TM-0962

Universal Boolcan Grobner base

by Y. Sato

October, 1990

© 1990, ICOT

Mita Kokusai Bldg. 21F 4-28 Mita 1-Chome Minato-ku Tokyo 108 Japan

(03)3456-3191~5 Telex ICOT J32964

Institute for New Generation Computer Technology

Universal Boolean Gröbner base

Yosuke Sato

ICOT Research Center 1-4-28, Mita, Minato-ku, Tokyo 108, JAPAN

ABSTRACT

In [1], we showed how to construct a Boolean Gröbner base of a finitely generated ideal in a Boolean polynomial ring. A Boolean polynomial in $B(X_1, \ldots, X_m, Y_1, \ldots, Y_n)$ is also considered as a Boolean polynomial in $B(X_1, \ldots, X_m)(Y_1, \ldots, Y_n)$ with variables Y_1, \ldots, Y_n over a coefficient Boolean ring $B(X_1, \ldots, X_m)$. Let I be an ideal in $B(X_1, \ldots, X_m, Y_1, \ldots, Y_n)$ and G be its Boolean Gröbner base. For any substitution θ of elements of B to the variables $X_1, \ldots, X_m, I\theta$ forms an ideal in $B(Y_1, \ldots, Y_n)$. In this paper, we prove (i) $G\theta$ is also a Boolean Gröbner base of $I\theta$ and (ii) for any Boolean polynomial f in $B(X_1, \ldots, X_m, Y_1, \ldots, Y_n)$ $f\theta \downarrow_{G\theta} = (f \downarrow_G)\theta$.

1. Introduction

We assume that the reader is familiar with the theory of Boolean Gröbner base which is described in [1].

Let B be any Boolean ring. A Boolean polynomial in a Boolean polynomial ring $B(X_1, ..., X_m, Y_1, ..., Y_n)$ with variables $X_1, ..., X_m, Y_1, ..., Y_n$ can be considered as a Boolean polynomial in a Boolean polynomial ring with variables $Y_1, ..., Y_n$ over a coefficient Boolean ring $B(X_1, ..., X_m)$, which is expressed as $B(X_1, ..., X_m)(Y_1, ..., Y_n)$.

Lemma 1.1

Let I be an ideal in $B(X_1, \ldots, X_m, Y_1, \ldots, Y_n)$ and θ be a substitution of elements of B to the variables X_1, \ldots, X_m . Then $\{f\theta | f \in I\}$ forms an ideal in $B(Y_1, \ldots, Y_n)$ which is denoted by $I\theta$.

Proof: Easy to check.

In the rest of the paper, we fix an admissible total ordering on monomials consisting of variables Y_1, \ldots, Y_n .

2. Universal Boolean Gröbner base

Definition 2.1

Let $G = \{g_1 A_1 \oplus t_1, \dots, g_k A_k \oplus t_k\}$ be a Boolean Gröbner base in $B(X_1, \dots, X_m)(Y_1, \dots, Y_n)$ and θ be a substitution of elements of B to variables X_1, \dots, X_m .

We define $G\theta \stackrel{\text{def}}{=} \{(g_i\theta)A_i \oplus (t_i\theta)|g_i\theta \neq 0\}$

Theorem 2.2

Let G be a Boolean Gröbner base of a finitely generated ideal I in $B(X_1, \ldots, X_m)(Y_1, \ldots, Y_n)$. Then $G\theta$ is also a Boolean Gröbner base of $I\theta$ in $B(Y_1, \ldots, Y_n)$.

Theorem 2.3

For any Boolean polynomial f in $B(X_1, ..., X_m, Y_1, ..., Y_n)$, $(f\theta)\downarrow_{G\theta} = (f\downarrow_G)\theta$.

In order to prove these theorems, we need the following lemmas.

Lemma 2.4

For any Boolean polynomial f in $B(X_1, \ldots, X_m, Y_1, \ldots, Y_n)$, if f is irreducible by \Rightarrow_G , then $f\theta$ is also irreducible by $\Rightarrow_{G\theta}$ for any substitution θ .

Proof:

Let $f = f_0 + f_1 A_1 + \ldots + f_l A_l$, where A_i is a monomial of Y_1, \ldots, Y_n and $f_i \in B(X_1, \ldots, X_m)$. If f is irreducible by \Rightarrow_G , then for each $gB \oplus t \in G$ $gf_i = 0$ for any i such that $B \subseteq A_i$. Since $gf_i = 0$ implies $(g\theta)(f_i\theta) = 0$, $f\theta$ is also irreducible by $G\theta$.

Lemma 2.5

For any Boolean polynomial f in $B(X_1, \ldots, X_m, Y_1, \ldots, Y_n)$, $(f\theta) \downarrow_{G\theta} = (f \downarrow_G)\theta$.

