved by standard techniques, e.g. by using & test-and-set hit for
each or-dispatcher in a shared memory model.

To commit, a unifier first has to gain a permission fo do se. The mutual-exclusion
algorithm must guarantee that if at least one unifier wants to commit, than exact!y one
unifier will be given permission to do so. After gaining such =z permission, the unifier
attempts to unify the local copies of its variables against their corresponding elobal
copies. If successful, then the commitment completes suceessfully.

Some ommissions in the above description are zs significant as its comtent. The
abstract computation medel of Concurrent Prolog does not dezl explicitly with process
failure, and identify it with nontermination. The early detection and delstion of failing
processes ¢an be introduced 2s an optimization to the basic model, without affecting its
semantics. Another useful optimization is the deletion of brother unifiers, once the [irst
such process is ready to commit.

When committing, the unifier is not required to perform the unification of the
public and private copies of variable as an “atomic action”. The only requirement ic
that the unification be “correct®, in the senmse that it should not modily alreacy
instantiated variables, which czn be achieved in & shared memory model with 2 test-
and-set primitive.

The intuitive justification for this {reedom is the associativity of unification. I
several processes attempt to unify severzl terms simultanecusly, then their success or
failure is independent of the order in which the bits of unification are attempled. This
is the rationale for Warren's parallel unification algorithm [47]. If the unpification is
bound to fail, it dves not matter which process discovers the failure, since processes that
unify into the same environment must belong to the same conjunctive system, and if
one of thern Tails then the whole conjurclive systems fails anyway.

Since a unification that currently fails may succeed later, the phrase “attempts io
urify” in the description ol a unifier should be interpreted ss 2 continuous activity,
which terminates only upon success. This can be implemented using a busy-waiting
strategy, but several optimizations can be incorporated. Iirst, the reason for the failure

can be diasgnosed. i the failure is nol caused by viclation of read-suly constraints, then

14

it cannot be cured in the [uture, and the process attempting this uniflication can be
deleted. Secondly, more sophisticated waiting techniques can be developed if the
unification fails due to read-only constraints, for example the technique invented by
Alain Colmerauer, described in Section 5.

Qur description of the distributed operational semanties of Concurrent Prolog is
rather informal, and we are investigating ways to make it more precise. Two issues
must be solved in developing & precise semantics to Concurrent Prolog. One is the
meaping of infinite computations. Notions from infinitary logic, 2s proposed by van
Emden, de Lucena [18], and Smyth [42], may be utilized. Another is capturing in the
formalism the time dependant behavior of Concurrent Prolog. It is conceivabie that one

can time-stamp logical terms to achieve this.

3.3. An example of a computation

For example, we trace the execution of the process quicksort([2, 1, 3], X). When

invoked, this process can reduce itsell with Claunse (1) as follows:

quicksort({2, 1, 3], X)) :— gsori([2, 1, 3], X—[])
gsort([2, 1, 3], X—][]) in turn has two clauses, but only Clause (1) unifies, resulting in the
reduction:

gsort([2, 1, 3], X=[]) =

partition([1, 3|1, 2, Y, Z), gsort(}Y1, X—=[2IW]}, gsort(27, W—[]}

The system now contains three processes. The two gsor! processes are suspended,
since they can proceed only by instantiating their first arzument, which are read-only,
either to [|] or to [|. The pariition process, on the other hand, has two unifiable
clauses — (1) and (2). It invokes two systems, for the two guards in these clauses, but
only the first one, 1<3, terminates successfully, and Clause (1) is used:

partition([1, 3]7, 2, [1|X], Y):—partition([3]?, 2, X| ¥)

During this reduction, the [irst argument of the first gsort process is instantiated to
[1]X], so it can proceed:

gsort([11X]7, Y=[2/2]):—

partition(X7, 1, V, W), gsort(V1, Y=|[1|Z1]), gsort{W?, Z1-[2|Z])

However, all three new processes are suspended. The only process that can proceed is
pariition([3]?, 2, X, [3|Y]):
partition([3]?, 2, X, [3|Y]}:—partition{[]?, 2, X, Y)

15

This reduction instantiated the next element on gsort’s input stream, so it cun proceed:

gsorl{|31X]7, Y[}
partition(X7, 3, U, V), geort{L?, Y=[3|Y1]), gsort(VI, Y1-[]}
But, again, all new processes are suspended. All reductions left use unit clauses,
partition([]?, 2, {1, [[:—true
partition([]?, 1, [, [|}i—true
gsort([]?, [1|X]—=[1]A]):—true
gsort({]?, [2]X]—[2|X]):—true

partition({]?, 3, [], []):—true
gsort{[]?, (3] X]—[3[X]):—true
gsort([]?, [I=[):—true
and the computation successfully terminates, with output substitution X=[1, 2, 3|.
The computation of the guicksort program resembles the computation of the
corresponding Lisp program, provided that it uses rpled and Lenient-cone [18].

4. Programming Examples

The power of Concurrent Prolog comes from the rich set of elegant programming
techniques it supports. The example programs below intend to demonstrste some of
them. The tool needed to understand and develop programs written in a high-ievel
language is = mastery of the programming idioms and techniques the programming
language lends itself to. Hence, when describing a program, we also attempt to identify
the programming idioms and paradigms it exemplifies.

All programs numbered “Program n:” lave been debugged and tested using the
interpreter described in Section 5, whose code is included in the appendix. Their code
shown is readily executable without any medifications or additions, unless stated
otherwise, with the mini-interpreter in Program 18, which lacks debugging and statistics
functions. To run interactively, some of these programs need additional terminal
interface software, which is included in the appendix as well.

We tried to follow several notational conventions, demoustrated by the following
Concurrent Prolog program {or summing a stream of integers.

To denote a stream of elements we use the variable name § or the suffix s, Tor

16

sumn(S, Total) :— sum(S?, 0, Total).

sum(|X|Xs|, N, Total) :—
plus(X, N, N1), sum(Xs?, N1, Total).
sum([], NV, V).

Program 2: Summing the elements of a stream

example, a stream of X's is usually denotes by X, as in [X[Xs]. If a tail recursive
(==iterative) program modifies some of its Jocal arguments, then the variable denoting
the modified value has the suffix 1, such as in N1 (a prime N may be better, but is not
supported by the current Prolog-10 syntax).

We use two procedures with the same name but different arities fo initialize the
local variables of a process, and to hide their internal representation from the caller.
Typically, the process with less arguments is invoked, and in turn invokes the other
process with its local variables initializes, as in Program 2.

The read-only annotation in the initialization call sum(57, 0, NN} is not strictly
necessary, if sum(S, N) is always called with § marked as read-only, but serves as an

extra precaution, in case the caller forgets.

4.1, Divide and conguer with communication

The concurrent quicksort program above combines divide-and-conguer with process
communication. In quicksort, however, the “divider” process Is communicating with the
two “conguering” processes, but the latter two do not communicate with each other.

Another algorithm that combines divide-and-conquer with process communication
was suggested by Leslie Lamport [34]. In Lamport's algorithm the “conquering”
processes do communicate. The problem is to number the leaves of a tree; its solution
reads as follows: “The couni algorithm is a recursive concurrent algorithm for

numbering leaves from *left to right”. When called on a node, it does the following:

If the node is a leaf
then Obtain the number of leaves to the left.
Add one to obtain this leaf’s numbher.
Send my number to the leal on the right.
else Call count for each of the sons of this node.
The obvious modifications are made when a node is at the lelt hand or
the right hand edge of the tree...”

We implement the algorithm for binary trees with labeled leaves, constructed from

i
=]

the terms lea fiX) aud free(L, R). The procedure couni(7) is invoked with the tree T
whose leaves are to be numbered. [t then calls an an auxiliary procedure
count{T, N1, N2), whose semantics is “T is a binary itree with leaves numbered
sequentially from N1 to N2-17.

count(T) := count(T, 0, N}.

count(lea fIN), N, N1) :— plus(N, 1, N1).
counl(iree(L, R), N, N2} :(— count{L, N, N1}, count(R, N1, N2).

Program 3: Numbering the leaves of & tree

The process plus(X, Y, Z) computes the relation “X plus Y is 2. It waits untill at
least two of its arguments are determined, then unifies the third with the appropriate
number and terminates. Its implementation is shown in the appendix.

Note that no modifications are needed when the node is at the edge of a tree.

An implementation of Lamport's algorithm in Concurrent And/Cr Programs is

shown in [23].

4.2, Perpetuzal processes with internal states

Traditionally, logic-programming researchers have emphasized the stateless, side-
effect [ree, declarative style of programming in logic. This emphasis is justified when
the problems to be solved ean be stated without referepce (o the state of the
computation, and it helps to show the difference between logic programming and
conventional programming. However, when discussing concurrent computations,
sometimes the very nature of the problem contains reference to the state of the
computation. Hence a slightly different “ideclogy”™ has to be adopted to understand the
role of logic programming in concurrent computations.

In sequential logic programming, the axiom A :— B has, in addition to the
declarative, model-theoretic reading: “A is true il [is true”, also the operational,
problem-reduction reading: “to solve A, solve B”. In concurrent logic programming, 2
third kind of reading is necessary, the behaviorzl reading: “process A can reduce itself
to system B”. Under the behavioral reading, a concurrent logie program simultaneously
provides an axiomatic definition of the possible behaviors of a process, and the “code”
the process is executing.

As demonstrated below, & logic program that implement a concurrent system s

18

stateless, side-effect free, and provides an axiomatic description of a set of legal
behaviors of a system of processes, which have a state. Hence it is meaninglul to talk
about the implementation of processes with states by pure logie programs.

As mentioned earlier, the state of a process is the value of its arguments.
According to the abstract computation model, 2 process cannol actively change its state,
but only reduce itself to other processes. Hence, theoretically, Concurrent Frolog
supports only ephemeral processes whose state is not sell-modifiable. However, both
from an intuitive and an implementation point of view, a process that calls itself
recursively with different arguments can be viewed as a perpetual process that can
change its state. If the implementation incorporates tail-recursion optimization, then
the same process frame may actually be used for the different incarnations of such a

process.
Under the behavioral interpretation, the arguments of the process not shared by
other processes can be viewed as its internal state, since they can neither be accessed
nor modified by other processes. The situation can be surnmarized with the following
“equation”:
Tail recursion + local variables = perpetual processes with internal stales

The ability to implement multiple perpetual processes is one reason for the
increased power of Concurrent Prolog over sequential Prolog. Sequential Prolog can
implement one perpetual process without side-effects, for example a text-editor [48].
However, when multiple independent global objects have to be manipulated, most
programmers in sequential Prolog resort to side-effects to implement them. In
Concurrent Prolog, on the ovher hand, global data-structures are implemented by
multiple perpetual processes in a side-effect free way. Instead of accessing global data
using “read” and “write” operations, messages are sent to the process holding the data,
which in turn informs the sender of the content of the data and/or modifies it,
according to the message, similar to

This approach is similar to the Actors [23] and SmallTalk approach in spirit 29;.
However, in contrast with the pure operational character of other object-oriented
formalisms, the logic preg‘rs.ms- that describe such processes enjoy the
declarative/operational duality that singles out the logic programming solutions to other
computing problems. In particular, the Concurrent Prolog implementation of n
perpetual processes with an internal state resembles the axiomatic definition of an
abstract data type. TFor example, consider the implementation of a stack process in
FProgram 4.

A stack process has two arguments: the first is an input stream; the second stores

L

(0) stack(S) := stack(S7, []).

{1} stack{[pop(X)|S], [X]Xs]) :— stack({5?, Xs).
(2) steck{[push{X)|5], Xs) :— stack(S?, | X]Xs]).
(3) stack([], [])-

Program 4: A stack process.

the stack content, represented as a list of stack elements.

A stack process 1s invoked with the call sfack(S?), where S is the input stream.
Using the first clause in Program 4, it initializes itsell with an empty stack. It then
iterates, processing the messages on its input stream. If no message is availabls, the
process suspends, due to the read-only annotation 57 in the recursive calls to sfack.
Otherwise, one of the following three cases, which correspond the last three clauses in
the program, must apply:

¢ Clause (1) applies if the next message on the input stream is pop(X), and the
stack is nonempty. It unifies X with the top of the stack, and iterates with
the rest of the input stream and the rest of the stack.

» Clause (2) applies il the next message Is push(X). It adds X to the top of

the stark, and iterates with the rest of the input stream and the new stack.

¢ Clause (3) applies if the end of the input stream is reached and the stack is

empty. It simply terminates.

If none of these cases apply, the process fails. In particular, the process fails if the
next message is pop{X) and the stack is empty, or il the end of the input stream ic
reached and the stack is nonempty.

The mecdel-theoretic semantics of the stack program is simple. The interpretanon
of the stack program contains all goals stack(S, []) in whick S is 2 balanced list over the
alphabet pop(X) and push(X), where X ranges over the elements of the Herbrand
universe of Program 4 and pop(X) is considered to be the matching right parenthesis to
push(X), for any term X. The interpretafion also centains ell goals
stack(S, [X1, X2, ..., Xn]), where S is a list that can be balanced by prefixing it with
push(Xn), push(Xn—1), ..., push{X?2), push(X1).

It is easy to augment or modify the stack program. For example, il we want the
stack process to terminate successfully even if the stack is not empty, then the third
clause can be modified to be stack{[], _). The interpretation of the program then grows
to include 2all goals stack(S, []) in which S is a prefix of some balanced list over push{X]}

and pop(X).

