ICOT Technical Memorandum: TM-0120

TM-0120

AND-OR-Queuing 1in Extended

Concurrent Prolog

fifm | ETY @ (EtaE)
T A

June, 1985

1985, 1COT

Mita Kokusai Bldg, 21F {3) 456-3191~5
” :D I 4= Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

AMD-OR-Quew i ng

in Extendead

Concurrent Prolog”

5o
(H+&

[Abstract]

We have implemented the Extended Concurrent Prolog
(ECP) Interpreter[Fujitsu B5], which has DR-parallel.
sel- abstraction and meta-inference facilities, by
podifying Concurreat Prolog (CP) Inmterpreter [
Shapire 83].

In Shapiro’s CP Interpreter, only the AND-related
goals are enqueued Ta the scheduling queus. However,
in our ECP inrerpreter, all the AKD-related and OR-
refated goals are enquaued [o one schadul ing gueue,

We have named this scheduling pethod “AND-DR-
Queuing”™. By this “AMD-OR-Gueuing™ methed, it
becomes passibla to handle all kinds af AND-
relations and OR-relations in a unifera manner,

1. UK

Concurrent Pralog (CP) [Shapiro 83] &£, Pure Pro
log &£, 22 o k- AA L~ & RErread-only aonotation
ERMLL, GNNBENSATHS, CPOFOEREEE
e O ETiapienent LED LTI ERE, R Bbh
SEZCschedeling quete DA TR N SES, s, ¥
MAFAEs7OoCAEuee KAND., STIMAEEHN
KERTRrashdThaa.

WS E, Shapire MCP [nrerpreter [Shaoiro 83] %
B, ANDGE R B TFORGRFIEMAE, BOSHPMAE, X3
ELfES FER2Etended Concarrant Prolog (ECP) |
nrerprefer@lfEE M A [Fufitsy 85],

ARVTTHE, fY0EFLEIP oEABRDAS S, BE
scheduling queec MELABH B> T, TOBE S
TUAYFEEORRETES.,

2. Extended Concurrent Fralog

BhgLimE 3, P &igCPic ANDGE T B CrOReh) fMEE
BEMDLERE., ASESRESSE/OLAESODT, £
OEATHORER., MMEOREEN 1 ERSLRE(F
urukawz B4] KB ITNTVS, P OChSEEAECD

= AR, ASRovEa - - FOY S FO-RE
LTiITbhib0THS,
w105F 6RL 0, I00T, 351 TN,

G A
ERR)

HF &
(ELES5L)

E, ATH¥CRAT .

2.1 AND:g) B T ORaD 51 b

RV OBXANSFESARELTHION ANDGA
EURRIRETHES,

ARD SRR L, SEMCWN THIThET - Le
FEfETolETHS. COBEER,. PFEEFGINE
T AFEscheduling quene ek CEM L., queve MH
DT=LEEOHL, VX2 vaE TG, TOERE
dquene MEELBR IS LLLENERERS, COMD
FREEC VTR, TTCShapire O Interpreter T
HEhtint.,

~F7. MEFRELE, T-ALEL2=Fr s GEEAY
FeFomrdaussss, CREOBC2WTH-F
HOETEHRACTEI@ETES. T OMY T tshapir
o Mnterpreter TRE|EEZATIVEDL,

DR P AL M BT RO S AL LTHTOESGH
EEBAD,

[e i ———— e s e

calliry |
find-stop(Mes)

solve(P, Has} =
solve(P, Hes} :—

solve MPRINRL &S, FOTOOMBORE N@EEC LD
RAHEETSEAS. EDERREP EXTLTHWANA, TOF
TR TFOENTHes OfstopFR2hnid, TOEHRD
BIZwpkbdn, P SREPFTEALEP OF{THFabort
TS, ThELbabort &selve FEREh D,

2.2 ma&mafome

HEMDPLEMELGE, BRABRRTCSE SPurs Pralog
BERERRAEDENOLDECBASAARETSD. &
JLEBESHOLEREERTIRABELT., UFDLD
i B H Meager-anumerate &lazy-enumerate =D HER
ENTA[Fujitsu 34),

eager-gnumerate({X | Goals), L}
lazy-entmerate((X [Goals), L)

TTTTTTT

CCThoals ., Pure Prolog OB TERZINATVSE

Eosgad-wuiliTha, Pure Prolop OB REOERO
EATHEFR. ST,

ﬁé,ﬁamﬁﬂmﬁm,::?ﬂwmangmﬁam
Hi,

ENIET, B, ppkiv A funclor £E Mo factDEER
ES&LLTaswrignTndonemeTa,
CW”oMenumerale &1, Pure Prolog @it TCoals
EHE THALALTLIIGI OMESEYALOETL ©
AN,
BEBRREOALLTHTOME=Z 5,

