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Abstract The THS (term rewriting system) Working Group of ICOT has been studying applications
of TRS2 to the intelligent programming system. As a result, we have implemented a TRS genarator
called Metis, an experimental tool with the many functiona required for such a system. This paper
describes the features of Metis and several experiments with it.

1. Intreduction

A sat of rewrite rules is called a term rewriting system
or TRS. The theory of TRSs has a wide variety of
both thearetical and practical applications. Tt provides
models for abstract data types, operational semantics
for functional programming languages, and inference
engines for automated theorem proving with equality.

The intelligent programming system is an important
research topic of Japan®s Fifth Generation Computer
System (FGCS) Project. A lot of evidence suggesis
that the study of TRSe will yield key techunoiogies for
the iptelligent programming system, lo particular for
specification, verification, and synthesis of programs.
The Institute for New Generation Computer Technol-
ogy (ICOT) crganized the TRS Working Group in
1985 to study THSe theoretically, and for application

to the intellizent programming system.

Metis iz the first result of the activity of the work-
ing group. It generates a complete TRS from a set
of equations automatically, semi-automatically, or in-
teractively. It is also an experimental tool with the
varicus functions needed for the study of TRSa.

The kernel function of Metis is the so-called Knuth-
Bendix completion procedure. Significantly improved

with batter capabilities and operability by the incor-
poration of many new facilities. For example, Metis
can provide us with several kinds of ordering meth-
ods of terms, but the user can orient an equation with
little knowledge of the ordering methods and cbtain
an appropriate rewrite rule that does not viclate ter-
mination of the TRS. If the equation cannot be ori-
ented to eilber direction, Metis offers the user several
kinds of recipe. It manipuiates inequations as well as
equations and provides special handling of associative-
commutative operators in the completion procedure.

Section 2 describes the basic concept of the TRS. Sec-
tion 3 introduces the features of Metis in the general
framework, and in Section 4, several concrete examples
illustrate how Metis actually works.

2. Preliminaries

In this section, we wiil introduce the terminology and
potation in this paper and survey well-known proper-
ties of THSa.

We will deal with finite sequences of the following two
kinds of symbaols (and parentheses and commas for
ease of reading):

(1) A finite set F of function symbols, and



(2] A denumerable set V' of variables.

We assume the reader s faimibar with the concepta
of terma, ground lérma, occurrénces, sablerma, subsis-
tntions, wnifiers, and most general unsfiers. In what
follows, we will denote the set of all terms constructed
from F and V by T(F,V), and the set of all the
ground terms constructed from F by T(F). The no-
tation #[s| represents a term with 2 as its subterm. In
this context, [s] represents a certain occurrence of s in
tla]. Thus, {|s'] denctes the term obtained by replac-
ing the occurrenee of & in f[s] with &', Similarly, we
will use the notation #s),...,8,] to represent a term
with 8;,..., 8 subterms, and £[s},..., s} ] for the term
obtained by replacing each s; in t[sy,..., 0] with sl
Substibutions are denoted by the greek letter §, possi-
bly with subscripts and primes.

Definition 2.1
A ferm rewriting syatem [ TRS) is a finite set of pairs
{ — rof terma. An element | — r of 2 TRS is called a

rewrile rule.

Definition 2.2

Let R be a TRS. A term ¢ is said to be reduced to an-
other term u with reapect to R, if there axist a rewrite
rule { — r and a substitution § such that &jd(l)] = ¢
and e[f{r)] = u, dencted by ¢ =+ u. We dencte the
reflexive transitive closure of = by 2.

Definition 2.3

Let R be a TRS. Two terms u and v are said to be
convergent |with respect to R) if there exists a term
f such that v = f and v = ¢, A TRS is said to be
confluent if ¢, and £; are convergent for any ¢ and for
any two reductions ¢ % ¢, and ¢ % ig.

Definition 2.4

A TRS is said fo terminaie if there exists no infigite
reduction §) =s dg = ... = f, = ...