20

To make the stack process understand the message is_empiy(X), by unilying \
with frue if the stack is currently empty and with false otherwise, we add the following
two clauses to Program 4:

stack([is _empty(true)|S], [1} (= steck(S7, [}).
stack([is_empty(false)|S], [X]Xs]) :— stack(ST, [X]X]).

Typically, a process sends pop(X) with X undetermined, and waits for ¥ to be
instantiated when the message is processed by the stack. This habit can be made the
rule: we can enforce the sender of a pop(X) message to leave X undetermined, by
replacing the first clause of Program 4 by the clause:

stack({|pop{X7)|S], [X]|Xs]) :— stack(S?, Xs).
If pop(X} is sent with X determined to a stack executing the modified program, then the
stack process fails.
It is not, however, always desirable to enforee this restriction. For example,

Program 5, which tests whether a list (stream) is a balanced list over the zlphabet ("
W, {0, 'Y, would become more cumbersome if this restriction was in effect.

balanced(X) :— balanced(X, Y}, stack({}7).

balanced(["(| X], [push(‘("})|¥]) :— balanced(X7T, T).
balanced(["{ | X], [push("{")|Y]) :— balanced(X7, ¥).
balanced([")’|X], [pop('(")|Y]) :— balaneed(X7, Y).
balanced(["} 1), [pop("{")|¥]) i balanced(X2, Y).
balanced(]], 1]).

Program 5: Testing balanced lists

balanced is invoked with an input stream and then spawns two processes: one
translates the input stream into a stream of stack messages; the other is a stack, which
executes Program 4.

The belonced program can be explained using Actor's jargon [25]. When the
balanced process receives an ('} message, it sends a push((") message to the stack; it
operates similarly on an '{' message. When it receives an ')’ message, it sends a pop(\)
message to the stack, and verifies that X'=""; similarly with '}’. When the end of the
message stream is reached, it terminates, and terminates its communication stream with
the stack. If both processes terminate successfully, then the wheole computation

terminates, and the stream is balapced.

a1

The balanced program fails il the list is not balanced or contains illegal elements,
It is easy to maodifv bulanced so it returns frue if the list 15 balanced, false if it is
imbalaneed, and fails if it contains illegal elements. This can be done by adding arother
argument to the two balanced predicates, replacing the last clause with balanced([],
[{s__empty(Response)], Response), and adding to Program 4 the clauses for is _emply.

This example is a bit contrived, since balanced can be implemented with a local
stack, ratber than with 2 stack process. We leave this as an exercise to the reader.

4.3. The readers and writers problem

Many probilems in which several processes share some resouree can be modeled after
the readers and writers problem [27]. A logie program solution for a specific readers and
writers problem can be obtained by imstantiating the foliowing program scheme, based
on an idea by Bowen and Kowalski [5].

process(| Transaction|S), Data) :--

respond{ Transaclion, Data, NewData) | process(5?, NewDate).

process([], _).
The process process has two arguments: one is a stream of transactions from several
processes, serialized by merge processes (explained below); the other contains the data.
On each transaction, the process respond is invoked with the transactions and the data.
respond returns the modified data, and possibly instantiates undetermined variables in
the message.

The stack program above is an instance of this scheme: push and pop messages
“write” on the shared data, i.e. cause it to be modified, and the is_emply message anly
“reads” the data, withoui modifying it. ‘The stack process responds to the “read’
transaction 1s__empty(X) by instantiating X to true or false; it responds to the "write”
transaction push{X) by adding X to the top of the stack; and it responds to the
“read /write” transaction pop(X) by removing the top element from the stack, and
unifving it with X

This scheme can be improved by distinguishing between “read” transactions thal
only query the data without modifying it, and “write” transactions, which also modily
the data. By doing so, & contiguous sequence of “reads” can be served in parallel, since
the tail recursive call to process can be performed with Dafa rather than with
NewData, and hence need not wait for the completion of respond. Once a “write” 1s
received, however, this optimizaticn cannot be done, since process must iterate with
NewData.

Figure 4 contains a schematic implementation of this solution., assuming that
transactions are either read(Args) or writeArgs).

process(|read(Args)|S], Data) :—

respond(read(Args), Data,), process(S?, Data).
process{|write(Args)|S)], Data) :—

respond(write(Args), Data, NewData) | process(8?, NewData).
process([], _).

Figure 4: A schematic solution to the readers and writers problem
P

4.4. An airline reservation system

A classical instapce of the readers and writers prchblem is the airline reservation
system problem. Bryant and Dennis [0] vused this system as 2 benchmark problem for
comparing different approaches to concurrent programming. We contribute our own
version to the contest.

Their description of the problem reads as follows:

“The process for the airline reservation system contains information about the
flights of a single airline. Initially, each flight has 100 seats available. The system
can accept two kinds of commands. To reserve seats on a flight an agent given the
command (‘reserve’, f, n). I at least n seats are available on flight f, the seats
will be reserved, and the system will respond with the message frue. If that many
seats are not available, the system will respond with the messaze false. To find
out how many seats are available on flight f, a system user given {he command
(“info’, fl. The system will respond with the number of seats which are availabie
on the flight at the time the command is processed.” {from [§] p.430)

Program 6 implements the system, using two primitives procedures:
value(A, N, V), which computes the relation: “the value of the N element of 4 is V7,
and mod: fy{ A, N, V| Al}, which computes the relation “changing the N clement of A
to Vgives 417,

database is the main process. It has twe arguments: an input stream of
transactions, and flight-availability data. Clause (1) handles requests for availability
information. On a message info{ Flight, Seals), it unifies Seals with the number of {ree
seats available on flight Fligh!, and iterates with the rest of the input stream and the
unmodified database. Clause (2) bandles reservation requests. It uses a procedure
reserve(Flignt, Seats, DB, Response, DE1), which unifies Response with true if the
number of available seats in flight Flight is less than or equal to Seats, otherwise it

23

(1) dalabase([in folFlight, Seals)|S], DB} —
velue{ DB, Flight, Seats),
dalabasel 7, DB).

(2) database|[reserve(Flight, Seals, Response)|S], DB) :—
reserve(Flighl, Seals, DB, Responsge, DB1) |
database(57, DBL).

(3) database(]],).

{1) reservel Flight, Seats, DB, Response, DB1) -
value| DB, Flight, FreeSeatfs},
plus(Seats, LeftSeats, FreeSeats),
respond(DB, Le ftSeats, Flight, Response, DE1}.

{1) respond{DB, Seats, Flight, true, DB1) :(—

le(0, Seals) | modify(DB, Flight, Seats, DB1).
(2) respond(DB, Seats, , false, DB) -

lt{Seats, 0] | true.

Program 6: An zairline reservation system.

unifles Response with false. It returps in DB the resulting database. Clause {3)
terminates the process when the end of the input stream is rezched.

The reserve process invokes three concurrent processes. The f{irst ope linds the
number of available seats, the second computes the number of free seats eft if the
request is granted, and the third responds to the request acecordingly. The three
processes are synchronized by the availability of input data. plus waits for velue to
determine the value of FreeSeats, and the guards of respond wait for plus to compuie
Le ftSeats.

The respond procedure has two clavses. Clause (1) returns irue and medifies the
database if the number of seats left after the reservation is granted is greater or equai lo
0. Otherwise, Clause (2] returns failse, without modifying the database.

The process le{ X, Y) suspends untill both of its arguments are determined, and thexn
succeeds or fails according to their values. It is implemented via a call to FPrelog's
arithmetic predicate X<

le(X, Y} :(— wait{X), waif(}) | X<V
where waif(X) is a built-in Concurrent Prolog predicate that waits until As main

functor is determined, then terminates. [ts main use is to interface between Concurrent
Prolog and the underlying Prolog-10, since the latter does not know currently atout

24

read-only variables. A Prolug implementation of waif is shown in the appendix.
The airline reservation system is not very interesting unless it can serve many users
concurrently, This is achieved by merging all sireams of queries of th= clients into one,

as described in the following section.

4.5, Merging streams

Mzany concurrent programming languages use streams 10 SUpport process
communication. Streams are typically introduced as & new data-type, to which
specialized “read” and “write” operations are defined [1, 31]. The main difference
Letween streams and lists is that the former are only partially determined at each point
of the computation. Since partially determined data-structures are supported by Prolog
— both sequential and concurrent — there is no need to introduce a new data-structure
into Prolog in order to implement streams, and the usual list constructors will do
Unification is used te “read”™ or “write” the next stream element, and read-only
annotations distinguish between the “readers” and the “writers” of a stream.

The use of streams was salready demonstrated in the guicksort and balanced
programs above.

A process can have several input and/or output streams, and use them to
communicate with several other processes; but the number of these stream is [ixed for
any given process. It is sometimes convenient to determine or change at runtime the
pumber of processes communicating with another process; this can be achieved by
merging communication streams.

In some languages merge is a built in operator [3]. Logic programs, on the other
hand, can express this function directly, as shown by Clark and Gregory [11]. Program
7 adapts their implementation to Concurrent Prolog.

merge{[X|Xs], Ys, [X]Z3]) :— merge(Xs?, Ys!, Zs).
merge| Xs, [Y]Ye], [¥]Z8]) :— merge(Xse?, Ys?, Zs).
merge| X, [|, Xs).

merge(]], Y, Ys).

Program 7: Merging two streams

It implements the process merge(X, Y, Z}, which computes the relation “Z contains
the elements of X and ¥, preserving the relative order of their elements™.

The read-only annotation on ¥s in the first clause and on Xz in the second clause

24

are superfluous, provided that merge is initially invoked with its two Input streams
annotated read-oniy.

There is an ongoing discussion copeerning the desired properties of a merge
operator, and how it can be specified [37]. Smyth [42], apparently unaware of the work
of Clark and Gregory, has suggested the axioms in Program 7 as a speci fication of 2
fair merge operator, and has shown that this specification has desirable mathematiral
properties, such as commutativity and associativity.

We do not [ind the properties shown by Smyth sufficient, since they do nou
ruarantee bounded-waiting. In other words, given the positions of two elements in zo
input stream, we cannot bound the difference between their positions in the ocutput
stream on the basis of this information alone. In implementation terms, if two elements
are ready in both input stream, them, without any additional information on how the
logic program is executed, we cannot bound the number of merge process reductions
needed for the two elements {o appear in the cutput stream.

However, since for us the logic program is also an implementation of the merge
operator, not only a specification, we can employ information concerning the behavior of
the underlying Concurrent Prolog machine (e.g. fairness of the scheduler) to determine
whether the program achieves the desired effect or not.

Assume that the clauses in the program are ordered (say, by iext order, and

assume that a process A has several clauses A, :— E. 1<i<n, with empty guard whose
head unifies with a process A, at the time A is created. We say that a Copcurrent
Prolog machine (interpreter) is steble if it always chooses the first clause 4, :— B o
reduce A.

A Concurrent Prolog machine for whichi this condition holds if the number of steps
required to unify 4 with A, is less than or equal to those recuired to unify A with A,
for 1<i<n, is called weakly stable. Note that a stable machine is also weakly stable.

Any reasonable centralized Concurrent Prolog interpreter should be stable, unless
one makes a special effort to eliminate this property, as suggested by Dijkstra [15]. For
scample, the interpreter in Program 18 is stable. We suspect that any distributed
Concurrent Prolog machine should be weakly stable, or at least weakly stable with high
probability.

Il the implementation is stable, then the merge program above clearly does not
achieve bounded waiting. If both streams have elements ready, thew the first stream
will alwavs be chosen. When merge(X, ¥, Z) is invoked with X and 17 finite and
determnined, Program 7 running on a stable machine simply concatenates X 10 1. In

extreme cases, when infinite computations are invelved, this behavior canp cause

elements of the second stream to wait indeflinitely before they appear in the autpur
streafm.

Nevertheless, this behavior is desirable in some cases. Since the first stream has
“higher-priority” than the second, this program, or a similar one, can implement
interrupts, where the second stream carries the normal communication, and the first one
carries exceptional communication, which should interrupt the normal execution.
Several such merge processes can he composed to implement interrupfs with different
relative priorities.

However, if a bounded-waiting merce is desirable, it can be implemented in at least
two ways, provided the Coneurrent Prolog machine is at the least weakly stable. Orne is
to alternate priorities between the two streams, an idea suggested by Johnson [30] in the
context of functional concurrent programming, and implemented by the [ollowing
program:

merge(|X]Xs|, Ys, [X]Zs]) :— merge(Ys, Xs?, Zs).

merge(Xs, [Y|Ys], [Y|Zs]) :— merge(Ys?, X5, Zs).
which has base clauses as before. This program alternates priorities between its two
streams. In every reduction the first stream becomes the second, and viee versa. Note
that the priority makes a difference only if both streams hava elements ready; if oniy
one stream is ready, then its elements are moved to the output stream regardless of
priorities.

To fairly merge more than two streams, ome can either compose this merge
program, such as in the system

merge(X1, X2, X), merge(Y1, Y2, Y), merge(X, Y, 2}
or use an n-ary merge. The same priority-based techmique generalizes to merging n
streams, for any fixed n, and the resulting program is a kind of & round-robin streams-
scheduler. Its i" recursive clause is:

merge(X1, X2, .., [X]Xi], ..., Xn, [X]Y5]) =

merge(X2, X3, ..., X717, ..., Xn, X1, Ys).

This program rotates prioritics Between its streams. In each reduction the highest
priority stream becomes the one with the least priority, and all other streams increase
their relative priority by one.

