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[Abstract]

We have implemented the Extended Concurrent Prolog
(ECP) Interpreter[Fujitsu B5], which has DR-parallel.
sel- abstraction and meta-inference facilities, by
podifying Concurreat Prolog (CP) Inmterpreter [
Shapire 83].

In Shapiro’s CP Interpreter, only the AND-related
goals are enqueued Ta the scheduling queus. However,
in our ECP inrerpreter, all the AKD-related and OR-
refated goals are enquaued [o one schadul ing gueue,

We have named this scheduling pethod “AND-DR-
Queuing”™. By this “AMD-OR-Gueuing™ methed, it
becomes passibla to handle all kinds af AND-
relations and OR-relations in a unifera manner,
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ABSTRACT

We have modified Concurrent Prolog {CP) Interpreter {Shapiro 1983) and implemented
Extended Concurrent Prolog (ECP) Interpreter (Fujitsu 1985), which bas OR-parallel,
set-abstraction and meta-inference facilities. In Shapiro’s CP interpreter only the AND-
related goals are enqueued to the scheduling queue. None of OR-related clauses is dealt
with. However, our ECP interpreter has only one scheduling queue to which all the
AND-related goals and all the OR-related clauses are enqueuned. This scheduling method
is designated “AND-OR queuing.” AND-OR queuing makes it possible to handle all kinds
of AND-relations and OR-relations in a uniform manner.

1 INTRODUCTION.

Concurrent Prolog (CP) (Shapiro 1983) is a parallel logic language which includes a
commit operator and read-only annotation as language constructs. We have extended
Shapiro’s Concurrent Prolog {CP) Interpreter and implemented Extended Concurrent
Prolog (ECP) Interpreter (Fujitsu 1985), which has OR-parallel, set-abstraction and meta-
inference facilities. A “scheduling queue” is often used in implementing a parallel logic
language on a sequential machine, Processes reduced in parallel are enqueued to the
scheduling queue. They are dequeued from the queue and reduced one by one. In this
paper, focusing on the role of the “scheduling queue,” we outline the implementation
method for realizing extended features, and show how one can nicely handle those features
in a uniform manner.

2 EXTENDED CONCURRENT PROLOG.

As mentioned above, ECP is an extension of CP with OR-parallel, set-abstraction and
meta-inference features. Each feature is based on the conceptual specification of Kernel
Language Version 1 (KL1) (Furukawa 1984). We briefly explain these features in the
following sections.

2.1 AND-parallelism and OR-parallelism

AND-parallelism and OR-parallelism are the basic parallel inference mechanisms of ECP.
AND-parallelism is the mechanism which evaluates AND-related goals in parallel. This

! This research has been carried out as a part of Fifth Generation Computer Project.

*Current address: ICOT Research Center, Inctitute for New Generation Computer Technology Mita-kokusai-
building 21F, 1-4-28, Mita, Minato-ku, Tokyo 108, Japan

*Current mddress: [LAS-55, Fujiteu Limited, 1-17-25, Shinkamata, Ohta-ku, Tokyo 144, Japan
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function can be realized by enqueuing goals to the tail of the scheduling queue, dequeuing
a goal from the head of the queue, and enqueuing the newly created goals to the tail of the
queue. This AND-parallelism has already been implemented in Shapiro’s Interpreter. On
the other hand, OR-parallelism is the mechanism which realizes the parallel evaluation
of guards, when there exists more than one potentially unifiable clause with the given
goal. This OR-parallelism was not implemented in Shapiro’s Interpreter. The following
program is an example of exploiting OR-parallelism,

solve(P, Mes) = call(P) | ...
solve(P.Mes) :~ find _stop(Mes) | ...

When “solve” is called, the above two clauses are executed in parallel by OR-parallelism.
The first clause executes “P.” However, as soon as “stop” is found in “Mes” in the second
clause, the second clause is committed and the first elause is aborted. This realizes the
“golve” with abort.

2.2 Set-abstraction

Set-abstraction is a mechanism for realizing the all-solution-search feature in a parallel
environment. The following two predicates have been proposed {Fujitsu 1984).

eager_enumerate({X|Goals}, L)
lazy_enumerate ({¥|Goals}, L}

In the above description, “Goals™ is the sequence of the goals defined in a Pure Prolog
world. We assume that the Pure Prolog world is defined as follows:

pp(( <head> <- <body> )).