Definiticn 2.5

A term { is said to be irreducible if there exisis no term
w stch that { = uw. An irreducible term s such that
{ % 5 is called an irreducible form of ¢ (with respect
to R) and denoted by ).

If R is a terminating TRS, then every term ¢ has an
irreducible form ¢]. Moreover, R is confluent if and
only if the irreducible form ¢] is unique. In this case,

the TRS R is said to be complete and the irreducible
form t] is called the normal form of £,

Intuitively, a reduction step represents a computation
step. Therefore, termination of a TRS means that
every computation procesa finally stops and a certain
result (i.e. an jrreducible form) is obtained, while con-
fluence of 3 TRS means that the result is unique, For
this reason, completeness plays an important role in
the study of TRSs (viewed as computation mecha-
nisma) and the normal {form of a term is sometimes
called tke value of the term.

Historically, however, the concept of TRS appeared
as a decision procedure of word problems of univer-
sal algebra, where the completeness is very significant
as well, because the decidability of the word problems
depend on completeness of the TRS obtained by con-
verting equational axioms to rewrite rules,

Definition 2.6

An equational theory is a set of pairs ¢; =~ #; of terms
satisfying the following conditions. [We use the sym-
bol = for this purpose, and the symbol = is taken to
mean syntactical identity in this paper.)

(1) ¢ =1 for all terms ¢.
(2) ey =iq, then iy = 1.
|13] H!l £ ls, !g '2.!3: then 'tl - i31

{4) H i =3, then #(t,) = 0(t;) for any substitution
g.

(8) Ift, =iy, then s(t;| = 3[ta].

Any set E of pairs | =~ r of terms can be extended to
an equational theory by considering the closure T(E)
of E with respect to the above conditions (1)-(5). In
other words, the equational theory T(FE) is the least
congruence including E. The set E is called an (equa-
tional} aziom system of the equational theory T(E)
and an element of E is called an amom.

The word problem in an equational theory T involves
the determination of whether §; = #5 for two arbi-
trary terms ¢; and t;. Given an equational theory T,
supposs that there exists a complete TRS such that
t) = t; if and only if £;] = ¢3] for any two terms {
and i3. Obviously, such a TRS can be viewed as an
algorithm to solve the word problem of T'. Kouth and
Bendix devised a mechanical procedure to convert an

p—



axiom system E to a complete TRS which solves the
word problems of T(E) [Knuth 70, Huet 81|,

Before introducing the procedure, let us define critical

pairs.

Definition 2.7

Let I, — r, and Iy — #; be rewriting rules and 2 be
a non-variable subterm of l; such that {; and a have a
most general unifier §. Let i3 = ¢{s]. The term #(l3)
is called the superposition of I, on a2 in l;. The pair
#{clr]) = (r;) ie called a crifical pasr between [, — 1y

and {g =+ rg.

We are now ready to introduce the Knuth-Bendix com-
pletion procedure.

Procedure 2.8  HKouth-Bendix completion

Step 0: Set E to be the initially given adom system.
Set R to be empty. Go o Step 1.

Step 1: If E is empty, the current value of K is the
desired TRS. Otherwise, go to Step L.

Step 2: Removea pairf = ufrom E, [ftherulef — 4
or u — ¢ can be added to R without violafing
bermination, acquire it as 4 new rule and go
to Step 3. Otherwise, stop; the procedure is

nnsuccesaiul.

Step 3: Remove all the rewrite rules | — r from R
such that either ! or r is reducible by the
acquired new rule and append { =~ r to B
instead. Go to Step 4.

Step 4: Append the acquired rule to B. Consiruct all
the critical pairs between the acquired rule
and all the rules in R (including the acquired
rule itself} and append them to E. For each
equation { =~ u in £, find irreducible forms
£] and u] with respect to R, and set { {| =
wl |} #ul,t = ug E} to be the new E.
Go to Step 1.

If the procedure terminates successfully, the resuiting
R is a complete TRS to eolve the word problem of
T(E) for the initially given E.

3. Term rewriting system generator Metis

Metis is a TRS generator based on the completion pro-
cedure described in the previous section. It has a lot
of functions required before, during, and after genera-
tion of THSs for a very user-friendly system. In this
section, we will describe several characteristic features
of Metis.