Another strategy to implement a fair merge is to deercase the priority of a stream
that has been “read”. The i** recursive clause in this type of n-ary merge is:

merge(X1, ..., [X]X7], ..., Xn, [X]Y5]) =
merge(X1, ..., Xi—-1, Xi+1, ..., A'n, AW, ¥5).

27

It is easy to show that if the Concurrent Frolog machine is weakly stabile then beth
n-ary merge programs guarantee n-bounded waiting, which means that if the first
element of an input stream is determined, then after at most n reductions of merge this
element will appear in the output stream. The choice between the two strategics is
application 4ependant, but we conjecture that in any reasonable Cooeurrent Prolog
machine the round-robin scheduler would be more efficient, since the other strategy

inspects most often the less busy streams before it finds a stream with an element ready.
We expect these scheduling strategies to be effective even in an implementation
that is weakly stable with high probability only.

4.8, The MS(G message-sending system

A simple application of the merge program is shown by Johnson [30]:

“MSG is a full duplex message sending system for two computer terminals, A and
B. Tnput from A’s (respectively B's) keyboard, K1 (K2} is echoed on A's (D's)
screen, S1 (S2). However, when K1 (K2} issues a “send”, the following form should
be displayed in a timely fashion on S2 (S1)" (from |30], p.15).

The the M3G system is invoked by the call msg{(K1?, 51}, (K27, 52)), and is
implemented by Program & which invokes a system whose configuration is shown in
Figure 5.

The select procedure selects the output streams on which the kevbeard input is
echosd. It uses a a built-in Coneurrent Prolog procedure, di X, ¥) which sueceeds f
and when it is established that X and ¥ are diflerent, i.e. will not unifv. Concurrent
Prolog's dif is a variant of a built-in procedure of Prolog-II [13], which has the same
name; & Frolog implementation of difis included in the appendix. The code needed to
test the MSG system on a single terminal is ineluded in the appendix as well

4.7. A Unix-like shell

The following program fragments implement part of the funetions of the Unix
shell [14].

The shell in Figure 6 receives a stream of commands and executes them. If the
stream contains the abort command control-C, then it aborts the current executicn,
flushes the input stream until after the control-C, and resumes execution from there.
The shell achieves this by racing the two guards. The first tried to solve the commaznd
X: the second to find & control-C in the input stream. The first to succeed commits the

shell to the appropriate action.

28

5
K1
K1t |
» Select — merge
rmE IKE[
Y
K
merge -22 select
4
s2

Figure 5: The MSG system

msg{K1, S1), (K2, S2)) :—
select(K17, K11, K12), seleci(K2?, K22, K21),
merge(K217, K117, S1), merge[K127, K227, 52).

select({send(X)|Xs|, [send(X)|Y3), [X]Zs]) =
select{Xe?, Ys, Zs).

select([X Xs], [X1Ys], Zs) :—
di X, send(__)) | select(Xs?, Ys, Zs).

seleet({],], []).

merge(X,Y,2) -
See Pragram 7.

Program 8: The MSG system

Assuming that the input stream is generated by a user sitting at a terminal, then
such a user can delay typing control-C until he thinks that the pregram X may be

29

shell(|X]Xs}) :— command(X) | shell{Xs?)
shell(Xs) :— control _c[Xs, Ys] | shell(Ys?).

control _c{|X]Xs], Ys) :—
difiX, "1C") | control _e{Xs?, 15).
ccn!rr}!_c{['TC'[Xs]_. Xs).

Figure 6: A she]l that handles an abort interrupt

looping, or discovers that X is not really the program he wanted to run, and type
control-C then.

This program achieves the desired effect only if both guards are executed in
parallel, and hence does not run correctly on our interpreter, as explained in Section 3.
Note that the program works correctly even if one types ahead of the execution speed of
the shell.

Another convenient [eature of the Unix's shell is the ability of the user to specily
that a process should run in the background. This increases the responsiveness of the
system, and enables the user to do other things while non-interactive programs such as a
compiler are running. This behavior is easily achieved in Cenecurrent Prolog, as shown

by the program fragment in Figure 7.

shell{| fg(X)| Xs]) :— command(X) | shell(Xs?).
shell(ibg{X)|Xs]) i—commund{X), shell{Xs?).
shell{]}.

Figure 7: A shell that handles
backeround and foreground processes

The shell assumes that the user’'s commands are tagged either fg or bg. I the
command is intended to be executed in the “foreground”, then the sheli exceutes it as a
guard, and only after it terminates it iterates, ready to receive the next command cn the

input stream. On the other hand, if the command is to be execuied in the background,
the shell spawns it as a brother process, and is immediately available to execute the next
command.

Note that these code fragments do not handle terminal output. Presumably, il o
process is spawned in the background then a third merge process should be invoked to
allow both the she!ll and the background process to communicate with the user.

30

4.8. Queues

Merged streams allow many client processes to share one resource; but when several
client processes want to share several resources effectively, a more complex bulfering
strategy is needed. Such buffering can be cbtained with a simple FIFO queue: a client
who requires the service of a resource enqueues its request. When a resource becomes
available it dequeues the next request from the queue and serves it.

Note that if there is only one resource but many clients ocne can obtain the effect of
a FIFO queve by fairly merging all the requests into one stream, and letiing the
resource serve the requests in the order in which they arrive.

Program 9 is a Concurrent Prolog implementation of a FII'O queue. It handles two
types of messages: enqueue(X), on which it adds X to the tail of the queue, and
dequeue(X) on which it removes the {irst element from the head of the queue and unifies
it with X. It represents the queue using two streams — the Head stream that contains
the dequeued elements, and the Tail stream that contains the enqueved elements. The
content of the gqueue is defined to be the difference between the Head stream and the
Tail stream.

(1) queue(S) :(—
queve(S, X, X).

(2) queue([dequene(X)|S], [X|NewHead), Tail) i~
queue(ST, NewHeed, Tail).

(3) quene([enqueune{X)|5], Head, [X|NewTail]} :—
queue(S?, Head, NewTail).

(4) quen(l, _, _).

Program 9: A queue

Clause (1) initializes the queue with the Head and Tail streams equal and
undetermined. Clause (2} unifies dequeued elements with elements of the Head stream,
and Clause (3) unifies enqueued elements with elements of the Tail stream. Clause (4)
terminates the queue process when the end of the input stream is reached. The read-
only annotation of the stream S in the recursive calls ensures that the queue process
waits for the next message to be determined, and does not decide to enqueue or dequeue
an element on its own.

This program is very concise, and has a simple model theoretic semantics. Iis
interpretation contains all goals queue(S, H, T) such that 8 is a list of terns enqueue(X)

31

and dequeuwe(X}, T equals the list of X's for which engueue(XX) is in § and H vquals the
list of X's for which degueue(X) appears in S, where elements in both lists preserve the
relative order of their corresponding terms in 5. If we restrict the interpretation to
goals in which H=T, as done by the Clause (1), which initializes the queue, then the list
of enqueued elements in S is identical to the list of dequened elements in S, as the
intuitive definition of a queue requires,

Operationally, things are a bit more tricky. . Under the expected use of a queue,
engueue(X) messages are sent with X determined, and dequeue(X) with X undetermired;
typically, the sender of dequeue{X’) waits for X to be determined. Since the Head and
Tail streams are irnitially undetermined and equal, then as long 2s more elements are
enqueuned then dequeued, the Tail stream rups ahead of the Head, and the dilference
between the two are exactly the elementis that were enqueued but not dequeuved yet
However, ii the number of degueue messages received exceeds that of enqueue messages,
then an interesting thing happens — the content of the queue becomes “negative”, The
Head runs ahead of the Tail, resulting in the queue containing a negative sequence of
undetermined elements, one for each excessive degueue message. Although the queuc
process serves each dequeue(X) message as it comes, if the queue is empty it does not
unify X with a concrete element, but only generates another undetermined stream
element. When enough enqueue messages are received, the Tail will reach this element,
and upify it with the pext enqueued element.

In Lisp implementation jargon, Head and Tail are pointers to cons cells of the same
list. An engueue message advances the Tail pointer by one, and a deguewe message
advances the Head pointer by one. When the Head pointer overtakes the Tail, it starts
allocating cons cells, and upify their car with the undetermined variables X in the
messages degueve(). When the Tail pointer is advances it unifies the car fileds of
these cells with the enqueued elements.

It is interesting to observe that this behavior is compatibie with common preperties
of queues, such as the associalivity of queue concatenation. The concatenation of the
two difference lists X—1 and Y—Z is defined to he X—Z. Il we concatenate a gueue
XN—[X1, X2, X3|X] which contains minus three undetermined elements with a queut
la, b, ¢, d, e]¥Y]—Y which contains five elements, than the resuit will be the queuc [,
e|¥]—Y with two elements, where the “negative” elements [X1, X2, X3] are unified with
la, b, €.

All this behavior is transparent to the user of a quene, A sender of a dequeue[Y)
messages does not know whether X becomes determined when the queue process bas

actuzlly received this messzge or & bit leter, when enough engueue messages have

a2
arrived.

4.0. A simulator of a multiprocessor Concurrent Prolog machine

The simulator of a multiprocessor concurrent FProlog machine in Program 10 is ao
exercise in utilizing the queue and merge programs. The simulator is invoked with a
number N and a process A. It constructs a system of one queue, /N processor-
simulators, and a balanced-tree shaped network of 2N=1 merge processes that support
the communication between the processors and the queue.

processors(N, X) :(—
queve(ST, [X|Xs], Xs), processors(l, N, §).

processors(N, N, Q) i—
processor{ N, {rue, Q).
processors(N1, N4, @) :—
N2 is (N1+NN4)/2, N3 is N2+1 |
processors(N1, N2, @1),
processors(N3, N4, Q2),

merge(Q1?, @27, Q).

processor{ N, true, [dequeue(X)|Q]) :—
processor{ N, X7, Q).
processor{ N, (A, B), lenqueue(A)|Q]) :—
processor{ N, B, Q).
processor{ N, suspended(A), [dequeve(B), engueve(A)|Q]) :—
processor{ N, B?, Q).
processor{ N, A, Q) :—
preduce(A, B) | processor{N, B, @).

preduce(A, B) :—
wait(A, Al) | call(reduce(Al, B)).

Program 10: A simulator of a multiprocessor Concurrent Prolog machine

Each processor is invoked with an identifier N, a goal frue, and communicalion
stream @ to a queue. A processor implements the following algorithm:

e If its goal is true it sends a dequeue(X) message to the queue and iterates
with X,

43

e I ils goal is {5, C) then it enqueues B and iterates with C.
o I[its goal is suspended{A) is it sends ap enqueue(A)] message and a
dequeue| B) messege to the queue and iterates with B.

e I its goal is reducible to B then it iterates with B.

Program 10 abstracts away the management of the binding environment, and deals only
with the flow of contrel. The Prolog procedure reduce belongs to the underlyinz
concurrent Prolog interpreter, explained in Section 5. waif(X, X1} is like waif{X],
except that it returns in N1 the result of peeling-off all read-only annotations from the
main functor of X,

A window-manager system, written in Concurrent Prolog, was used to animate the
behavior of the simulator. We have impiemented a program that runs each processor ic
a separate window, and shows the progress of the computation. It creates a recursive
structure of windows, depending on the number of processors in the network, as shown
in Figure 8, and shows the progress of each processor, and the content of the

communication streams and the queue.

queve

merge

merge

merge

processor processor processor

processor

Figure B: A multiprocessor Concurrent Prolog machine

The window system will be described in a subsequent paper. Unfortunately,

34

current publication techniques do not suppeort such animations. Hence we settle for a
more static deseription of a computation of the simulator.

In the trace below the messages from the N*® processor are:

dequene(N): A The proecessor requests a new process from the quene since its current
process A cannot be reduced any further, either because A is frue or
because it is suspended.

enqueue(N): A The processor enqueued process A, since it has more than one process.
reduction(N): A:—B
The processor reduced process A to system B.