Proof:

Since we have not proved that $G\theta$ is a Gröbner base, $(f\theta)\downarrow_{G\theta}$ denotes one of irreducible forms of $f\theta$ by $\Rightarrow_{G\theta}$. Given a reduction $f\Rightarrow_{g_1}f_1\Rightarrow_{g_2}\ldots\Rightarrow_{g_r}f_r$ by g_1,\ldots,g_r in G where

 f_r is irreducible by \Rightarrow_G . Let $f_i = p(X_1, \dots, X_m)AB + S$ and $g_{i+1} = q(X_1, \dots, X_m)A \oplus T$, where $p(X_1, \dots, X_m), q(X_1, \dots, X_m) \in B(X_1, \dots, X_m)$, $S, T \in B(X_1, \dots, X_m, Y_1, \dots, Y_n)$, A, B are monomials of Y_1, \dots, Y_m and $p(X_1, \dots, X_m)q(X_1, \dots, X_m) \neq 0$. By the definition of $\Rightarrow_{g_{i+1}}, f_{i+1} = p(X_1, \dots, X_m)(q(X_1, \dots, X_m)+1)AB+p(X_1, \dots, X_m)q(X_1, \dots, X_m)BT+S$. There are two cases to be considered.

Case 1:
$$(p(X_1, ..., X_m)\theta)(q(X_1, ..., X_m)\theta) = 0$$

In this case, $f_i\theta = f_{i+1}\theta$

Case 2:
$$(p(X_1, ..., X_m)\theta)(q(X_1, ..., X_m)\theta) \neq 0$$

In this case, $f_i\theta \Rightarrow_{g_{i+1}\theta} f_{i+1}\theta$

Therefore we have a reduction from $f\theta$ to $f_n\theta$ by using $\Rightarrow_{G\theta}$. (If Case 1 occurs for each i, $f\theta = f_n\theta$.) By Lemma 2.4, $f_n\theta$ is irreducible by $\Rightarrow_{G\theta}$. Hence $f_n\theta = (f\theta)\downarrow_{G\theta}$, i.e. $(f\downarrow_G)\theta = (f\theta)\downarrow_{G\theta}$.

Proof: of Theorem 2.2

<

Note that it suffices to show the following.

- (i) $I\theta = (G\theta)$ where $(G\theta)$ denotes an ideal generated by $G\theta$
- (ii) For each different g and h in Gθ, g is irreducible by ⇒_h.
- (iii) For each different g and h in Gθ, cp(g,h)↓Gθ = 0,vsc(g)↓Gθ = 0 and csc(g)↓Gθ = 0, where cp(g,h) denotes a critical pair of g and h ,vsc(g) and csc(g) denote a variable and a coefficient self-critical pair of g respectively.

By the definition of Boolean Gröbner base, we can get (ii) by Lemma 2.4, and (iii) by Lemma 2.5 directly.

Let $G_1 = \{g_i \oplus t_i | g_i \theta = 0\}$, and $G_1^{\theta} = \{t_i \theta | g_i \theta = 0\}$. Since I = (G), $I\theta = (G\theta \cup G_1^{\theta})$. Therefore in order to see (i), it suffices to show $G_1^{\theta} \subseteq (G\theta)$, i.e. $t_i \theta \in (G\theta)$ for any i such that $g_i \theta = 0$. Note that $scp(g_i A_i \oplus t_i) = g_i t_i + t_i$. Hence, $(scp(g_i A_i \oplus t_i))\theta = t_i \theta$. Since $(scp(g_i A_i \oplus t_i))\downarrow_G = 0$, $(scp(g_i A_i \oplus t_i))\theta\downarrow_{G\theta} = 0$ by Lemma 2.5, i.e. $(t_i \theta)\downarrow_{G\theta} = 0$. By the definition of $\Rightarrow_{G\theta}$, it is clear that $t_i \theta \in (G\theta)$.

Proof: of Theorem 2.3

This is exactly same as Lemma 2.5.

REFERENCES

- Sakai, K. Sato, Y. Menju, S.: Boolean Gröbner base(revised), to appear (1990)
- [2] Sakai, K. Sato, Y.: A note on solvability of Boolean equations, IEICE Technical Report, Vol. 89, No. 276, pp. 41-44 (1989)
- [3] Sakai, K. and Sato, Y.: Zero-point theorem for Boolean polynomial ring, to appear (1990)
- [4] Sato, Y. Sakai, K. Menju,S: SetCAL a solver of set constraint in CAL system, to appear (1990)
- [5] Sato, Y.: Quantifier elimination for atomic Boolean constraint, to appear (1990)