3.1 Well-founded ordering of terms

As can be seen from the above description, a key point
of the completion procedure is ensuring termination
of a TRS. The standard way to assure termination of
a system is to introduce a well-founded order on the
objects of the system and show that the operations in
the system always reduce the objects with respect to
the arder.

Well-founded orders < on T[F, V) with the following
properties are usually used on THSa.

(1) If¢; =g, then 8(t,) < #(t2) for any substitution
a.

(2) Ht; <ig, then s[t,] < ajts].

Property (1) is called stobility and (2) monotonicily.
If there is 2 monotonic and stable well-founded order
on T(F, V) such that | = r for every rule { — r, it is
obwious that the TRS terminates. There is a lot of re-
search for such ordering methods, auch as well-knawn
Dershowits’s recursive path ordering [Dershowitz 82|.
The original version of the recursive path ordering is
defined on the set T{F) of ground terms. Here, how-
ever, we extend the definition on the set T(F, V) of all

the terms.

Definition 3.1 Recursive path ordering

Let < be a partial order on the set of function symbols
F. The recursive path ordering < of T(F,V) is then
defined recursively as follows:

(1) For a variable v, there are no terms &
such that ¢ < v.
2) For a non-variable term ¢ = g(f;,-- - ,{a)
and 3 term s, 5 < ¢ if and only if
(2-1) there exista § such that s < ¢; or
[2-2) 8= f(s;, -, 8m)and 3; < tforalliand
(2-2-1) f=gor



f=gand (81,- -1 9m) =ty ota),
where X is the muiti-set ordering [Der-
showitz 79| induced by .

(2-2-2)

In {2-2-2) of the above definition, employment of the
multi-set ordering is not always necessary. If the fuoc-
tion symbols f is varyadic {i.e. takes an arbltrary sum-
ber of arguments) and the order of the arguments does
not affect the value of the function (for example, 3
and [[ representing finite sum and product), the multi-
set ordering is probably the meost reasonable, However,
if the function symbol f has a fixed arity, the lexico-
graphic ordering is more suitable in many cases. There
may be cases where the kachinuki ordering [Sakai 85|
is the most appropriate.

Metis can handle any of these three versions of the re-
curgive path ordering, namely multi-set, lexicographic,
and kachinuki. The user can employ arbitrary combi-
nations of them, function by function. As long as the
lexicographic order ia applied only to function symbols
of fixed arity, any combination defines a monotone and
stable well-founded order en T (F, V). Moreover, if the
underlying order < on F is total and the lexicographic
or the kachinuki ordering are employed for any fune-
tion symbol, then it is a total ordering oo the limited
domain T{F) of the ground terms, a very important
property as we shall zee later.

Metis converts axioms to rewrite rules | — r such that
{ = r. Metis allows the user to define the underlying
partial order < on F incrementally during the com-
pletion procedure. H the uger knows little about the
above ordering method, Metis can suggest what or-
dering is needed an F in order to crient an equation
to a certain direction. Thus, when both are possible,
the user just has to decide which direction an eguation
should be criented to.

3.2 Associative and commutative operators

The weakest point of the Kouoth-Bendix completion
procedure is revealed by equations that cannot be.con-
verted to rules without violating the termination of the
TRS. The moet typical example of such axioms is the
commutative laws, such as A+ B =~ B+ A. Encounter
with such an equation causes unsuccessiul stop in Step
2 of the procedure. Metis has several countermeasures
to deal with thia situation. The general measures will
be described later,

It is clearly the commutativity of operators tkat is
the main source of the above failure. In many cases,
commutative operators are also associative. Metis has
a specific countermeasure effective only against the
commutative laws combined with the associative laws
of the same operators. A function symbel s called
an AC-operaior if it satisfies the associative and the
commutative law. Metis is equipped with an algo-
rithm of special unification for AC-operators (called
AC-unification) devised by Fages [Fagea B4| and can
execute the AC-completion procedure based on Peter-
son and Stickel's principle [Peterson 81].