We invoke the Concurrent Prolog interpreter of the aprendix with the call to the
simulator to solve the goal gsort([2, 1], X) with four processors.

| 1— solve{processors(4, gsort([2, 1, 3], X))).

dequeue(l): true
dequeue(2): true
dequeue(3): true
dequeue(4): lrue
First the four processors complete the solution of the goal frue they where invoked
with, and send a dequeue message to the queue.
reduce(l): gsort({2, 1, 3], X)? :—gsortl(]2, 1, 3], X—[])
reduce(l): gsortl([2, 1, 3], X=[}):—
partition([1, 3]7, 2, Y, Z), gsort1(}?, X—[2|W]), gsoril{ 27, W=]])
FProcessor 1 received the input goal, it reduced it twice, and now it enqueues two
out of three new processes.
enqueue(1): partition((1, 3]7, 2, X, Y)
enquene(1): gsorll(X7, ¥Y=[2]2])
Processor 3 received the process enqueued by 1, and reduces it:
reduce(3): (partiltion([1, 3|1, 2, [1]X], Y)? :—partition([3]7, 2, X,)]
As g result the second process enqueued by Processor 1 and dequeued by Processor 2
becomes reducible:
reduce(2): (gsortl{[1|X]?, Y—[2|2]}7 :—
partition(X7, 1, V| W), gsort1(V?, Y=[1|Z1]), gsortl(W?, Z1—[2|Z]))
Processor 3 completes the reduction, while 1 enqueucs its suspended process and request
a new one and reduces it, and 2 enqueues two of the three processes in its system.

reduce{3): (purtifion(i3}?, 2. X, [3]Y}h—partition([]?, 2, X ¥))
dequeue(1): gsort1{|3| X7, Y=
engueue(2): partition(X7, 1, } Z)
reduce(3): (partition(]]?, 2, [, [j}:—{rue)
reduce(1): (gsort1([3]?, X=[))7 :—
partition([]?, 3, ¥, Z), geort1(}7, A—[3|W]), gsort1(Z7, W— -1
srgueue(2): geortl{ X7, Y=[1]21)
degueueld): frue

following that zli that remain are processes that reduce themselves to frue:

reduce(4): (partition([]?, 1, [|, [|}? :—true}

engueuel 1): partition([]?, 3, X, ¥}

reduce(2): (gsort1([]?, [2|1X]—[2]X]):—true)

reduce(3): (gsortl((]1, [1, 21X7—[1, 21X])? :—truve)

dequeue(4): {rue

enqueue(1): gsortl{ X7, Y=([3[Z]}

dequeune(2): true

dequeue(3): irue

reduce(4): (partition([}?, 3, [, [|)? :—true)

reduce(1): (gsort)([]?, [|—[]):—true)

reduce(3): (gsorf1{[]?, [3]—{3])7 :=frue)

dequeue(4): frue

dequeue(l): true

dequeue(d): irue
Now all processors have sent a dequeue message to the queuve and wail for its respounse,
but the queve is empty. This deadlock is detected by the interpreter, which terminates
and presents the locked processes and their interconnections, Note that the queue has
minus four elements, one of every unsatisfied dequeue request {rom a processor.

*** cycles: 17

*** Deadlock detecied. Locked processes:
processor(l, X7, 1)

proceasor{2, £7, L)

merge(L7, Y7, X1)

processor(3, Y11, Z1)

processor(4, U1, V1)

merge(V17, 217, Y2}

merge(X17, Y27, V2

queue(V27, X3, [Z, U1, X, Y1|X3]}

The interpreter also provides some statistics on the execution of each process:

30

enqueue(l): 4
enguene(2). 2
dequeue(l): 3
dequeue(2): 2
. 4
) 3

reduce({l): 5
reduce(2): 2
reducel3): 5
reduce{4): 2

which shows that the load of work was fairly balanced between the processors,
considering the small size of the example. Statistics on the behavier of the interpreter
— how many reductions and suspension occured at each level of process invocation —
are also provided:

reduclion(l): 180

reduction(2). 37

suspension(l): 83

suspension(2): 20
The rate of suspensions to reductions measures the scheduling overhead. In this
example it is close to 509¢. Finally, we also get the output of the computation, which is
X=11,273.

4.10. Priority queues

A priority queue require a different representation from a FIFO queue since it needs
to be manipulated explicitly. In the following example a priority queue Is represented as
a list of pairs (X, P), where X is the element and P is its associated priority. On
enqueve(X, P) the queue process inserts X to the list according to its priority; on
dequeue(X) it removes X from the head of the list. Program 11 was our first attempt at
implementing a priority queue.

Although this program looks benign, it has 2 serious bug. The reader may wish to
meditate on the program, trying to {ind the bug (or, alternatively, prove the program
correct) before proceeding.

The queue process will fail if its next message is dequeue(X) and the list
representing the queue is empty: only Clause (2) handles 2 dequeue message, and it
attempts to unify the second argument of gueue with a nonempty list. One wonld like
in this case to suspend processing the degueue messages until an engueue message

(1) queue(S) — gqueuwe(S?, []).

(2) queue({deguene(X)|S), (X, _)Q)) -
queue(S?, Q).

(3] queue{[engueue(X, P)|S], @) :—
inserl((X, P), @7, Q1), queue(ST, Q1).

(4) queuel([], _).

(1) insert{(X, P), {{(X1, P1)|Q], [(X, P), (X1, P1)|Q]} :=
P<Pl | true.

(2) incert({.X, P), (X1, P1)IQ], (X1, P1)]@1]} :—
Pl<F| insert((X, F), @1, Q1).

(8) insert((X, P), [}, |(X, P)).

Program 11: A priority queue (first trial)

arrives, and process the enqueue message first. This can be attained by splitting the
requests into two stream, one for enqueue and one for dequeve messages, as done in
Program 12. The new implementation serves dequeue messages only il its queue is
nonempty; otherwise it waits for an engueue message.

(1) queue{Es, Ds) :— quene(Es?, Ds?, [}).

(2) quene(Fs, [dequene{X)|De], (X,)|Q]) :—
queue(fs, Dst, Q).

(3) queue([enqueue(X, PJ|Es], Ds, Q) -
insert((X, P), @7, Q1), quene{Fs?, De, Q1).

(4) queve([], [, _)-

insert{ X, @, Q1) :—
See Program 11.

Program 12: A priority queue (second trial)

Clause (1) initializes the empty queue. Clause {2) handles the case in which the
queue is nonempty and a degueue message is ready. Clause (3) handles ready engueue
messages, and Clause (4) terminates the process if the end of the two streams is reached.

This type of priority queue is used in the implementation of the disk-arm scheduler
described below. A more efficient priority gueue ¢an be obtained using balanced trees.

2B

4.11. A spooler

Arvind and Brock [3] describe an implementation of a priority printer manager. It
manages one printer by maintaining two queues, a fast queue for small files, and a slow
gueue for large files. It prints the [iles on the prinier, giving priority to the fast queue,
and sends back a confirmation when the printing is completed.

Hewitt et al. [26] describe an Actors implementation of a hard-copy server. Tt
manages two printers, but does so with no priority considerations.

Program 13 combines the functionality of the two svstems, and does so in a more
concise and elegant form. Instead of two queues is manages a priority queue, which
provides a more reflined response. It follows the approach of Arvind and Brock [3] and
treats system [/O in a side-effect free way, by identifying /O devices with the streams
they produce or consume. It is initialized with communication streams corresponding io
its external I/O devices: in our example two printers and an interface to the users. The
users can share the spooler by merging their streams.

The users of the system send messages print(File, Response) to the spooler. A
simple filter wraps these messages with engueue, adds to them their prierity, which is
the size of the file, and sends them to a priority queue. Upon termination it puts two
halt messages in the queue, one for each printer.

A printer-controller process sends the queue a stream of
dequeuve(print(File, Response)) messages, with File and Response undetermined. For
ezch such message the printer waits for File to be determined, prints it, and unifies
Response with true. The printer-controller terminates and closes its [/O streams when
File=halt. In the above example the halt message is sent with priority 0, which means
that the printers will halt immediately after finishiug printing the current file, and that
all files awaiting printing in the queue will be flushed. This behavior can be modified
by changing the priority of the halt message; setting it to 1000 will cause the printers Lo
halt only after all files in the queue of size<1000 have been printed.

4.12. An implementation of the SCAN disk-arm scheduling algorithm

The goal of a disk-arm scheduler is to satisfy disk /O requests with minimal arm
movements. The simplest algorithm is to serve the next I/O request which refers to the
track closest to the current arm position. This algorithm may result in unbounded
waiting — a disk I/O request may be postponed indefinitely. The SCAN algorithm tries
to minimize the arm movement, while guaranteeing bounded waiting. The algorithm
reads as {ollows:

30

spooler{(P1, P2), U7} :—
filter{UT, U1},
printer{D1, P1), printer{ D2, F1), merge{ D11, D2?, D),
quene(U17, D).

filter{[print(F, R)|S|, [enqueuve(print{F, k), Size)|S1]) -~
length(F, Size) | filter 57, 51).
filter{]|, [enqueue(print{halt, __)0), enqueue{prinilhall, _)0)]).

printer{|dequeve{print({file, Response))|S], P) :—
printe-1{File!, Response, S, F).

printerl(File, irue, [dequeve(print(Filel, R1))|8], P) :—
di f{ File, hall), print(File, P, P1) | printerl(Filel?, R1, S, P1).
printerl{halt, true,], []).

print(l], [end _of _file]F], P).
print([X]Xs], [X|P1), P) :—
prini(Xs?, FP1, F}.

queue(Es, Ds) :—
See Program 12.

Program 13: A spooler

“while there remain requests in the current direction, the disk arm continues to
move in that direction, serving the request(s) at the nearest cylinder; if there are no
pending requests in that direction (possibly because an edge of the disk surface has
been encourtered), the arm direction changes, and the disk arm begins its sweep
across the surface in the opposite direction”. (from [28] p.64).

The disk scheduler has two input streams — a stream of 1/O requests from the
user(s) of the disk, and a siream of partially determined message from the disk itsell.
The scheduler has two priority queues, represented as lists: one for requests to be
served at the upsweep of the arm, and one for the requests o he served at the
downsweep. It represents the arm state with the pair (Track, Direction), where Track is
the current track number, and Direction is up or down.

The disk scheduler is invoked with the goal:
disk __scheduler{ DiskS?, User5?)

where UserS is a stream of I/O requests from the user(s) of the disk, and DiskS Is &

40

queue

filter

merge merge

[N/

user | user 2 printer | | printer

vt

Figure 9: A spooler

stream of peartially determined messages from the disk controller. I/O requests are of
the form fo(Track, Args), where Track is the track number and Args contain all other

pecessary information.
The first step of the scheduler is to initialize itsell with two empty queues and the
arm positioned on track 0, ready for an upsweep; this is done with Clause (0}.

After the initialization, the scheduler proceeds using three clauses:

e Clause (1) handles requests from the disk. If such a request is ready in the
disk stream, the scheduler tries to dequeue the next request {rom one of the
queues. If successful, that request is unified with the disk request, end the
scheduler iterates with the rest of the disk stream, the new queues, and the
new arm state. The dequeue operation [ails if both queues are empty

¢ Clause (2) handles requests from the user. If an 1/O request is received from
the user it is enqueued in one of the queues, and the scheduler iterates with
the rest of the user stream and the new gueues.

e Clause (3) terminates the scheduler, if the end of the user stream is reached
and if both queues are empty. Upon termination, the scheduler send a "halt’
message to the disk controller.

41

(0} disk _scheduler(DiskS, UserS} :—
disk _scheduler{ DiskS?, UserS?, ([}, []), (0, up)).

(1) disk _scheduler{|Request|DiskS], UserS, Queues, ArmStale)
dequeuve(Request, Queuves, Queuesl, ArmState, ArmStatel) |
dfs#_schﬂfufar{ﬂisk.‘i'?, UserS, Queuesl, ArmSlatel).

(2) disk _scheduler{DiskS, [Request|{UserS), Queues, ArmStele) .-
enqueue(Request, Queues, Queuvesl, ArmStale) |
disk scheduler{DiskS, UserSl, Queuesl, ArmState).

(3} disk _scheduler{[io(0, halt)] _], [}, ([}, [}, _)

(1) dequene(io(T,X), ([io(TX)UPQLL), (UpQD): _, (T:up).

(2) dequeue(io(T.X), ([io(T.X)\UpQ], DownQ), (UsQ,DownQ), (_,up), (T:up)).

(3) dequeue(io(T.X), ([}, [io(T,X)|DounQ]), (I,DownQ), _, (T,down)).

(4) dequeue(io(T,X), (Up@,[1o(T.X)|Down@]), (UpQ Down@), [, down), (T.down}).

(1) engueue(io(T, Args), (UpQ, Down@), ([1o(T, Args)|UpQ|, Down@), (T, down}}.
(2) engueuelio(T, Args), (UpQ), Doun@Q), (UpQ, [io(T, Args)[Doun@]}, (T, up)).
(3) engueuelio{T, Args), (UpQ, Doun@), (UpQ1, Down@Q}, (T1, Dir}) :—

T>T1 | insert(io(T, Args), UpQ, UpQ@1, up).
(4) enqueue(io(T, Args), (UpQ, Douwn@), (UpQ, Down@1), (T1, Dir)) :—

T<Tl | insert(io{T, Args), Down@Q, DownQ1, down).

(1) insert(io(T, X), [}, [io(T, X)], _).

(2) fnsert(io(T, X), [io{TL. X1)|Q], [ie(T; X), io(T1, X1)|Q], up) :—
T<T1 | true.

(3) insert(io(T, X}, [io(T1, X1)|Q], [io(T, X), i0(T1, X1)IQ], down) :—
T>T1 | true.

(4) insert(io(T, X), [io(T1, X1)|Q], [io(T1, X1}|Q1], up) :—
T>11 | inseri{io(T, X), @, @1, up).

(5) insert{io(T, X), [{o(T1, X1)|Q], [ie(T1, X1)|Q1], down] :—
T<T1 | insert(iolT, X}, @, @1, doum).

Program 14: A SCAN disk-arm scheduler

The dequene procedure has clauses for each of the following four cases:

o Clause (1); If Down@ is empty then, it dequeues the first request in Up@,
and changes the new state is an upsweep, were the track number is the track
of the I/O request.

e Clause (2): If the arm is on the upsweep and UpQ@ is nonempty then it

42

dequeues the first request in UpQ). The new state is as in the previous
clause.

e Clauses (3) and {4): Are the symmetric cases for Down(@.

Note that no clause applies if both queues are empty, hence in such a case the
degqueue procedure fails. Since the disk scheduler invokes dequeve as a guard, it must
wait in this case for the next user request, and use Clause (3) to enqueue it. If such a
request is received and enqueued then in the next iteration the disk request can be
served.