That is, the Pure Prolog world is asserted as the set of “facts” which have a functor name

HPP.!I
These two “enumerate” predicates solve the Goals in the Pure Prolog world and put the set
of all solutions in L in stream form. The following is an example of “eager_enumerate.”

cager_enumerate({X | grand_child(jire,X){, L}

We assume that the Pure Prolog world is defined as follows:

pp({grand _child(X,2) <= child(X,¥),child(Y.Z))).
pp{(child(jiro.keike) <- true)).
pp{{child(yoko,takashi) <~ true)).
ppl{child(jiro,yoko) <- true)).

pplichild (keiko,nakoto) <= true)).

In this case, L is instantiated as [takashi,makoto],

The difference between “eager_enumerate™ and “lazy_enumerate” is the way it instantiates
the second argument. “cager_enumerate” instantiates it actively. “lazy_enumerate”
instantiates it passively in accordance with the request from the stream consumer. In
the following example, a solution list “L" is created in accordance with the request from
“display.”



1= lazy_snumerate ({X | prime{X}}, L7},
display{L. Mes?), keyboard{Mes).

2.3 Meta-inference

Meta-inference means to solve a given goal using knowledge defined in a user-defined
world (Furukawa 1984). We set up the predicate “simulate” with the following form.

simelate (World, Goals, Result, Contrel)

Here, “Worid™ is the name of a world, “Goals” is the goal sequence to be solved, *Result”
is the computation result, and “Control” is the stream through which we can stop and
resume the computation. We assume that knowledge of the world is given as a set of facts
whose principal functors are the name of the world. That is, knowledge of the world has
the following format.

world_name((<Head> <- <Guard> | <Body>)).

As an example of meta-inference, we give the “shell” example (Clark 1984) which can
run the foreground and background jobs. In this example, the foreground job always
checks its control information while running. The background job rums steadily without
looking up its control information.

shell([1, _J.

shell ([fg(G) IN],C) .-
simulate (f_world,G,R,C) &
remove (C, NewC)i
shell (N7, NewC).

shell{[bg{G)iN].C) .-
simulate (b_world,G.R, ),
shell (N7,C).

:= shell ([bg(primes) ,fg{primes}],C), control(C).

In this example, the “primes” programs to compute the infinite sequence of prime numbers
runs both foreground and background jobs. Execution of the foreground job can he
controlled by “c.”

3 THE IMPLEMENTATION OF ECP

We bave explained the extended features of ECP in the previous section. However,
Shapiro’s interpreter is not enough to realize these features. We need to implement AND-
relations and OR-relations well using a scheduling queue.

In Shapiro's interpreter, a scheduling queue only contains AND-related goals. It is created
for each OR-relation. Therefore, many local scheduling quenes are created at program
execution time. After extensive consideration, we have decided to make scheduling queues
global. In our approach, only one global scheduling queue is created. All AND-related
and OR-related goals are contained in one scheduling queue. We can imagine that the
AND-OR tree created at program execution time is encapsulated in this scheduling queue.

We have named this scheduling method “AND-OR Queuing.” Using this method, it
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becomes possible to handle all kinds of AND-relations and OR-relations in a consistent
way. In this section, we describe the queuing method for each feature.

3.1 AND-parallelism and OR-parallelism

As we mentioned before, AND-parallelism has already been satisfied by enqueuing AND-
related goals in the scheduling queue. To deal with OR-parallelism, we have decided tc
eugueue OR-relations sandwiched in between two kinds of markers.

For example, azssume that the head of the scheduling queue is a goal “P" and ihe
potentially unifiable elauses for “FP" are as follows:

P1 .- G11, Gi2 | BL.