For example, if Metis is told that 4 is an AC-operator,
then the axioms A + B~ B+ A and (A+ B} <+ C =~
A+ (B +0C) are acquired implicitly and AC-unification
and AC-reduction are activated for +., Thus, Metis can
gemerate 04+ ¥ + (=(X +Y)) = (=X) + 0 as a critical
pair between the same two rules (—X) + X — 0 by
AC.unification, since

(-X)+X+Y +(—(X+Y))=>(-X)+0
and
(X)) +X+Y +([-[X+Y))=0+Y +{-{X+Y))

If it has the rule 0 + 4 — A, the above critical pair is
reduced to ¥ + [—(X + ¥)) = - X by AC-reduction.

As shown In the above example, an AC-operator is
supposed to be a binary function symbol and Metis
allows us to use infix notation for binary function sym-
bols. Inside Metis an AC-operator is treated as If it
were varyadic. For example, the term & + - + g
i= converted to +(¢;,..., ¢} with a varyadic function
symbol 4, in whatever order the operator 4 is ap-
plied to the arguments. The multi-set ordering is as-
sumed to be the ordering method for AC-operators
unless otherwise specified, since the above treatment
makes it the most reasonable ordering as mentioned in
the previous section.

3.3 Orientation-free rules and S-strategy

There exist many equations other than commutative
laws which cannot be converted to terminating rules.
The approach -of incorporating special- unification al-
gorithms for such equations has been studied system-
atically by Jouannaud and Kirchner [Jouannaud 84).

A simple trick to handle non-orientable equations is
introducing a new function symbol. For example, if



the equation A% = A x A cannot be oriented to either
direction, 3 new function symbol square is introduced
and the problematic equation is divided to the two
equations A = square(A) and A % A = square(A).
Thus, Metis can continuwe the completion procedure,
since both aquations can be oriented left to right. This
technique seems to be too simple, but the effect is
worth implementation [Knuth 70, Sakai 84].

A more radical remedy for such equations is adoption
of orientation-free rules. This remedy is called the
unfailing completion procedure [Haiang 85, Bachmair
86/, Metis is equipped with an extended version of
the unfailing completion procedure called S-strategy
devised by Hsiang and Rusinowitch [Heiang 85]. The
S-strategy has enabled Metis to manipulate not only
nen-orientable equations, but also inequational axioms
as well as equational axioms.

The 5-strategy can be viewed as a kind of refutational
theorem proving techoigque for systems of equations
and inequations. Before introducing the S-strategy,
we will extend the concepts of reduction and crifical
pairs and introduce the concept of extended narrowing
and subsumption. Let us fx a monofonic and stable
well-founded order < oo T{F,V).

Definition 3.2

A term t is said fo be reduced to another term u by
an equation | = r [or r e [}, il £ > u and there exists
a substitution # such that c|f{{)] = ¢ and ¢[8{r)] =
u. This reduction is called eztended reduction {by an
eguation) and dencted also by { = u,

Definition 3.3

Let {§ = ry {or ry = {) and Iz = ry {or rp = i)
be equations Let s be a non-variable subterm of I3
such that [, and s have a most general unifier . Let
Iz = e[s]. T 8(L,) # 8(ry) and (k) £ 8(rz), then the
pair #c|r,]) = #{rz) is called an extended cridical pasr
between |y = ry (or ry == {,) and I3 = rg [or r; = I3).

If every rule { — r has the property that [ > r, the
above definitions are natural extensions of the ordinary
reduction by a rule and the ordinary critical pairs be-
tween rules. For example, if | > r, the condition that
> u in reducing ¢ to u weakens the rewrite power of
the equation | = r exactly to the same level as that of
the rule [ — r, since < is stable and monsotonic, Sim-
ilarly, if Iy = r; and Iz > rg, the set of all extended
critical pairs between equations [, = ry and I3 = r3
is equal to the set of all critical pairs hetween rules
Iy —r and I3 — rq.