The enquene procedure also handles four cases. If the I/O request refers to the
current arm track, than according to the SCAN algorithm it must be postponed to the
next sweep. Clauses (1) and (2) handle this situation for the upsweep and downswee
cases. If the request refers to a track number larger than the current track, than it is
inserted to UpQ@ by Clause (3), otherwise it is inserted to Down@, by Clause (4).

The insertion operation is & slight augmentation to the priority queue insertion of
Program 12.

To test the disk scheduler, we have implemented a sirnulstor for & 10-track disk
controller. The controller sends a stream of partially determined I/O requests, and,
when the arguments of the previous request becomes determined, it serves it and sends

the next request.

(0) disk _coniroller{[io(Track, Args)|S]) :—
disk _controller(Track?, Arge?, S,[0,0,0,0,0,0,0,0,0, 0]}

(1) dick controller(Track, Args, [{o(Trackl, Argsl)|S), D) :—
disk{Track, Args, D, D1) | disk__controller{Trackl?, Argsl?, S D1].
(2) disk _controller{ _, halt [I, _}.

(1) disk{ _, (_, false), [], []).

(2) disk{0, (read(X), true), [X] D], [X]D]).

(3) disk(0, (write(X), true), |__|D], [X1D])

(4) disk(N1, IO, |X|D), [X|D1)) :—
plus(N, 1, N1) | disk(N, IO, D, D1).

Program 15: A simulator of & 10-track disk controller

When invoked with a stream S, the controller initializes the disk content and sends the
first request using Clause (0). It then iterates with Clause (1), serving the previous I/C

43

request and sending the next partially determined request, uniil a hall message is
received, upon which it closes its output stream and terminates, using Clause (2],

The disk simulator assumes that the arguments of an I/C request are pairs
(Operation, ResuliCode), where the operations are read(X) and write(X). On read| V)
Clause {2) unifies X with the content of the requested track number. On wrifelX)
Clause (3) replaces the requested track content with X. The FesultCode is unified with
true if the operation completed successfully (Clauses (2} and (3)), and with false
otherwise (Clause (1}). An example of an unsuccessiul completion is when ibe requestec
track number exceeds the size of the disk.

An additional interface that transforms normal terminal I/O into stream I/O was
developed, and is shown in the appendix. Together these programs were debugged and

tested using the interpreter described in Seection 5.

4.13. Dataflow computations and cyclic communication streams

Cyeclic communication streams are commonly used in dataflow languages. A
classical example is a dataflow program that computes the I'ibbonachi series, by cycling
the elements and adding each two consecutive elements to generate the following

element [44]. A similar (nonterminating) Coneurrent Prolog program is shown below.

Jib(S) = fit1([o0, 1]5]).

SibL{[X1, X2, X3| X6} — plus(X1, X2, X3), fibl([X2, X3|Xs]).

Program 16: Generating the Fibbonachi series

The Fibbonachi program does not use explicitly cyclic communication stream. A
logic program that uses cyclic communication streams was developed by van Emden and
de Lucena [16], as solution to Hamming's problem [15] — generate all multiples of 2, 3,
and 5 without repetition. Their solution, adapted to Concurrent Prolog, was tested
using our interpreter and wes found to work. Here we apply the same programming
technique to another problem — finding the connected components of a graph. We
associate with each node in the graph a distinct integer number. The name of 2
connected component is the smallest number of any node in the component. The
algorithm, for a graph with vertices V is:

44

For each node n in V do

Set Xn to n.

Repeat {V| times:
Send Xn to all nodes adjacent to n,
Receive a number from every adjacent node,
Let Xn' be the minimum of Xn and the numbers received.
Set Xn to Xn'.

Set n's connected component number to Xn.

The algorithm is not very efficient. For an n-vertex graph its computation depth is
in the order of n, and its length is in the order of n- [40j. This means, roughly, that
given n processors, the algorithm runs in linear time. Better parallel algorithms are

known [41], but this algorithm — and its implementation — are certainly the simplest.

Program 17 assumes a specialized adjacency list representation of the graph. With
each node N we associate a stream variable Xn. The graph is represented as 2 list of n
triples (N, Xn, As), where N is the node number, Xn is its associated stream variable,
and As is a list of the stream variables associated with the nodes adjacent.to N. Givez
this graph, the program computes a list of pairs (N, C), where C is the name of the
connected component of the node N.

(1) ec{Graph, CList) :—
ce{Graph, Graph, CList).

(2) ec(Graph, [(V, [NXn], A¢)Gs), [(N, CHCs]) -
node(Graph, N, Xn, As, C),
ce{Graph, G's, Cs).

(3) eel_, 0, D)

(1) node{| _|G},-Xn, [Xn1|Xns], As, C} :—
min(Xn, As?, Xnl, Asl), node(G, Xnl, Xns, Asl, C).

(2) node([], C, [I, _, C).

(1) min{Xn, |[B|Bs]|As], Xnl, [Bs|Asl]) :—
l{Xn, B) | min(Xn, As?, Xnl, Asl).
(2) min{Xn, [[B|Bs]|As], Xnl, [Bs[Asl]) :—
le(B, Xn) | min(B, As?, Xnl, Asl).
(3) min(Xn,], Xn, [1).

Pregram 17: Computing the connected components of a graph

45

Clauses (1)-(3) spawn a node process for each node in V; note that they generates
the stream of pairs (N, C) before the component name C of each node is determined.

Each node process has four arguments. The first 1s the graph itself, which it uses
to eoupt |V] iterations. Foliowing are the Xn variable explained above, the list of
streams of adjacent nodes, and the node's final component number. The node process
iterates |V] times, using Clause (1}, and on each iteration performs the operations
described above.

The min process extracts the smallest element among all the first elements of ilie
adjacent streams and the current node number, and returns a list of the rest of the
streams.

For example, if we invoke the program on the 7-vertex eraph in which 1 is
connected to 2 and 3, 2 is connected to 4, 5 is connected to no one, and B is connected
to itself and to 7, we get the [ollowing result:

| 1— solve(ce([(1, X1, [X2, X3]), (2, X2, [X1, X4]), (3, X3, [X1]), (4, X4, [X2]),

| (5, X5, [1), (6, X6, [X8, X7]), (7, AT, [XE]]}, Cs}).

I

Cs = [(1, 1), (2, 1), (3, 1), (4, 1), (5, 5), (6, 6), (7, B],
X1={1,1,1,111,11]

X2=121,1, 1,1,1,1,1]
X3=1[31,1,1,1,1,1,1],
X1=1[4,2,1,1,111 1],
X5 =15,5,5,5,5 5,5 3,
X6 = [8, 6,6, 6,6, 6,6, 8,
X7=17,6,6,6,6, 6,6, 8]

which shows, in addition to the component numbers, also at whizh cvele each pode
discovered its correct component name. We see that after three eycles every pode knew
its final component name.

A program for distributed array relaxation can be obtained following the same
technique. Adjacent array cells are connected by communication streams, and 2
procedure that computes some ayerage function replaces the min procedure. Thz
termination condition of an array relaxation program is more difficult: =2 trec-shaped
network of control processes that monitor the progress of each cell is spawned. Each
leal control-process propagates continue or halt tokens up the tree, depending on
whether the cell it monitors has converged. Each internal countrol-processes or's the,
continue tokens: il all control-processes agree that it is time to halt, a halt message Is
sent to every cell process, and the current value of the cell is its output.

40

5. A centralized Concurrent Prolog machine and its Prolog
implementation

The centralized Concurrent Prolog interpreter in Program 18 is a simplilication of
the interpreter in the sppendix, which we used to develop and debug the programs
deseribed in the paper. It is 44 lines of code long, and it performs about 135 process
reductions per CPU second on a DEC 2060.

5.1. Control

The interpreter maintzins two data structures: 2 queue of Concurrezt Prolog
processes, and a deadlock indicator. When invoked with a system of processes, the
interpreter schedules the processes in the queue, sets the deadlock indieator on, and
appends to the tail of the queue a cycle marker, used to detect deadlock. It ther
iterates, dequeveing a process, reducing it, and inserting the reduced system of processes
into the queue, according to the scheduling policy. If a process cannot be reduced then
it is engueued back. If no process in the queue can be reduced then the system is
deadlocked, and the interpreter fails.

Each iteration proceeds as follows: If the queue contains only the cycle marker,
then the interpreter terminates. Otherwise it dequeues an element from the queue. If
that element is the cyele marker and the deadleck indicator is off it engueues the cyele
marker hack, sets the deadlock indicator on, and iterates, [If the ecvele marker is
encountered when the deadlock indicator is on the computation fails.

If the dequeued element is a process then it attempts to reduce it, ns explained
below, and if the reduction is sucecessful, it inserts the newly created processes into the
queue, according to the scheduling policy, and iterates. If the reduction is not successful
then it enqueues the process and iterates.

To reduce a process A, the interpreter sequentially searches through the clauses
Al :— G | B in the program, trying to unily A with Al and, if successiul, to sclve the
guard by calling itsell recursively with G. If it finds such a clavse then the reduced
system is B. Standard indexing mechanisms can be used to focus the search for a
unifiable c¢lause.

The overhead of a scheduling policy is measured by the ratio of unsuccessful vs.
successful reductions. We have experimented with a variety of scheduling policies,
including depth-first, breadth-first, and mixed. In depth first scheduling, the reduced
system is added to the head of the queuve. This policy typically has less overhead, but it
is not and-fair, since if the computation is nonterminating then some processes may

solvelA) :—
syslem(A), |, A.

solve(A) :—
schedule(A, X, X, Head, [cyele[Tail}),
solve{Head, Tail, deadlock).

solve{[eyele], [|, _) =L
solve([cycle|Head|, [eycle|Tail], nodeadlock) :— !,
solvelHead, Tail, deadlock).
solve([A|Head], Tail, DL} :—
systemn(A), !, A,
solve|Head, Tatl, nodeadlock).
solve([A|Head|, Tail, DL) =
reduce(A, B, DL, DL1),
schedule{B, Head, Tail, NewHead, NewTail),
!, eclve(NewHead, NewTaidl, DL1).

reduce(A, B, _, nodeadlock) :—
guarded _clause(A, G, B),
solve(G), 1.

reduce(A, suspended(A), DL, DL).

guarded _clause(A, G, B) :—
guarded _clause(A, B1), find _guard(B1, G, B).

find__guard((A|B), A, B} = L
find _guerd({A, irue, A).

schedule(irue, Head, Tail, Head, Tail) .= \.
schedulelsuspended(A), Head, [A|Tail|, Head, Tail) :— .
schedule((A, B), Head, Tail, Head2, Tail2) :— 1,
schedule(A, Head, Tatl, Headl, Taill),
schedule(B, Headl, Taill, Head?2, Tail2).
schedule(A, Head, [A|Tail], Head, Tail).

Program 18: A centralized Concurrent Prolog interpreter

never reach the head of the queue. In breadth first scheduling, implemented in Program
18, the reduced system is added to the tail of the queue. This scheduling policy is fair,
but may have a rather severe overhead. The scheduling overhead in the examples we

48

tried ranged from 0 to 100 percent. For example, in the simulator of the muitiprocessor
reduction machine in Program 10 we used a breadth first scheduler for the processors,
but a depth first scheduler for the communication processes — the merge processes and
the queue. With this policy we obtained a scheduling overhead of 30 percent.

One drawback of this interpretation algoritbm is that it does vt incerporating true
or-parallelism, or, in other words, that it is not or-fair. If there are both nonterminating
and terminating guard systems, the interpreter may fail to solve any of the guards
This interpreter, therefore, does not execute correctly the program in Figure 6, which
implements a shell (“exec”) program that handles an abort interrupt.

If loaded into Prolog-10, or any compatible Frolog implementation, Program 18,
together with the implementation of unification in Program 19 and the guarded clause
procedure described below should execute all Concurrent Prolog programs shown in the
paper. The only additions necessary are a deflinition of the read-only symbel '?" 2: a
postfix unary functor,and a definition of the predicate system(X), which succeeds if X is
a Prolog system predicate. A deflinition of the Concurrent Prolog “built-in™ predicates
watl{ ,) and difl _, _) and of some useful I/O routines is included in the appendix.

The full Concurrent Prolog interpreter shown in the appendix includes also trace
end statistics packages. When compiled, it performs around 100 reductions per CPU

second on 8 DECsystem 2060.

5.2. Unification

The interpreter is so simple partly because it uses Frolog's binding environment in
the implementation of the extended unification algorithm, shown in Program 19. To
understand this program note that semi-colon is Prolog's or; the predicate = is defined
by ihe unit clause N=X; nonvar{X] and wver(X) are built-in Prolog meta-logical
predicates, which succeed if X is instantiated or not instautiated to 2 non-variable term,
respectively: X=.'Y explodes the term X into a list Y whose car is the main lunctor of
X and edr is the list of arguments of X.

Clause (1) deals with the case where one of the terms is a variable, and defaults to
Prolog te do the unification; Clauses (2) and (3) deal with unification of read-only
terms; Clauses (4), (5), and (6) recurse on the structure of the term, il previous clauses
do not apply.

Using this unification procedure and Prolog’s built-in predicates clause and juneclor
we can invoke clauses without instantisting read-only variables, with the procedure
guarded clause:

449

(1) umi fyl X ¥) ==
[var{ X} ; ver{l}), |, A=Y
(2) uni fy(X7, ¥} = |,
nonvar{ X, unifyl X, 1.
(3) unify(X, ¥7):= |,
nonvar(Y), uni fylX, Y}
(4) uni fy([XXs], [YT5]) =1,
uni fy| X, ¥, uni fy{Xs, Ts).
(5) und fyfl], 1]} :—
(8) uni fy(X, ¥) :—
X=..[AXs|, Y=.[F|Ys], unify(Xs, Ys).