F2 .= 021, G22 | B2,

In this case, we put goals at the tail of the scheduling queue as follows:

< &(C) [ 2001, 00) [ (61.%) | (@12.9) !uc.m,ﬁn
1}

&(C.F2,v.0v2) | (621,%) | (622,%) | 2(C.F2,B2) @(C)

Here, OR-clauses are sandwiched in between the markers @&and €. The guard part
of cach clauses is placed between the markers 5 and 2. Notice that markers ¢and
thexpress the OR-relation and that markers £ and 2 express the AND-relation. The
symbel “*,” the second argument of each goal, shows that the goal should be solved
by using the global database world. The argument C, common to all markers, contains
the information whether one of the OR-clauses is committed or not. The argument Fi
of the marker # shows whether the i-th OR-clause has failed or not. Mote that this
argument only needs to show that the i-th OR-clause has failed. Since the i-th OR-clause
is committed as soon as the i-th OR-clause succeeds, it does not need to show that the i-th
argument succeeded. The argument V is a list of variables which contains all variahles
in the original goals. The argument CVi is the copied list of V. The argument Bi of the
marker 2 is the body part of each clause.

Goals between markers are processed in exactly the same manner as the ordinary goals
when goals are picked up from the scheduling queue. However, when markers are picked
up, they are processed as follows:

(1) When marker &{C) or @(C) is picked up, the marker is aborted if “committed” is
set in argument “C.” Otherwise, the marker is put on the tail of the scheduling queue.

{2) When marker gis picked up and the top of the queue is marker ¢4, i.e., the markers
@ and thare neighbors, this shows that all guards failed for a given goal. Since the
“failure” of all guards means the “failure” of the given goal, “failure” is transmitted
to the AND-relations to which they belong.*

* If the goal is at the top level, it means the total failure of the computation. For more detailed description, see
the last paragraph of 2.3
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(30 When marker 2(C,Fi,V,CVi) is picked up, it checks whether “committed® is set in
argument “C” or “failed” is set in argument “Fi.” In these cases, all goals from £ to
1 are removed from the scheduling queue.

{4y When marker #(C,Fi,V,CVi) is picked up and the top of the queue is marker g

' (C,Fi,Bi), i.e., the markers 2(C,Fi,V,CVi) and £(C,Fi,Bi} are neighbors, it means
that all goals of a guard succeed. In this case, we set “committed” to the argument
C, unify V and CVi, and schedule Bi.

(5} When marker 2(C,Fi,Bi} is picked up, the marker is simply put on the tail of the
scheduling queue.

3.2 Set Abstraction
We consider the case where the following goal is taken from the scheduling queue.
eager_enumerate ({X[ PO Q00 L)

In our implementation, the goal is appended to the tail of the scheduling queue in the

following way.

Two pairs of markers appear again. The meanings of these markers are slightly different
from the previous ones. However it is still true that the markers @and @express
OR-relation, and the markers 7 and J express AND-relation. The markers &and
tosurround the OR-relation and work as a solution collector. The solutions are collected
m “M” in stream form. The markers £ and J compute one solution. The computed
value s substituted into the argument “M.”

S a2 LM X ]P0, Q00Y D) | @(M,L)

When markers are taken from the scheduling queue, they are processed as follows:

(1) When marker &is picked up and the top of the queue is marker @@, i.e., the markers
@and Rare neighbors, this means that all solutions for the given goal have already
been computed. We put [] onto the tail of the argument “L” in this case.

(2) When marker 8 2 (M. {X | ...}, pp) is picked up, we find definition clauses for the
leftmost goal of this set. If more than two clauses are found, it is broken up into
several goals. The argument “M" is also reproduced by fission.

(3 When marker ga(M,L) is picked up, the argument “M” is checked. If it is instantiated,
its value is sent to the stream “L™ and the marker is appended to the tail of the
scheduling queue.

The following is an example of fission. Assume that the marker is picked up, and P is
defined in the Pur:z Prolog world as follows:

ppt(P(X) <= Bi,E2)}.
ppl{(P(X) <~ B3)).
ppi{P(X) <= true}).

There are three clauses, The marker A 2 breaks up into three goals and they are
appended to the scheduling queue in the following form:



( | = ’ SR M1 {X1 | B1,82,Q0¢1)}. pp)

J

Q

22(M2. (X2 | B3,0(X2)}, pp)
)

2L (M3, (X3 10(X3)},pp) | @([M1, M2, 43], L)

We can get all solutions for the given goal by invoking fission. Notice that the solutions
are computed by the depth-first search based on OR-parallelism. We have explained
all-solution computing in the case of “eager_enumeration.” The basic mechanism for
“lazy_enumeration” is exactly the same as that for “evager _enumeration.”