Definition 3.4

Let I} = ry (or ry = [;) be an equation and I3 # rs
(or v % I3) be an inequation. Let s be a non-variable
subterm of Iy such that {; and s have a most general
unifier #. Let I3 = ¢fs]. I #(,}) 2 #(ry), then the
inequation #c[ry]) 2 #(rg) iz said to be narrowed from
lg#rg(orrg 2 ) using I; =y {or e =1).

Definition 3.5

An equation ¢ = u is said to be subsumed by other
equations §y = ry (orry 2= 1)y en ol = ra o rg = 1],
if there exists a subatitution # such that

ﬂlE“lL saa .ﬂ“n]] =t and i.‘[ﬂfﬁ}.. v .fuﬁ'[r,,” = U.

An inequation ¢ # u is said to be subsumed by another
inequation [ 2 r [or ¥ £ 1), if there exists a substitu-
tion & such that #(1) = ¢ and #{r) = u.

Unfailing completion is a modified version of ordinary
completion emploving extended critical pairs and ex
tended reduction inatead of the ordinary ones; and the
S-strategy can be viewed as the unfailing completion
with refutation by extended narrowing.

Precedure 3.6 S-strategy

Suppose that a system of equational and inequational
axioms is given together with an equation or imequa-
tion to be solved {called the target formula).

Step 0: Set E to be the given axiom system plus the
negation of the target formula (Skolemized if
pecessary). Set R to be empty. Go to Step
1.

Step 1: If E is empty, the current value of R is a
complete set of equations and inequations de-
duced from the axioms and the negation of
the target formula, in the sense that neither
new equations nor new inequations can be de-
rived. Since R is also consistent, the target
formula cannot be deduced from the axioms.
If E is not empty, go to Step 2.

Step 2: Hemowve an equation ¢ = u or inequation ¢ #
u (called the ruling formula) from E. Go to
Step 3.

Step 3: If the ruling formula is an equation, move all
the equations § = r and all the inequations
{ = r from R to E such that either for r is
reducible by the ruling formula and remove



all the equations subsumed by the ruling for-
mula from R. I the ruling formula is an
inequation, remove all the inequations sub-
sumed by the ruling formula from R. Go to
Step 4.

Step 4: Append the ruling formula to R. Comnstruct
all the extended critical pairs and all the nar-
rowed ineguations between the ruling formula
and all the equations and inequations in R.
Append them to E. For each equation § = u
or inequatien ¢ % u in E, find irreducible
forms ] and u} with respect to equations
in R. If there is an inequation ¢ # u such
that £] and uw] are unifiable, then stop. A
contradiction iz detected and, therefore, the
target formmla is deduced from the originally
given axiom system. Otherwise, let the new
E be the set of equations ¢ 22 u] such that
t| ¥ ul not subsumed by any equation in
R and inequations £| £ u] not gubsumed by
any inequation in R. Go to Step 1.

The unfailing completion differs from the S-sirategy
only in that it does not treat non-ground inequations,
If the ordering < is total on the set T(F) of all the
ground terma, the S-strategy is logically complete and,
therefore, 20 is the unfailing completion.

4. Experiments

Let us begin with purely algebraic examples. The first
example is the word problem of ring theory.

Example 4.1

Metis was given an AC-operator + and a binary oper-
ator », (not AC in general) with the following axiomns:

(1) 0+A=4
(2) (~A)+A=0

(3) (A+B)sC=As(BsC)
(4) (A+B)+C=AsC+BsC
(5) As(B+C)=AxB+4:C

We had Metis run the completion procedure in auto-
matic mode. Metis obtained (A+ B)+C = A= (B=C)
and 0+ 4 = A as the first and the second ruling for-
mulas and converted them to the rules (A« B) = C —
A+(B+C)and 0+ A — A, respectively. The third
ruling formula (—A) + A = 0 could be oriented leit to

right by the recursive path ordering, 0 < + ord < —.
So Metis asked the user which should be introduced.