Program 19: Unification of terms with read-only annotations.

guarded _clause(A, B) =

functor{A, F, N), funcltor{Al, F, N},

clause(Al, B),

uni fy(A, Al).
funetor{A, F, N) names the relation “A is a term whose principal functor has rame F
and arity N”. When invoked with its first argument A instantiated to a term it unifies
F and N with the name and functor of A. When invoked with F and N ipstantiated it
unifies A with a most general termm whose principal functor bas name F and arity
N. clauselA, B) unifies B with a clause whose head unifies with A; it requires A te be

instantiated to a nonvariable term.

5.3. Optimizations

Several optimizations are essential to make this interpreter a more practical tool
The first is to Incorporate the unification of read-only terms in the underlying
unification alzorithm of Prolog. This can be done easily if one has an access to the
Prolog sources; I do not have access to the Prolog-10 sources, but I have access to people
who have access to the Prolog-10 sources, who may be kind enough to incorporate this
extension. I expect this improvement to result in at least a 5-fold speedup.

Another essential opiimization is the reduction of scheduling overhead U¥
elimination of busy waiting. This can be done using a technique invented by Alai:
Colmerauer, and incorporated in Prolog-Il — an implementation of Prolog on the Apple-
II computer — to implement the “freeze” predicate [13].

The technique is extremely simple and elegant, and escbews the need for glaborate

a0

hardware mechanisms such as associative memory to implement the dataflow-based
synchronization mechanisms of Concurrent Prolog. If one or more processes are waiting
for some variable's principal functor to be determined, then the memory celi
representing this varizble is temporarily assigned to a pointer to the list of these
processes. When another process unifies this variable with a non-variable term, it first
remove this pointer, instantiate the variable, and activates all the processes on Lhe
waiting list.

A third important improvement is saving the state of locked subsystems.
Currently, if a subsystem is locked, then the interpreter executing it fails, its state 1s
lost, and its execution starts from scratch the next time the process that invoked this
subsvstem is scheduled. It would be better to save the state of such a system; but this
requires some additional bookkeeping to garbage-collect irrelevant subsystems.

6. Comparison with other concurrent programming languages

“Occam’s Razor [William of Ockham]: A sclentiflic and philosophical rule that
entities should not be multiplies unnecessarily which is interpreted as requiring
that the simplest of competing theories be preferred to the more complex or that
explanations of unknown phenomenon be sough in terms of known quantities”

— Webster s New Collegiate Dictionary.

6.1. The relational language of Clark and Gregory

The roots of Concurrent FProlog ean probably be traced back to the work of Fahn
and MacQueen [31). They have shown that concurrent programming can be modeled
naturzlly by processes computing relations over streams. Van Emden and de
Lucena [16] provided a translation of the model of Kahn 2nd MacQueen into tbe
formalism of logic programming. However, both the language of Kahn and MacQueen
and its logical counterpart are deterministic.

Clark and Gregory extended the approach of van Emden and de Lucena to
indeterminate computations with the concept of a guarded-clause. Their relational
language can implement indeterminate stream merge, for example. The subset of
Concurrent Prolog described in this paper is a result of an attempt to generalize and
clean up the relational language of Clark and Gregory. Several differences can be found
between the two.

The language of Clark and Gregory requires that a guard be ground before an
attempt is made to solve it; hence it is immaterial whether it is solved sequentially or in

ol

parallel. Our guards may contain general systems; there is no restriction that a guard
system be ground before it is invoked. This enables Concurrent Prolog to support a
hierarchy of concurrent systems, which is essential [or implementing operating systems.
See for example the shell program on Page 29.

The language of Clark end Gregory restriets the variables shared beiween processes
to be of type “stream”, and requires that each such variable will have at most one
producer; this has to be verified a2t compile time, based on mode deciarations and
variable annotations. The producer and consumer annotations are inherited, so0, for
example, a receiver of & message cannot respond to it by instantiating an undetermined
variable in it. Hence their language does not support programming with partizlly
determined messages, a key concept in Concurrent Prolog.

Concurrent Prolog alleviates all these restrictions since it incorporates a simpler and
more basic synchronization mechanism. Instead of mode declarations and consumer and
producer annotations, Concurrent Prolog has one synchronization primitive: the read-
only annotation. This mechanism is expressive enough to achieve behaviors induced by
the mechanisms of the relational language, and more. The generality of this mechanism
enables us to share variable of any type between processes, not only streams. It also
enables the use of partially determined messages. In addition, our synchronization
mechanism can be implemented very efficiently, in contrast to the requirement that an
invoked clause should have a ground guard.

We view the read-onlv annotation as the major contribution of Conecurrent FProlog
over the language of Clark and Gregory.

The requirement that a shared varizble has only one producer is not incerporated in
Concurrent Prolog, and we think it is is not essential in the relational Janguage as well.
The reason is that two produeers of the same variable are conjunmctive goals. A
conjunctive goal with a shared variable can succeed enly if zll its conjuncts agree on
what value this variable should take. A process instantiates a shared variable only alles

it is committed to that instantiation, i.e. after it solves the guard of a clause. Hence if
two processes attempt to instantiate a variable to mutually non-unifiable terms then

they are committed to non-unifizble solutions of the conjunctive goal, hence the
conjunctive goal should fail, which is what happens in Concurrent Prolog. Since goal
failure is an ordinary phenomenon in a computation of a logic program, ihis cuse
deserves no special treatment.

It should be mentioned that read-only mode declarations, such as

mode merge(?,?,)

can be used as a shorthand for annotating the first two argument of merge as read-only

d!l eclre Homs

in every call merge in the program. A preprocesscr can use such to install
the appropriate annotations in the Concurrent Prolog code prior to its compilation.
Another extention of Prolog to a parallel programming language, called Epilog, was
proposed by Wise [48]. Apparently, Epilog is not concerned with solving concurrent
programming problems, bul only with the parallel execution of logic programs.
Nevertheless, it has some construets in common with the Relational Language and
Concurrent Prolog. The most apparent difference between Concurrent Prolog and
Epilog is in the design methodology: we strive to find the minimal set of basie control
constructs necessary to express concurrent computations, while Epilog enjovs a

proliferation of these.

6.2. Concurrent funectional programming languages

There is a natural mapping from any ([irst order) functional program to a relational
program: replace every n-ary funetion symbol by an n4-l-ary relation symbol, annotate
the output variable of the relation as read-only in its occurence as an input, and raplace
function composition by process conjunction. As discussed earlier, this translatios
achieves the effect of programming with Lenient-cons [18]. The effect of frons [19], can
also be achieved in Concurrent Prolog, using stream merge.

In comparison, the translation from relational! to functional programs is not so
straightforward. Since the output of a process can be named explicitly, complex
commupnication patterns betwesn processes can be specified, including cyelic ones. The
basic computational model of functionzl languages supports only hierarchical
communication — between child and parent processes. Functional programmiog
languages must add extraneous features to taeir basic computational model to achisve
flexibility in communication.

One approach to the problem was taken by Harel and NMehab in Cencurrent
And/Or programs (23], which extended the functional And/Or programming language
with a CSP-like communication mechanism.

Another approach was taken by Johnson [30], who describe a system of processes as
a system of functions computing a solution to a set of simultaneous equations. The
result is guite similar to Concurrent Prolog: each eguation corresponds to a goal with
one output variable, and a set of simultaneous equaticas corresponds to a conjunctive
goal.

It may be the case that by adding additional features to functional lznguages, such

as Lenient-cons and simultaneous equations, ome ean get closer and closer to the

&n
k]

expressiveness of a relational language; but | do not see a reason not to work directly
with the more expressive formalism.
The preference of relations over functions in concurrent programming 1= evident

also in the theoretical treatments of this issue, for example in [7, 37, 38, 42].

§.3. Dataflow languages

The synchronization mechanism of Concurrent Prolog is very similar to that of
datallow languages [1]: a process suspended on undetermined read-only variables is
analogous to an operator waiting for its arguments to arrive. Concurrent Fralog,
however, lends itself to more concise and elegant programming. For example, dataflow
languages extensively use the “let” construct, which achieves only a subset of the effects
of unification, and does so in a cruder and more verbose way.

Another difference is that dataflow languages are deterministic, and hence must
introduce merge as a built-in operator. According to Bryant and Dennis’s [§] version of
Ocecam's Razor mentioned earlier in Section 3, this constitutes an evidence in favor of
Concurrent Prolog and against the dataflow languages. Ope immediate implication of
the determinacy of dataflow langzuages it that they must intreduce 2 new merge
operator for every scheduling policy described in Section 4; on the other hand all of
these are user programmable in Concurrent Prolog.

Another important difference between Concurrent Prolog and dataflow languages 1s
related to monitors, and is discussed in the next section.

6.4. Monitors

Dataflow languages are a clezner computational model than conventional
concurrent programming languages such as Concurrent Pascal [6], and CSP/k (28],
which use monitors [27]. In spite of that, programs that implement shared resources arc
simpler and more readable when monitors are used.

To share a resource, dataflow lapguages use tagged-merge operators, that merge
requests from several processes to the shared resource and tag them with the origin of
the request. After the resource receives the request, it replies back to the sender using
the tags on the message. Such a communication network includes both tagged-merge
and tagged-split operators, and cannot be modified easily at runtime. A solution to this
problem, termed menagers, is admitted by its lnventors to obstruct the initial simplicity
and clarity of the dataflow model [3].

S

The erux of the problem is that the resource has to know who issued the request in
order to respond to it. A monitor can execute a monitor call without knowing the
identity of the caller explicitly, since the caller can find the response to its monitor call
by inspecting the appropriate arguments in the call. In implementation terms, a
monitor eall contains the identity of the caller in the memory address of its result
arguments. The monitor can respond to the call by placing the desired values in those
memory addresses, thus avoiding the communication protocol overhead a dataflow
language requires in order to ship the response back to the sender.

One may argue that the difference between the two approaches is only in the level
at which the problem is solved. Monitors solve the problem of responding to requests at
the implementation level, whereas dataflow languages solve it at the programming level.
We agree, but find this difference crucial for the convenience and flexibility of the
language.

The Concurrent Prolog solution to implementing shared resources enjoys the
benefits of both worlds, due fto the concept of partially determined messages. A
partially determined message is sent to a shared resource via merged streams, just as in
a datallow language; but the shared resource responds to it by placing values in
undetermined variables in the message, just as in a monitor call. Henece our examrples
use only merge, not tagged-merge, and consequently do not use tagged-split either.

In implementation terms, the recipient of a partially determined message can
respond to it without knowing the explicit identity of the sender, since its identity 1s
hidden in the address of the undetermined variables in the message.

This analogy provides an interesting distinction between procedure calls 2nd
monitor calls in Concurrent Prolog. In monitor-based programming languages a
procedure call and a monitor call are two basic, mutually irreducible operations. On the
other hand in Concurrent Prolog a procedure call, i.e. a process invoeation, is a basic
operation, executed directly by the Concurrent Prolog machine, whereas a monitor call
is a data-structure, which is sent, received and processed by the Concurrent Frolog
software. This may be another instance in which Brrant, Dennis, and Occam’s razor

applies.

6.5. Actors

The Actors model [25, 35, is also closely related to Coneurrent Prolog, as our use of
Actors jargon to explain Concurrent Prolog programs suggests. One similarity is the
“light-weight” and dynamic nature of Concurrent Prolog processes and the actors of an

]

Actor system, Another is the use of pattern-matching to select and construet the
response Lo a message.

The main dilference between the two iz the simplicity and clarity of the
computational model. The Actor model is centered around an operationsl semanties,
which [reely mixes object-level and meta-level operations, and tends to be described in a
rather loose way.

Some say: “Prolog is Planner [24] dope right™. If analogy was a valid inference

rule, one could conclude: “Concurrent Prolog is Actors done right”.

7. Relation to sequential Prolog

Initially, our goal was to extend Prolog to a concurrent programming language, and
one of our design criteria was to properly contain sequential Frolog. Hewever, as our
research progressed, we have realized that this heads-on approach is not appropriate,
since Prolog looks the way it does precisely because it was designed to run elficiently on
a sequential von Neumann machine. As a result, it suffers from many of the illnesses
that make conventional programming languages not suitable for new architecrures.

For example, the state of the computation of sequential Prolog is very complex. In
addition to the binding environment and the stack, also maintained by other
programming languages, Prclog maintains the backtrack point for each goal on the
stack, and a trail-stack that says which wvariable bindings should. be reset upon
backtracking.

Hence we currently believe that properly containing Prolog may not be a desirable
goal, However, since in the meantime we would like to see Concurrent Prolog as the
systems programming language of a vor Neumann Prolog machine, there is a need to
find some way to integrate the two. One possibility is already available in our
Concurrent Prolog interpreter: to call Prolog from Concurrent Prolog we use the
predicate call{X), which defaults to Prolog to solve X. Since both sequential and
Concurrent Prolog maintain the same binding environment, there are no interface
problems.