3.3 Meta-inference

We assume that the goal “simulate” is taken from the scheduling queue. In our implemen-
tation, the goal is put on the tail of the scheduling queue in the following form.

<

Markers 2 and 2 appears again. The arguments “R,"” “C" and “W™ express the Result,
Control, and World name, respectively.

A(R.C) ]{m.m @wl|... [am

The following summarize the actions when markers are taken from the scheduling queue.

{1} When marker £(R,C) is picked up and “failure” is already set in argument “R,” all
goals from A to 1 are removed from the scheduling queue.

{2} When marker £(R,C)is picked up and the top of the queue is marker 2, i.e., it is
empty between marker £ and marker 2, we set “success” to the argument “R."

{3) When marker 7(R,C)is picked up and “C” is instantiated as [ ..., abort | vari-
able], all goals from § to 2 are removed from the scheduling queue and “abortion”
is set to the variable “R.”

{4/ When marker £(R,C) is picked up and “C” is instantiated as [ ..., stop | vari-
able], all goals from { to % are enqueued onto the tail of the scheduling queue without
reducing these goals.

() When marker A(R,C) is picked up, it checks whether “C” is a variable or instantiated
as [ ... cont | variablel. In this case, the marker is Jjust appended to the tail of
the scheduling queue.

(6) When marker 2 is picked up, the marker is appended to the tail of the scheduling
queue,

Just as before, the markers £ and 2 express AND-relation. If a goal between £ and
1 fails, “failure” is set to “R.” Goals between f and g are processed as exactly same as
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the ordinary goals, except that goals are reduced in a specified world. No special problems
are created if OR-parallelisin, set abstraction and meta-inference are nested within each

other.

4 ECP INTERFRETER

In previous sections we explained the various features of ECP and the realization of these
features in the scheduling queue. We have extended Shapira’s CP Interpreter (Shapire
1983) and created the ECP Interpreter. In this section, we will explain the details of this
ECF interpreter.

4.1 Shapire's CP Interpreter

As mentioned above, our ECP interpreter is based on Shapiro’s CP interpreter. Shapiro's
interpreter is written in Prolog. The following program is a simplified version of his
interpreter. The actual implementation is more complicated since it includes deadlock
detection, system predicates and debug/trace features.

(1) cplA):-
schedule (A, X=X, Head-Tail),
solve (Head-Tail).
(2} solve([]-[1):-1.
solve([A|Head]-Tail) -
system(A), !, A,
golve (Head-Tail) .
solve([A|Head] -Tail) ;-
reduce (s, B},
schedule (B, Head-Tail, NewHead-MNewTail), !,
solve {(NewHead-NewTaill .

{3) reducelA B) -
guarded_clause(A, (GIR)),
cplG), !.
Teduce (A, A},
(4} guarded_clause(A,B) .-
copy_functor (A, Al),
clause(Al, B),
unify (A, Al).
(5) schedule{true, Head-Tail, Head-Tail) :- I.
schedule((A,B), Head-Tail, Head2-Tail2) = 1,
schedule (A, Head-Tail, Headl-Tailll},
schedule (B, Headi-Taill, Head2-Taill).
schedule (A, Head=[A|Tail], Head-Tail):- !.

The meaning of this program is as follows:
(1) To solve a CP goal, the goal must be scheduled into the scheduling queue first. The
“solve” predicate actually solves the goal.

{z) The "solve” predicate solves goals in the scheduling quene expressed as a D-list. If
the scheduling queue is empty, the process terminates. Otherwise, a goal is_ taken
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from the queue. If the goal is a system predicate, it is executed and the rest of goals
are solved. If the goal is not a system predicate, the goal “A" is reduced to the new
goals “B,” and “B” is scheduled to the scheduling queue.

{33 The "reduce” predicate solves user-defined goals, The “guarded_clause” predicate
looks for 2 potential unifiable guarded clause for a given goal “A.” We solve the guard
part of the unifiable clause. If it succeeds, “B” is the body part of that clause. If it
fails, it backtracks and “guarded_clause” looks for another candidate clause, When
all candidate clauses have failed, the “reduce” predicate does nothing and the second
argument is equated to the first argument.