[METIS] -> k
Kouth - Bendixz (automatic sxecution)
ri: (A*B)*C -3 A=(B=C)
rl: O+A =-> A
You can orieat -A+A -> O by:
[11 0 €€ +
[21 0 =< -

&lae exit

After selecting 0 < +, we had Metis continue the pro-
cedure.

pelect no 7 1
L0 <<+ ip apserted. J

rd: -A+A => O
T4 -{-A} => A
rE: ={0) =» 0

¥Which do you want to orient 7
[1]  A=(B+C) => MsB+lsC
[2]  A=B+A*C -> A*(B+C)
else exit

The sixth ruling formula was the left distributive law
and it could be ariented to either direction depending
on the orderings on function symbols. Since we in-
siructed Metis to convert it to the rule A« {B+C) —
A+ B+ A=, the system antomatically introduced
+ < — as the ordering on function symbaols.

galect na 7 1

[ + €< = ip asserted. |
T6: Ax(B+C) => A+B+AsC
rT: (A+B)=C -> AsC+BE*C
8 A+ -(B+A) ~-> =B

[ + €< - ip agserted. ]

rd: =(A+(-B)) => B+(=A)

The nineth ruling formula can be converted to the rule
—{A+(=B)) = B+ (—A) i and only if + < —. 8o
Metis introduced the ordering without interaction.

rio: =(A+B) => =-A+(-B)
DELETE B
DELETE T+
DELETE o’

ril: A=O+A=B -> A=*B

ri2: A*0 -> O
DELETE ril



DELETE rii=*
rid: O+A+BepA -> B=A
rld: 0O+A =-> O
DELETE rla
DELETE rila+
ri5: (-A)+B+A+8 =-> O
¥hich do you want to oriemt 7
[1] (-A)*B -»> =A*B
(2] -AsB -> (-A)=B
clae exit
select no 7 1
[ - ¢ * ig agserted. ]
ri6: (-A)*B -> =A=H
DELETE ris
DELETE rik=
riT: As(-B)+AsB -> O
riB: A={-B} -> -A+B
DELETE ri7
DELETE TiT*

Knuth - Bendixr terminated.
Your system 1s CONPLETE.

The procedure terminated successfully, Here ia the
resulting complete TRS for the word problem of rings.

[METIS] =» list
<< ptate listing >>

“I'iﬂ!"
Cperators:
+ / AC ( multiset arderiazg )
o/ o
=/ 1
* /32 ( left lericegraphic )
orderinge:
0 € ™M £ e -
llu“ { +.'._-
+,0 € ®-n" ¢ =

+._.D £ LLELL]

equations:
No equationa.

rulea:

ri: (A+B)+C => A&(B+C)
rd: O+A =-> A

ra*: A+0+B -> A+B

rd: -A+A -> D

r3«; A+(=B)+B -> A+D

rd: ={=A) => A

rs: -{0)} -> 0

ré: A=(B+C) ~-> A=B+AsC
rT: [(A+B)=C =» A+C+B+C
rid: -(A+B) -» -A+(-B)
rid: A=0 -> 0

rlé; 0O=A -> 0
ri6: (-A)J+*B -» -A«B
ri8: A+={-8) =-> -A=H

Huet and Hullot developed a method to prove indue-
tive thecrems without expiicit induction [Huet 82 us-
ing a modified version of the Knuth-Bendix completicn
procedure. Their method is called inductionless induc-
tion and is effective for many theorems which usually
require explicit induction.

In order to use the method, ground terms have to
be classified into two categories, namely, constructor
terms which are always irreducible apnd constructed
only of special function symbols called constructors,
and non-construcior ferms which are always reducible
and include a function symbol other than constructors.
To prove an inductive theorem, we add the statement
as an axiom and execute the completion procedure.
The statement iz an inductive theorem if the process
succeeds to completion withont yielding any rules to

rewrite construcior terma.

Metis was given an ordinary definition of the append
operation for two lists and two different definitions of
the reverse operation of a list.