Ultimately, there should be a more direct way to incorporate in Concurrent Prolog
some of the powerful properties of sequential Prolog it currently lacks. Nowalski [32]
drew a distinetion between two types of nondeterminisim: don “l-care nondelerminism
and donf-know nondelerminism. In other ecircles the first is referred to as

a8

indeterminacy, while the second simply as nondeterminism. Concurrent Prolog
incorporates don't-care nondeterminism, but not den'i-know nondeterminism. The
latter is simulated in sequential Prolog by sequential search and backtracking,

For example, ike [ollowing sequential Prolog program for finding an element in the
intersection of two lists

intersect{ X, L1, L2) :— member{ X, L1), member{ X L2)

would not work correctly in Concurrent Prolog, since the first process to find a value for
X will commit to it and not backtrack, even if its choice does not suit the other process.

This, of course, does not meac that Concurrent Prolog cannot implement list
intersection; but to do so it needs to iterate explicitly on at least ome of the two lists:

infersect(X, [X]L1], L2) :— member{X, L2) | true.
intersect{X, | _|L1], L2) :~ intersect(X, L1, L2) | irue.

The ability to talk about process failure is another important extention, essential to
make Concurrent Prolog a practical systems programming language. For example, we
would like the shell process to report to the user when the execution of his command
has failed, and would like the operating system to reboot itsell upon a software crash.

Adding the ability to talk about process failure is similar to extendinz sequential
Prolog with negation-as-failure [10], but not quite the same. Earlier we claimed that
commit is a cleaned-up cuf. This is due to its symmetry: since sall guards are assumed
to be executing in parallel, the first to reach the commit kills alternative computation
paths both above and below it. In contrast, cuf kills only aiternatives left below it.

The relation of sequential Prolog's cut to Concurrent Prolog's commit is similar to
the relation of eonventional if-then-else to Dijkstra’s guarded-command. The same
argument Dijkstra uses against if-then-else and in faver of the puarded-command is
applicable to cut and commit: the lack of symmetry and the relisnce of the default in
the former, versus symmetry and explicit conditions in the latter.

One consequence of this difference is the inability to implement pegaiicn-as-failure
using commit. The standard implementation of negation-as-lailure in sequent:ial Prolog

nol(X) :(— X, 1, fail.

not(.X).
15 essentially an if-the-else. [t reads: “if X succeeds then fail, .else succeed”. The
corresponding concurrent Prolog program would not have the desired effect, since the
second clanse may succeed even when X is solvahle.

Cut is a controversial component in Prolog, and for good reasons. We believe that
commit captures the essence of cut, which is the ability commit the execution to ths

]
|

current computation path, without lntroducing its less desirable features, i.e. the ability
to implement if-then-else and implicit negation.

In spite of what said, Concurrent Prolog is not immune to awkward programming
practices. For example, if the Concurrent Prolog machine is stable {cf. Page 24), then a
weak form of implicit negation can be expressed, a possibility that led Dijkstra 1o
recommend non-stable implementations [15].

This discussion implies that the ability to talk about process [ailure is a proper
extension io Concurrent Prolog. Hecent work by Hagia [22], which introduces the
notion of levels, may be applicable to the problem. The idea is to partition the
procedures in a program into levels, where each procedure can talk about failure of a
process only if the procedure it executes is in a lower level. This proposal coincides with
the intuitive requirement that a kernel process can talk about the failure of a shell
process, and that a shell process can talk about the failure of a user process, but not
vice versa.

We believe that having process failure as s primitive concept, and the hierarchical
structure of systems created during computation, make Concurrent Prolog a robust
systems programming language. Consider the following implications of these properties:

o If a process fails, then its system fails; but this dees not mean that the whole

computation fails, unless the failing process is in the lop-level system.

o If all processes in a system are suspended, them the system is said to he
locked: but this is not necessarily a deadlock. A subsystem 51 may be
locked at some point in time, and unlocked later, because a sister subsystem
S2 instantiated some variable, which appears as read-only in §1. Ounly if the
top-level system is locked, then the situation cannot be cured, and deadlock
ean be established.

¢ The scope of interference beiween processes is restricted to subsystems. If
two brother processes commif to unify a shared variable with non-unifiable
terms, they fail, and their subsystem {ails, but other subsystems are not
affected. This scope restriction follows from the requirement that bindings
computed by 2 guard system are made public only after the guard system
terminates successfully.

8. Future research

58

In some sense, both sequentizl and Corcurrent Prolog resemble an assemnbly
language more than a high-level language. We refer to the flat name space of
procedures, and to the lack of any type or other declarations whose consistency with the
program is checked statically. The roots of this deficiency, however, are sociologizal,
not conceptual. To the contrary, we believe that logic programs lend themselves ta
modular programming and static analysis at least as well as other tvpes of programs,
perhaps even more. The same costumes suggested to cover Prologs naked bodyv can
equally well fit Concurrent Prolog (8, 20, 21).

In addition to extending the language, we consider several other research directione
as worth pursuing. First is implemeniing in Concurrent Prolog a multi-tasking
operating system for a single-user computer. We hope that the efficiency of Concurrent
Frolog will be sufficient for such a machine, and that any lack thereof will be
compensated by the ease in which sophisticated software can be developed in it, as our
experience suggests. /Considering multi-user operating svstems, it seems that the ability
to pass streams as arguments in a message may be a sound and simple basis for a

capabilities system.
i For example, a simple window system was written and debugged in Coneurrent
Prolog by A. Takeuchi and the author in less than two days, after the definition of the
l basic screen I/O primitives in Prolog was completed. The system that animates the
\ simulator of & multi-processor Concurrent Prolog machine, described in Section
. was implemented on top of the window system by the author in less than

L;ne day.

Another research direction is the development of a mulii-processor Concurrent
Prolog machine. We expect that such a machine will require a rather different
architecture from what has been proposed so far. For example, Colmerauer's stratesy
for implementing suspended processes may eliminate the need for associative memory, o
key component in some current dataflow architectures.

Yet another research direction is related to work on systolic algorithms [33]. We
find in several Concurrent Prolog programs that once the network of processes is
spawned, it starts behaving like a systolic array. This is manifested most clearly in the
array relaxation program (a variant of Program 17, not shown in the paper). This
suggests the use of Concurrent Prolog as a specification language for systolic chips, with
all the ramifications of such a point of view, including o Concurrent-Prolog-to-chip
compiler.

59

Acknowledgements

The author acknowledges Lawrence Byrd, Shimen Cohen, David Harel, Michae
Fischer, Steven Gregory, Frank MeCabe, Bob Nix, Fernando Pereira, Stan Rosenschein,
A. Takeuchi, and David Warren for helpful discussions.

Thie research began while the author was at Yale University supported by NSF
grant no. MCS80002447, and continued under the support of the DAL project at SHI
International, ONR contract no. N00O0014-80-C-0208.

The cxperimental part of the research, including the deflicition of the subset of
Coneurrent Prolog described in the paper, was carried while the author was a visiting
scientist at ICOT — the Institute for New Generation Computer Technology.

The author is a recipient of the Sir Charles Clore fellowship at the Weizmaan
Institute of Science.

This document was produced on the facilities of the Computer Science Department

of Yale University.

I. A Concurrent Prolog interpreter

%% Interpreter for a subsel of concurrent Prolog.
:— public solve/l,

reduce/2,

display _counters/Q,

trace/2,

weil/2,

wait/1,

diff2.
= op(450, zf, “17).

:— call({value(initialized, true);
comnpile([dsutil, “sysiem.def’]),
Y% dsulil confains some ulilities.
% system.def confaineg the definition of the predicate systemI[_}.
sef{smode, depth _ first),
sef(smode{read()}, breadth _ first),
sel(countingset, [reduction(), suspension(_), system(_]}},
sel(traceset, [reduction(), suspension(_]|},

60

set{initialized, true))).

solve(A) :—
clear _counlers,
solve{ A, 0},
display _counlers.

solve(true,) =1

solve{A, D} :—
system(A), !, trace(system(D), A), A;
trace(solve(D), A),
schedule(A, X, X, Head, [cycle(1}|Tail}),
solve(Head, Tail, deadlock, D),
trace(solved(D), A).

solve(leyele(NY, , , D)=}
(D==0, writel(["*** cyeles: *, N)), nl; true).
solve{|cycle(N)|Head], [|, deadlock, D) :— 1,
D=0, writel(|"*** cycles: *, N]), nl,
writelnl(["*** Deadlock delected. Locked processes:”|Head]) ;
fail.
solve([cycle(V)| Head), [eycle{N1)|Tail], nodeadlock, D) :— !,
N1 is N+1,
solve{ Head, Tail, deadlock, D).
solve(|A|Head], Tail, DL, D} :—
system(A), !, lrace(system(D], A), A,
solve(Head, Tail, nodeadlock, D).
solve([A|Head|, Tail, DL, D} :—
D1 is D+1,
trace(call(D1), A),
reduce(A, B, DL, DL1, D1),
trace(reduction(D1), (A:—B}),
schedule(B, Head, Tail, NewHead, NewTail),
I solve(Newllead, NewTail, DL1, D).

reduce(A, B, _, nodeadlock, D) :—
guarded _clause(A, G, B, D),
trace{try _clause(D), (A:—(G|B}}),
solve{G, D), L.

reduce(A, suspended(A), DL, DL, D) :—

01

trace| suspension|D), A).

reduce(A4, B) :(—
quarded _clause(4, G, B, 1),
solve(G, 1), 1.

reduce(A, suspended(A]] :—
trace{ suspension, A).

schedule(true, Head, Tail, Head, Tail} :— L.
schedule{suspended(A), Head, |A|Tail], Head, Tail) :— 1.
schedule{(A, B), Head, Tail, Head?, Tail2) :—
value(smode, breadth _ first), |,
schedule(A, Head, Tail, Headl, Taill),
schedulel3, Headl, Taill, Head2, Tati2).
schedule{(A, B), Head, Tail, Head2, Tail2} :—
value{smode, depth _ first), !,
schedule(B, Head, Tail, Headl, Taill),
schedule(A, Headl, Taill, Head2, Tail2).
schedule(A, Head, Tail, [A|Head], Tail} :—
value{smode(A), depth _ first), L.
schedule[4, Head, [A|Tail], Head, Tail) :—
value(smode(A). breadth _ first), L
schedule(A, Head, Tuil, [A|Head], Tail) :—
value{smode, depth _ first), L.
schedule(4, Head, [A|Tail], Head, Tail) :—
value(smode, breadth __ first), L

guarded _clause(A, G, B D) :—
ready clause(A, Bl, D), Jind _guard(B1, G, Bj.

find _gquard((A|B), A, B} = L.
find _guard(A, irue, A).

ready _clause(A, B, D) i—
funetor{A, F, V), functor{Al, F, N},
clause(A4l, B),
tracelunt fy(D), (A, Al)),
uni fy(4, Al).

uni fyl X, Y) :— (var{X]} ; var(Y}), |, A=T.
uni fy{ X7, ¥Y) - — 1,
nonvar{ X)), uni fylX, Y.
unt fy(X, Y7 =},
nonvar{), uni fy(X, ¥).
uni fy([X1Xs], [Y]¥s]) =,
uni fylX, Y), uni fy(Xs, 1)
wni fy(l], [I} ==
uu:'fy{}{l YJ f—
X=.[F\Xs], Y=.[FYs], unify(Xs, Ys).

trace(_, _):—
value{irace, off), \.
trace(A, B) :(—
add __counier(A,
% break{A, B), 9% add a break package
value({traceset, 5),
(member(A, S} ; S=all),
writel(l4, 2 °, B]), nl, L
trace{ _,).

clear _counters :—
value{counter{X), Y), Y>>0, set{counterX), 0), fail ; true.

add _counter{A) :—
value(countingset, S), member{A, §), add1{counter{A), _}; true.

display _counters :—
value(countingset, S), member{ X, S,
value{counter{X), Y), Y>>0, writel{["# ", X, = °, Y]}, nl, fail;

sum counlers,

sum counlers (—
w?ne[counfz’ngsst, 5],
setoflY, (X, S)|(member(X, §), value{counter(X), Y}), 51),
sum(S1, 0, Tolal),
writel(| Total: *, Total]), nl.

63

I1. Some Utilities
9% "Buili—in" predicales.

Swail(X, Y) :—
07 wail until X is instantiated, "peel—off" eziranecus
¢; annotelions, and refurn the result in Y. Useful for inter facing
¢o to regular Prolog.

wait(.X) :—
wait{X,)

awow

watl{X,) :— var{X), !, feil.
wait{X?, ¥) = !, wail{X, ¥)
waif(X, X).

%di f{X, Y) :— X and Y are nol uni fiable.
diflX,Y) :—

(var{X) ; var{Y}}, 1. fail.
difIXT, Y) =1,

diflx, v).
difiX, Y1) =1,

difiX, 1.
dfﬂ[]' []} = I':

Jail.
di fIX|Xe), [V]Y5)) o

difix, Y); difiXs, Ys).
difiX, Y] =

X=_|Fr|Xs], Y=_[FyY5],

(Fr===Fy ; di f{Xs, ¥s)).
difiX, V) =

(var(X) 5 var{)}, |, fasl.

system(wait{ ,)
systtmf’wmn
oystem{difi_, _n.
system{X) = system{X]).

a2

% Interface o ity

instream(Xs) :— % Xs is the current inpuf siream
read{X) | instreamn(X, Xs).

instreamiend _of _ file, {l}.
insiream(]], Xs) :—
instream(Y?, Xs), read(Y).
instream([X]Xs], [X]Ys]) =
instreamn(Xs, Ys).
insiream(X, [X]Xs]) :—
wait{X) | instream(Y?, Xs), read(Y).

outstrearn(|[X])Xs]) :— % Xs is the current output siream
writel(["*** oustream: °, X]), nl | outsiream(Xs?}.

outstream([]).

wait _write{ X, Y) :— % wait for X and output Y to current ouiput siream
wail{X) | call{{write(Y), nl)).