F____---'-‘_'-'-"________'---“__"““____]
1 i
| eager-enumerate({¥ | grand-caild(jiro,%}1.1) |
i I

CDEZ, pure prolog OEBREFOLICESSAT
haHETE, i

]
I
I
|
|
]
f
i
1
|

p2((9rand=chi 140X, 7)<=--chi 1 (X, ¥), chi 14(Y,7})). |
ppdichildijire, keiha)<---true)), |
pof{chi ld(yoka, takashi)s---true))
pod fchi bd(jire, yoho)<-~-true)).
pplichild(xeike, sakoto) <--=true})
CHDEARELTL Eu[tahashi.lahntujﬁ_}kﬁ.

—RILC. eager XlayDEVRL ORAEOLEEDESR
THD, sager NESUENNCL sR&ETADC A,
lagyDBERENHTEY, | HERFARNSERZhOS
B, ThEBUTWOUIRSEELTING, Sl3iL.
—

o= lazy-enumerate{{X ! prime(X)],17), i

display(L, Hes?), keybord(Hes). i
mﬂ%tﬂqMHHF$UEﬁE$EﬂéEEWREUR
FREEEATING,

o ey

] Asmuge

AFMSRBLR. SASNET-L%E, S5HR (Hor
) DETEREN TV ANNEACTELMETSS(F
Urukawa 8] . COA SREMEERBIATVE T 4T
ELT, AOLIGBRO, EMlsislatesART S,

=

————— e

! siculate(korld, Goals, Result. Contral)

CCTNHGH%i%n&ﬂﬁﬁkmﬂauﬁﬁﬂéﬁE
T=UHl ResulI T - A& 5N rHEDNESE
TEWLCHOEE, Control BA ARSAESs—BESE
DERLEN TSI FO-LBEEANAI Y =LAT

R e

P

e —— -

I
1
| WOTHE (<A Y B> e < — FE> | <7 o))

- —t

EWSET, @5, worldg &S functor €% 85 fact
OHBREE L Tassert TN TV 300 LEET S,

AEHRAEDHELT, OV FO-LBEERSHS
MO0 Taforeoround T a 7L, Bim -2
m{mmmeﬂa?ﬁEa‘mmlmﬂmmmaﬂg$
W,

——— e ———

! shel 1011, _),
shed 1{EFgiG) | K).C) :-
sigulate(f-world, G, R, C1&
reaovedC, Newl)§
shel (N7, Newl),
shel[([baiGy | 81,00 :-
sioulatefb-world, 6, R, _)
shell(N?,C)
c-shel i [bglorimes), fgiprines)]. c),
control (C).
DB TRrives2HET 52 = 7 gibackground & foregr
UNdDEATED . foregroundd Fizcontre|l NEBEE
Hoal&ns,

|
|
1
1
1
]
]
i
!
I
|
1
]
!
I
|
1
i
I
I
[
I
|
|
d
I

[e

3. ECP DimBmEL T O%R

REel OdE&EAEC W TEBECSALE, Chal
BEREOERCHL-> TR, ¥REHFS, Shapiro @lnte
roreter TRF+ATH S, ThThOREO G ES T
ZAND DEGRE CFORMRE . scheduling quenemM D3 % <
implement TEZ LHFBEL AT LD, _
ﬂ#ﬁ1#E®E1ﬁ$\Mﬂﬂﬁ®$%EHL,ME
B—D—- DK DSHESN T scheduling queve® 2o —
ﬁm%&ﬂ—ﬁﬁﬂt?é:tﬁ&h,7D§5L3ﬁ¢
ERNIINTOSAN RRRUSARBERECD—%
Mscheduling Quete@PEANAS ECRo, v A4 -2
ELTRTOSSAMNWARETEL HAND-0R Tree T
DEE—XOscheduling e P ANEBUTH S,
ﬂ&ﬂtﬂﬁﬂt“ﬁﬂm%metﬁ%bt.Cﬂﬁi
&, MW MAEMARER— N SN T AT L M
Emofs, BRETR. BF. SMEOscheduling queven
CERARED2LTRNHT S,

3.1 ANDYE R R TFOR G RO TR
WAL, AND ZRE20TIE, scheduling q

CUBmgCAND RO T - LEERMT LS L TREOEEZEAT
Bd.