(4 The “guarded_clause” looks for a potential unifiable clause “g" for a given goal “A."
The “copy_functor” makes the copied goal “A1™ by copying the top level functor from
the given goal “A.” The “clause” finds a potentially unifiable clause “B” from “a1.” If
this succeeds, the “unify” predicate unifies A and A1

(s) The “schedule” predicate contains the given goals to a scheduling queue. As men-
tioned before, the scheduling queue is expressed as a D-list. The “schedule” predi-
cate enqueues nothing if the given goal is “true.” If the given goal is “(A,B),” “A”
is scheduled first and “B” is scheduled mext. If the given goal is “A” it is simply
appended to the tail of the scheduling queue.

4.2 Qur ECP Interpreter

We have extended Shapiro’s CP Interpreter (Shapiro 1983) and created the ECP Inter-
preter. The differences between our ECP interpreter and Shapiro's interpreter are as
follows:

» Shapiro’s interpreter processes OR-relations by backtracking as shown in (3) in the
previous subsection. Since the “reduce” predicate in {3) calls the top-level predicate
“cp” for each OR-relation, one scheduling queue is created for each OR-relation as
mentioned ip section 3. We have implemented OR-relations by appending them to the
global scheduling queue with markers,

» Shapiro’s interpreter does not distinguish “fail” and “suspend” on processing goals.
However, we distinguish them so that the failure of a guard can be handled in OR-
paralielism,.

= Shapiro’s interpreter does not directly realize OR-parallel, set-abstraction and meta-
inference features. We directly implemented these using one global scheduling queue.

QOur ECP interpreter is written in DEC-10 Prolog on the DEC2060 and in C-Prolog on the
VAX11/780. The interpreter consists of the scheduling part, the marker processing part,
and the Pure Prolog processing part. In terms of program size, these are approximately
150 lines, 170 lines, 50 lines respectively. The processing speed is two or three times
slower than Shapiro's system since our system realizes OR-parallelism. The slow speed is
caused by the fact that so many markers and goals are contained in the scheduling queue
when we have a nested guard.

Qur system was created to meet ICOT's research cbjectives. Therefore, our system has
still several problems, such as the consumption of memory, exhaustion of stack space and
others,

5 ECP PROGRAM EXAMPLE
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We examine the “shell” program io this section. This is 2 more realistic version of the
shell program discussed in 2.3 (Clark 1984). The shell program in 2.3 can run only one
foreground job and multiple background jobs. We can control the execution enly for
the foreground job. However, in our “realistic” version, there is no distinction between
foreground and background jobs, so we can run and control multiple jobs at the same
time. In this “shell” prugram, every job has a process-ID and the execution of jobs can
be contralled by commands which include process-IDs. A job may be aborted, suspended
and resumed. The realistic “shell” program is shown below:

{1) shell :- shell(I?, [1), in(I).

(2} shell([proc(ID,Goals)|Input], IDlist) .-
true | priot_result(IDiist,lDlistl),
print_process(ID, Goals),
simulate (*, Goalg, R, C).
shell (Tnput?, [{ID.R.C)|ID1list1]}.

shell ([wproe(ID.W,Goals) |Input], IDlist) :-
true | print_result(IDlist,IDlistl),
print_wproc(ID,W, Goals),
simulate (W, Gecals, R, C),
shell(Ioput?, [{ID.R,C)IIDlisct1]).

shell{[Com | Imput], IDlist) :=
ctherwise | priot_result(IDlist,IDlist1),
print_com{Com) ,
send (IDLlistl, Com, MHewIDlist),
gbell (Input?, NewIDlist) .

(3) sendi{D._.0J.
send {[{ID R,C) [IDList] , Com,
[({ID,R, NWewC) |IDList]) :=-
Com =, [M,ID] | € = [MINew(].
send{{(ID.R.C) |IDList] ,Com,
[({ID,R,C)INewIDlist]) :- ctherwise |
send(IDlist,Com, NewIDlist) .

The meaning of this “shell™ program is as follows:

{1} “shell” is the top level predicate. It calls the two-argument- “shell” and “in.”