[METIS] =-» list rule
<< gptate listizg »»

fe-~ append &k reverse ---"
rules:

rl: append([],4) -> A

ra: rev([l.,A) ~-> A

r3; reverse([]) -> []

rd: append ([AIB],C)
-> ([Alappend(B,C)]
r5: rev([AlB],C)
-> rev(B,[AlC])
6 reverse([AlB])
-> append(revarse(B),[A])



If we define [_|__] (cona) and || (nil) as the construc-
tors, then the abeve conditions are satisfied. We added
an equation rev( A, [|) = reverae(A) and had Metis ex-
ecute the completion procedure.

[METIS] =-» kB INTERACTIVE
Kouth - Bendix (interactive execution)

Current ruling formumla CAN be oriented.
af: reverase(A) =(<»)= rev(A, []])
¥hich de you want to orient 7
[1] reverse(A) -> rev(A, [])
[2] revarse{A) <- rev(A,[])
elage exit
Which 7 1
[ rev << reverse is asserted. ]

Current ruling formula is ORIENTED.

rT: reverse(A) -> rev(A, [1}
DELETE r3
DELETE rh

Current ruling formmla CAN be oriented.
efl: revi{A, [B])
=(<»)= append{rev(A,[]).[B])
Which de you want to orient 7
[1] rev(a,[B])
-» append(rev(A,11},[B])
[2] rev(a,[B]}
<- append(rev(A, [1).[E])
else exit
Which 7 2
[ rev << append is asserted. ]

Current ruling formula is ORIENTED.
r8; append (rev(a, [1), [B])
-» reviA, [B])

Current ruling formula 1s CRIENTED.
re: append (rev(A, [B]), [€])
-» revi{A, [B.C])

Current ruling formula is ORIENTED.
eld: append (rev{A.[B.C]1).[D])
== rev{A,[B,G,D])

Since the current and the former ruling formulas sug-

gested that a pew lemma
append(rev( A, B),C) = rev( A, append( B, C])

would be useful, we added it.

[METIS/KE] => new 1ENMA
<< introduce a new lemma >>
> append(rev(A,B) ,C) = rev(A,append(B,C}).

Current ruling formola is ORIENTED.
ri0: append(reviA, B).C)
=» rev(A,append(E.C))
DELETE g
DELETE o

Enuth - Bendixz is termipated.
Your system is COMPLETE.

The compietion terminated and, therefore, both the
target statement and the lemma inserted on the way
were proved to be inductive theorems.

Several examples were taken from the theory of A-
calculus and combinators [Hindley 86, Barendregt 84).
In the theory of combinators, the combinator K =
AXY X and 8 = AXYZ X« Z =« (Y =« Z) (as usual
we assume that symbols = standing for application of
functions are left associative) are called basic combi-
nators because all the A-terms without iree variables
can be constructed from S and K only.

Example 4.2

It iz well-known that the identity I = AX. X is repre-
sented by S+ K = K. Metis was given the two axicms
EsXsY =Xand S5+ XaV el =XeZu (VI for
K and 8 to derive the identity. The problem can he
expreased as VX, T+ X = X. Metis converled its
negation to Skolemized form 4 » §1{A) # 31(A) (51 is
the so-called Skolem function).

[METIS] =-> proVE ssTRATEGY TERMINAL
<¢ prove formulas by S-strategy »>

Formula > some(Il,all(X, I=X = X )J.
Try to prove formula :
Ax $1(A) =/= 31(A)

Enter B-strategy...

Current ruling formulas is INEQUATION.
ri: A+ $31(A) <=/-> #$1(A)

Current ruling formmla is ORIENTED.
rl: k*AxB > A



Current ruling formula is INEQUATION.
ra: A <-/-> $1(k%A)

Current ruling formula is NOT orientable.
r4: gxA*BxC <=3 AsCa(BeC)

Carrent ruling formula is ORIENTED.
rh: gek*p+B => H

eld: $i(exk=p) =/= $1(s*k*A) [r5/r1]
ig a econtradiction. Then PROVED.