MEACIVTR, SR0x., REHAE"HHOv-1
THEA, scheduling quene @ BRI SO S0 L, @
AN, queve DEELOGROMEFAETI-LAPTHD,
T-APKEHTARHES

Py oom Gy G | By
Pz - G?1p G?E | Bz

THSEE, scheduling cuereD =R TOLESCH

| |

e e s s s .

WEha,

) pACFLV LN | (61,9 | (G12.¢) | A(C.T1,B1)
B

(jamﬁlﬂﬂtmh}tﬂlﬂ A(T,F2,B2) | H(C)

CC TOR-Clausses A4 L *xTHEIR TS, T8
BN -FlSEThAThALALREENRTESATINE,
TEADRIZ0AEHE., A ADBZMN BHEECE=2THE
BMEI Ly,

CCT=—2=2070C0mTO ™ gFn7or
DRTLWMAL, YO0-PHLF=anN-2NEATSHDZ
EERLTWS, v — a4 A03 80 it, 08-Cla
s REWME Ty FEREOLS AMNERBEBRALT
&, T-HADBIEFE., X08-Clause KERSIE -~
hEpOMEERT (CO3EE, A-FREOLEER
IMHETRTERFAGY. GRS, COSME. S0R-C
lause KEALOERTHO, H=FHAEHL, 2Ew k&
ERCHETONATLEN, IhSREINAZ Lldfn,
SETHS) o 518V . B-ClausesDRUFHLRO T — L
PESEATVASEROVIALTHOD, BB G,V &
EH-FHESVWTar-2hIifonigNUiLT86
D, ¥T-HADSEBIL., TAThOTHBORT 8 H
EBRRHLTVS,

C@Dscheduling quaveld, queve ST JLFIRY HE
Rl E, AEOschedul ing queve &£ < [BERENE S
TEbhaf, v HAROESh L ESFRETOLAIL
ThH. B,

I
| @7~ H%(0) BULEAL) FROMEANK LA,
| WHCETWNHN'ﬁtvbénTwnu?—nui
| mTOR, TATAURE, quele ORBEHENRST |
|
|
I
]

)
I

na.
QF-NREKEFRUTROHSALGOE, Shid)
ﬁ—Fmﬁrﬂtimbtha:t&ﬁbfwamrg

| BUMLATOL-AP BERESS,
(@F-HACFLV VI AROES N, 3IWC K commi
Cotted’ | BLCAMEI failed" Kby hE AT
S, APSALTETATRIMS,
@F—HAKLFILVCVIEACFLB) FRETROM
ENEESH., CRE-—FASATSTRILED
ERLTWHOT, 510 & connitled” KEKEL.
Vet 2277 4L, BigschedulingT &, |
@7 =HACFiB) BROHI NS LTOEEKEA |
EERTS, ;

|
|
1
i
1
I
1
1
f
i
|
i
I
|
|
|
I
I

I
I
|
|
i
i
|
i
|
|
I
I
|
1
!
H
L —————

1.1 E&EEmRtREOER
MEBRHEMEOREE LT, scheduling queves S|
HEI3GT-LFFHEREY-2F823,

Frm——————

| eager-enumerale((X | FOX), QXD), L)

- = ——

c@eF, scheduling oueuemHERL B, 2FOD LS LB
HansltErI00E,

ek

CCT, AEET_HAODY-AARAN TS CECE
B, T N1NEARUHATELGESORTLS, Tk
*DEAIRME, AATEEZhI 7 - DOPEAAND @i
EG2TV2FREELUTHS. St k32 ExRATSD,
HEBHTNEARBLLATLRE%TH, AAE, BOD
=DENBTENELTE,

SIEH I, BAZACTREEDZLOOTETHY.,
L, #EAREHATIILY=LTHS. o0itPure P
rolog DEHBETHI,

AAMRAK |RIR) QXY pp) | A (M, L)

uese M5T-NFAMOBE R LEE, LFONEE
3.
1
D7 - ARAROBENLELE, REZ—HAMN, L) T |
%3, BEXEKEORFETHAL, TRARMAE |
BETMRIA TRV ENEC LSRR T20TA !
BL &0l [)) CRKEL, 2bU-LERUS,
TATHENLE, queue ORECEER TS,
QV=NAAM(X | =), PPIAEDEINE EREQ
CORBOERBOREDT A (SORNTHPX))
DERDEHELUL, ARO2_7 7 AEEFSM
u&ﬁﬂfﬂ:r.mnnu.ﬁﬁﬂmﬁ:—m:ﬁf