% wrap stream elements with an identi fying tag
wrap([l, __, -
wrap([X] X&), W, [Wrapped XY5s]) :—

Wrapped X=..[W, X] | wrap{Xs?, W, Ys).

X, Y) :— wait(X, X1}, wait{Y, Y1) | A1<YL
le{ X, Y) :— wait(X, X1), wait(Y, Y1) | X1=<T1.

% lazy evaluator of arithmetic expressions

eval{X, V) :— wait(X, Y), integer(Y) | true.

eval[X+Y, Z) :— eval(X7, X1), eval(Y?, Y1), plus(X1, Y1, Z).
eval(X'=Y, Z) :— eval(X7, X1), eval(1?, Y1), plus(Z, Y1, A1}.
eval(X*Y, Z) :— eval(X7, X1), eval(Y?, Y1), times(N'1, Y1, Z).

plus(X, Y, Z) := wait(X, X1), wait(Y, Y1} | Z is X1+Y1.
plus(X, Y, Z) :— wait{ X, X1), weit{Z, 21) | Yis Z1-X1.
plus(X, Y, Z) :— wait(Y, Y1), wait{Z, Z1) | X is Z1-Y1.

03

times|X, Y, Z) :— wait{X, X1), weit{Y, Y1) | 7 15 XN1*11.
times(X, Y, Z) i— wait{ X, X1}, wasi(Z, Z1} [Y15 AT E)
times|X, Y, 7) -— wail(Y, Y1), wait(Z, Z1) | X is Z1j YL

%2 multiples of 2, 3 and 5 without repifitions.
multiples :—

stream _multiply(2, [1]X7], X2),

stream _multiply(3, [1|X7], X3),

strearn _multiply(5, [1]X7], X3),

opmerge{ X217, X37, X23),

opmerge(X571, X231, X)),

outstream{ X7}

stream _multiply(N, [UX], [V]£]) ==
Vis N*U| stream _ multiply(N, X7, Z).

epmerge([U)X], [U]Y], U}Z]) :— opmerge(X7T, Y2, Z).
opmerge([U1X], V1Y), [U1Z]) i— U(U, V) | opmerge(X?, [VIY], 2)
opmerge(|U]X], [VIY], [V Z]) := 1t{V, U) | opmerge([U1X]. Y7, 2).

II. Testing programs

€ tesfing the airline reservation system
festdh :—

solve({

instrean|{X],

uwselransact(X7, 1),

database(Y?, 200, 200, 200, 200, 200])

).

C% user interface to atrline reservalion system
uselransact(]], [|].
uselransact(|in fo| Flight)| Messages|, [in fo(Flight, Seats)|Msg]) :—
wait _write(Seats, |"Available seals : *, in fo[Flight, Seats}]).
veetransact Messages?, Msg).
usetransact{[reserve(Flight, Seats)| Messages],
ireserve(Flight, Seats, Response)|Msg]) :—
wait _urite(Response, |"Answer : °, reserve(Flight, Seals, Response)]],

B3

uselransaci{ Messages?, Msg).

value([X]], 0, X).
value([_|R], N, V) := N1 is N—-1 | value(R, N1, V).

modi fy(|X1Y], 0, V, [VIY]).
modi fy(|X]Y], N, V, [X]Y1]) :— N1 is N—1 | modi fy(Y, N1, V, ¥1).

Y0 lesting the MSG operating syslemn
festmseg i —

solve||

instream(X),

split(X7, K1, K2),

msg((K17, S1), (K2?, 52)},

wrap(S1?, sereenl, S11), outstream(S117),

wrap(527, screen2, 522), outstream{S5221)

)

Totesting the epooler

testsp :—
solve((
instream(X),
spooler{(F1, P2), X7),
wrap|P1Y, printerl, F11), outstream{F117),
wrap{F2?, printer2, P22}, outstream(F227)
)}

Uz lesting the disk—arm scheduler.
festds ;—

solve((

insiream(X),

usedisk{ X", User),

disk(Disk),

disk _scheduler(Disk?, User?)

)]

% terminal inter face stmulating a disk user
ugedisk([], [|).
usedi sk{[read(T}| X, [i0(T, (read(D), OK))|Y]) :—

a7

usedisk{X7, Y], wait _uwrile(OK, disk _read(T, D, OK})).
wsedisk(|write(T, D)|X], [{io(T, (write(D), OKNY]) =
usedisk(X?, V), wail _write(OK, disk _writelT, D, O]

3]

4]

6]

8]

08

References

William B. Ackerman.

Data flow languages.
TEEE Computer 15{2):15-25, 1082,

K. R. Apt and M. H. van Emden.
Contributions to the Theory of Logic Programming.
Journal of the ACM 29(3):841-863, July, 1982.

Arvind and J. Dean Brock.

Streams and Managers.

In M. Makegawa and L. A. Belady (editors), Operating Systems Engineering,
pages 452-465. Springer-Verlag, 1982.

Lecture notes in Computer Science no. 143.

D. L. Bowen, L. Byrd, L. M. Pereira, F. C. N. Pereira and D. H. D. Warren.

PROLOG on the DECSystern—10 User's Manual.

Technical Report , Department of Artificial Intelligence, University of Edinburgh.,
October, 1981.

Kenneth A. Bowen and Robert A Kowalski.

Amalgamating language and metalanguage in logic programming.

Technical Report 4/81, School ofComputer and Information Science, Syracuse
University, June, 1982,

Per Brinch Hansen.
The programming language Concurrent Pascal.
IEEE Transactions on Software Engineering SE-1(2):199-207, 1975.

J. Dean Brock and William B. Ackerman.

Scenarios: A Model of Non-determinaie computations.

In Dias and Rameos (editors), Formalization of Programmming Concepis, pages
252-259. Springer-Verlag, 1981

Lecture notes in Computer Science no. 107.

M. Bruynooghe.

Adding redundancy to obtain more reliable and readatle Proleg programs.

In Proceedings of the First International Logic Programming Con ference, puges
120-134. ADDP-GIA, Faculte des Sciences de Luminy, Marseille, F'rance,
September, 1982

G0

9] Fandal E. Brvant and Jack B. Dennis.
Concurrent Programming.
In M. Makegawa and L. A. Belady (editors), Operaling Systems Engineering,
pages 426-452. Springer-Verlag, 1982.
Lecture notes in Computer Science no. 143.

[10] Keith L. Clark.
Negation as failure.
In H. Gallaire and J. Minker (editors), Logic and Dala Hases, . Plenum, 1478,

(11] K. L. Clark and 5. Gregory.
A relational language for parazllel programming.
In Proceedings of the ACM Con ference on Funclional Programming Languages
and Computer Architecture. ACM, October, 1981,

[12] Keith Clark and Stan-Ake Tarnlund.
A first-order theory of data and programs.
In B. Gilchrist (editor), Information Processing 77, pages pp:9838-944. North-
Holland, 1977.

[13] A. Colmerauer, H. Kanui, and M. van Kanegham.
Last steps towards an ultimate Prolog.
In Proceedings of the Seventh International Joint Con ference on Arti ficic!
Intelligence, pages 847-948. 1JCAI, 1881.

[14] Dennis M. Richie and Ken Thompson.
The Unix time-sharing system.
Communications of the ACM 17(7):365-275, 1874,

(15] E. W. Dijkstra.
A Diseipline of Programming.
Frentice-Hall, 1976.

[16] M. H. van Emden and G. 1. de Lucena.
Predicate logic as a programming language [or parallel programming.
In K. L. Clark and S. A. Tarnlund (editors), Logic Programming, . Academic
Press, 1882.

{17] M. H. van Emden and R. A. Kowalski.
The semantics of predicate logic as a programming language.
Journal of the ACM 23:733-742, October, 1976,

(18] D.P. Friedman and D.S. Wise.
The Impact of Applicative Programming on Muliiprocessing.
In Proceedings of the 1976 International Con ference on FParallel Frocessing.

18976.

[19]

[20]

[21]

[22]

[23]

[24]

D.P. Friedman and D.S. Wise.

An approach to fair applicative multiprogramming.

In G. Kahn (editors), Semantics of Concurrent Compulations, . Springer-
Verlag, 1970.

Lecture notes in Computer Science no. 70.

K. Furnkawa, R. Nakajima, and A. Yonezawa,
Muodularization and abstraction in logic programming.

1983,
In preparation.

I. Futo, J. Szeredi.
T—Prolog: A Very High Level Simulation System

SZKI, Budapest, 1981.

Masami Hagia.

Logic programming and inductive deflinitions.
MNovember, 1982,

Unpublished manuscript, RIMS, Kyoto University.

David Harel and Smadar Nehab.

Concurrent and for programs: recursion with communication.

Technical Report C582-08, Weizmann [nstitute of Seience, Department of
Applied Mathematics, Jupe, 1082,

Carl Hewitt.

Deseription and Theoretical Analysia (Using Schemata) of Planner: a Language
for Proving Theorems and Manipulating Models in a Robot.

Technical Report TR-258, MIT Artificial Intelligence Lab, 1872.

Carl Hewitt.
A Universal, Modular Actor Formalism for Artificial Intelligence,

In JJCAI3. 1JCAI 1673.

Carl Hewitt, Giuseppe Atardi, and Henry Lieberman.

Specfying and proving properties of guardians for distributed systems.

In G. Kahn (editor), Semantics of Concurrent Computations, . Springer-Verlag,
1979.

Lecture notes in Computer Science no. 70.

C. A. R. Hoare.
Monitors: an operating systems structuring concept.
Communications of the ACM 17(10):549-557, 1974.

28]

[29]

[30]

[21]

[32]

138]

[34]

|35)

|36}

71

R. C. Holt, G. 5. Graham, E. D. Lazowska and M. A, Scott.
Structured Programming with Operoling Systems Applications.

Addisor Wesley, 1978,

Ingalls, Daniel H.

The smalltalk-76 programmicg system: design and implementation.

In Con ference Record of the Fifth Annual ACM Symposium on Frinciples of
Prograrnming Languages, pages 9-10. Association for Computing Machinery,
January, 1578,

Steven D. Johnson.

Circuits and Systems: Implementing Communications with Streams.

Technical Report 116, Indians University, Computer Science Department,
Oectober, 18981

Gilles Kahn and David B. MacQueen.

Coroutines and networks of parallel processes.

In B. Gilchrist (editor), fn formation Processing 77, pages pp.003-998. North-
Holland, 1977.

Robert A. Kowalski.
Logic for Problem Solving.
Elsevier North Holland Ine., 1979,

H. T. Kung.
Why systolic architechtures?
TEEFE Compuier 15(1):37-46, 1982

Leslie Lamport.

A Recursive Concurrent Algorithm.
Japuarv, 1982,

Unpublished note.

Henry Lieberman.
A Freview of Acl 1.
Technical Report AIM-625, MIT, Artificial Intelligence Lahoratory, June, 1821

John MeCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and
Michael I. Levin,

LISP 1.5 Programmer’s Manual.

The M.I.T. Press, Cambridge, Massachusetts, 1065,

[37]

[38]

[39]

(40]

[41]

[42]

[43]

|44]

=-J
L]

David Park.

On the Semantics of fair parallelism.

In D. Bjorner (editor), Lecture Notes in Compuler Science, pages 504-526.
Springer-Verlag, 1880.

Lecture notes in Computer Science no. 86,

V. R. Pratt.

On the composition of processes.

In Proccedings of the Ninth ACM Symposium on Principles of Programming
Languages, pages 213-223. ACM, January, 1082.

J. A. Robinson.
A machine oriented logic based on the resolution principle.
Journal of the ACM 12:23-41, January, 1965.

Ebud Y. Shapiro.

Alternation and the computational complexity of logic programs.

In Proceedings of the First International Logic Programming Con ference.
ADDP-GIA, Faculte des Sciences de Luminy, Marseille, I'rance, September,

1982,

Yosi Shiloach and Uzi Visbkin.
An Oflog n) parallel connectivity algorithm.
Journal of Algorithms 3:57-67, 1882,

M. B. Smyth.

Finitary relations and their fair merge.

Internal Report CSR-107-82, University of Edniburgh, Computer Science
Depariment, March, 1982,

Sunichi Uehida.

Towards a New Generation Computer Architechture: Research and
Development Plan for Computer Architechture in the Fifth Generalion
Computer Project.

Technical Report TR-001, ICOT — Institue for New Generatior Computer
Technology, July, 1982,

William W. Wadge.

An extensional treatment of dataflow deadlock.

In G. Kahn (editor), Semantics of Concurrent Compulations, peges 283-299.
Springer-Verlag, 1879.

Leecture notes in Computer Science no. 70.

[45]

|46]

=

Ll

David 11 D. Warren.

Implementing Prolog — Compiling Predicate Logic Programs.

Technical Report 39 & 40, Department of Artificial lntellizence, University of
Edinburgh, 1577,

David H. D. Warren.

Perpetual processes: an unexploited Proiog programming technigue.

In Proceedings of the Prolog Frogramming Environments Workshop. Datalogi,
Linkoping, Sweden, March, 1882

Davi 4 Warren.
MegaLips now!
Unpubiished note, 1982,

Michael J. Wise.

A Parallel Prolog: the Contruction of a Data Driven Madel.

In Symposium on Lisp and Functional Programming, pages 56-07. Association
for Computing Machinery, 1982,