The first ruling formula was the target formula A «
$1{A) # 51({A) and the second was the axiom for K,
which was oriented left to r'ight. The third formula was
an extended narrowing from the first using the second,
since A=HK+A4=31{K = A) £ 31[K + A). The fourth
was the axiom for § which conld not be oriented. The
fifth was an extended critical pair between the fourth
and the second, since S+ K s A B =K« Bads
B) = B. Using this, a contradictory narmmowing was
obtaiped {rom the first ruling fermula. By examining
this process, we easily find all terms of the form 8 »
E + A are equal to the identity function, and S+ K+ K
is merely an instance of such terms.

Example 4.3

Next, we had Metis try to prove the fixed-point theo-
rem, i.e. that there exists a fixed-point for any com-
binator, with the existence of the combinators B =
AXYZ X + (¥ « &) of composition of functions and
M = AX. X « X of self-application, which are defined
by B=S«(K+8) s K and M =85 « T« 1. Matis was
given the axioms B= X+ ¥V « & = X =« [V « Z) and
M=X = X 2 X, The theorem can be expressed as
VESP FsP=P,

[METIS] =-> list all
<< state listing >>
operators:
# /3 ( left lexicographic )
b/O
m /0

orderings:
Ho orderinge

equations:
el: m*h = A=A [axiem]
ed: brA*B*C = As(B=C) [axiom]

rules:
Ho rules.

[METIE] -> prove sstrategy terminal
<< prove aquations by S-strategy >»

Equation > all(F,some(F, F*F =P }).

Try to prove equation :
§1xA =/= A
Enter S-strategy...

Current ruling formmla ies INEQUATION.
ri: $1ep <-/-> A

Current ruling formula is HNOT eriemtable.
el: m*h = A=}

Since the above ruling formula could not be oriented,
we let Metis introduce a new function symbol & and
rewrite both A= 4 and M« 4 to s{A). Acqguisition
of the new funciion symbol and orientation of new
equations was done interactively as follows:

[METIS/PROVE/S-STRA] -> mew function
<< introduce a new function >>
Operatarts

[ e3: m*A = g(A) 15 asserted. |
[ e4: A=A = giA) is asserted. ]

Current ruling formala CAN be oriented.
ed: Axh ={<>)= 8(A)

[METIS/PROVE/S-5TRA] -> suggestlon current
<< puggestion for ordering >>
Which de you wanmt te oriemt T

1] A=A -> s8lA)

(2] A=a <- 8(A)

else exit
¥hich 7 1
[ 8 << * ip agserzed. ]

Carrent ruling formula is ORIENTED.
ra: A= -> sl(A)

Current ruling formela is ORIENTED.
r3: m=A -> 8{A)

Current ruling formula is INEQUATION.
rd: s(%$1) <-/-» 31

Currept ruling formula is ORIENTED.

0 -



r5: beA*Bel =-> Ax(B+C)

Current ruling formula is ORIENTED.
r6: s(bl=A+E => bs(A=E)

Corrent ruling formmla is ORIENTED.
rT: a(b*A)*E -> A=(b=A=E)

Current ruling formula is ORIENTED.
r8: Ax(B=(b*A=B)) -> s(b*i=E)

Current ruling formula is ORIENTED.
rd: alal(bli+hA => b+{a(b)=A)

Current ruling formula is INEQUATION.
r10: a{be¥i=A) <-/-> A=({ba§i=A)

e32: s(b=%1=m) =/= g(b=§1i=m)} [r3/riol

is a contradiction. Then PROVED.

Metis finally found a comtradictory imequation. The
inequation was obtained by substituting M to A In
710 and rewriting the right hand side by r3. The in-
equation r10 was from rl and r8, since

#{Bx3lsd) =51={As(B=31=A)) # A= [B+51=4).
and the rule r& was from r2 and r5, since
Ai(Bs([BadsB)} = BaAs Bs(BsA:B) = 3{Bs A= ).

Examining this process of refutation showed us that
m*(B*$1*m) is the value substituted to the original
variable A in the inequality obtained by the negation
of the target formula. In fact, it iz a fixed point of 31,
since

M«(B:31-M)=B:31+M:(B=:35l:M)
=351« (M« (B «31sM))
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