() Two-argument-“shell” i5 the main part of this program. The first argument of
“shell” is a stream which receives commands from the goal “in.” The second ar-
gument is the list of processes controlled by “shell.” This list of processes is called
“IDlist.” A process is expressed as (ID,R,C), where ID is an identifier of a process, R
is a variable which sends a message to the outside, and C is a variable which controls
its execution,

This “shell™ behaves as follows:

+ When it receives the message “proc(ID, Geals)™ at its first argument, it calls “simu-
late,” executes “GCoals” in the global database world, and adds this process “(ID,R,O)™
to the “IDlist.”

¢« When it receives the message “wproc(ID, W, Goals)” as its first argument, it calls
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“simulate,” eXecutes “Goals” in world “W,” and adds this process “(ID.R,C) to the
“IDlist.”

» When it reccives other comuands, such as “stop(ID),” “cont(ID)” or “abort(ID) , as
its first argument, it sends that command to the control variable of the specified process.

The predicates “print_process,” “print_wproc” and “print_con” are used just for print-
ing out the message which “shell™ received. The predicate “print_result” is used to
print out the resnlt when a process is aborted or ends successfully. In such cases, it
prints out the process termination information and removes that process from the given
“IDlist.”

(3} “send” transmits a message such as “stop(ID),” “cent(ID)” or “abort(ID)” to the
process with a process identifier “ID." It looks for the “IDlist.” If it finds the process,
it sends the message to the control variable of that process.

The following is an execution example of this “shell” program.

7= golveiszhell, R}.
> proc(p0l,primes)
> wproc(p02,s,prime(10)}
i
3

2 (s}

3 (s)

W o

stop(p0l)
5 (s)
T (8)
> cont(pdl)
> resultu{[pD2, success])
T
11
*> abort(p0l)
> result([p01, abortion])

Here, we invoked two processes. One is the process “p01” which generates the infinite
sequence of prime numbers. The second is the process “p02” which computes prime
numbers up to 10 following the definition of prime in the world “s.” In this example, we
stopped “p01” after it printed out 2, 3 and 5, and resumed after “p02” printed out 2, 3,
5 and 7. The process “p02” is terminated after it prints out all primes up to 10. We also
terminated process “p01” by sending the abort message to “p01.”

6 RELATED WORKS
Here, we would like to survey various research on extended features of Concurrent Prolog.

(1) For OR-parallelism, Levy (1984) proposed the implementation method using a global
queue. His method is based on the lazy copying scheme, but it has been pointed
out that this method still has bugs. ICOT also tried OR-parallelism using several im-
plementation schemes (Miyazaki 1984; Sato 1984; Tanaka 1984). For these methods,
implementations were written in Pascal or Lisp. On the other hand, our implementa-
tion was done in a logical way using Prolog.
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(23 The research in set abstraction is preceded by POPS (Hirakawa 1984). POPS is a
Fure Prolog interpreter written in Conecurrent Prolog. It enumerates all solutions for
the given goals in stream form. In our approach, the enumeration of all solutions is
directly realized by the scheduling queue.

(3) The key issue in meta-inference is how to implement the interpreter of the target
language. In this fie.d, research has been done by writing meta-interpreters (Shapiro
1984, Clark 1984). We have implemented meta-inference predicates directly onto the
scheduling queue. Compared with the traditional approach, our approach is more
direct.

7 CONCLUESION

In this paper, we described the rough outline for realizing extended features of ECP.
Related work in this field was also surveyed. Although we have omitted here, there
are various problems which oceur in the actual implementation. Oupe is the problem of
copying variables involved in the realization of OR-parallelism.

We proposed the “AND-OR queuing” method. It is surprising that the various features
of ECP, such as OR-parallel, set-abstraction and meta-inference, can be implemented in
4 consistent manner. From the architectural point of view, it is more realistic to assume
one global queue than assuming many local scheduling queues created dynamically. And
it leads to the more consistent scheduling. That is,

(1) It realizes OR-parallelism.
(2) In set abstraction, we can reduce other goals while generating solutions.
(#) In meta-inference, we can compute several “simulate” predicates at the same time.

By the way, the scope of this “AND-OR queuning” method is not limited to Concurrent
Prolog. This method is also applicable to GHC (Ueda 1985). In this case, implementation
is simpler because it does not generate multiple environments in implementing OR-

parallelism.
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