LT, i

e s s

f@v~n*m¢1ﬁmnmsnmeacu,mangug
i NEABESRTONE. ZOREALU-AL £EY|
| Y-hGRECEMTS, :
I

&ﬁm[jutu~ﬁﬂtémm?ﬂ?ﬁﬁ?é.h:.
f—hﬂlex|NHMLpMﬁﬂﬂﬂ$ﬂkFﬁNN
Pmmuﬂﬂﬁ?ﬂ?ﬂJﬁEEﬂéhTw@tﬁET%u
| - !
pni(P{X)+B1,821), |
PRLP(X)—83)), ;
pRO(PIX) e=true)). i

HﬂﬂiﬂﬂuEﬂﬁ§®T~?-ﬁ&iﬂﬁﬂﬂiﬂi
L~ﬂﬁﬂtﬁﬂ?ﬂ$ﬁ&ﬁ@ﬁﬂﬂﬁﬁmq%mmx
EEBHE NS,

(i]n[aum4m|MJammumj

—)

!a&mdﬂlﬂmwmmj
)
—
AAMI I | 000). oo

:ﬁbf&ﬁﬁ&ﬁﬁtﬂ:b&ﬁﬁ,Eﬂh:iﬂﬁi
ESCEEES, ZITIEL, ORAEFC W&, depth-Tirs
tTﬂﬁﬂﬂﬁﬁThﬁCtCﬂﬂEﬂth.Hnﬂmm
FREREDVT S, TG IROEN A ARG ST,
ELEUCRAITOB TS aa,

*ﬁmijJJ

33 ASMSEmEoESR
mmwnwumumanwmmﬁﬂﬁﬂmahtﬂé,

“loals #61, 62, ThASTRE, scheduling que

Mﬂiﬁ[ﬂ‘?Eﬂ&i&ﬁ?ﬁﬂEﬂ%t#iEhén

<

imE?\?—ﬁatAﬁitEhnThéCtEEHﬁ
N, BIEOR heselt, € EControl W worldsg
EINTARBELTIVD, wove DS 77— hARDHS il
AONBE@EHCL LN LRDLEICHS,

AfRC) LGN | (62, M) FALY

ittt T T ——

E®?~h&m£1ﬁwwﬁmﬁﬂﬂmahtﬁ,ntﬁi
i Cailre’ Ay PANTNSLRE, ANSAZL |
| TEINTmRL. i
:@?—hﬂMJJﬂwweﬂ&ﬁﬂmantn~wwe:

-

?,

| DRAFATHD, WEALADEFTTHN. Re

i SUITE 'success” fitw rana,

}@?—ﬂﬁﬂilﬁmwemﬁﬂﬂmﬁhtﬁ,cﬁ[

! e, abort | WH] THAEER, ARG AN
—LELRDEE. R Cabortion &+ F¥aE. s
T-LEEHETTA,

@v—nami]ﬁwwemamﬂméntﬁ‘EﬁI
oo SLOD [] THILEE, ALBOT ALY
FolaveEfiaadsrhe, HETIAZTOT-
LElEauste BREoHD,

EB¥—-8mARC) Noueys BhEmVHEINLE. C #
- CORLTEW BLAREMTHI LR, Biw
~hAEwert OREKOH, R TTE.

ﬂv-nAm:umawanét%mzixﬁmﬁnﬂ
Td.

e e e -

[T —————

1
I

1
I
1
i
[
I
1
|
1
i
I
I
!
I
1
!
!
I
|
1
I
f
I
1
1
"
|
[
|
I
I
1
i
1
I

L8 A D HAND Mﬁﬁ&aTi‘%IuCCT%MUT
ﬁﬂ\athﬂm“ﬂj-mwmmgtﬂwrﬁ\525
NEMREHERL 0 FOOHF 545 &L ECNR
#ﬁ%hﬂ%.ﬂa&2ﬂ¢?MQw.lé&ﬁt.ﬁ#
ﬁﬁﬁ#lhbtﬁﬁh&m_atxmh?j—kﬁxﬁ
btticu‘ﬁtiﬂﬂwﬂbmmfﬂaﬂThwni
failure” Hewrana,

4. ECF 01¥8 7 frae
ﬁﬁzT?EPﬂﬁﬂﬁ&?%mxﬁﬁﬁtjhtﬁm
Tz BESK, Shapiro MCP Iaterpreter [Shapiro 83]
EmELmFmEEﬁEH#Ltﬁ1tETuHP®4>
ATV TERERE T &,

4.1 Shapiro QP 27Ty 4
xm?HHPmEHEﬂHTENEﬁE\Ef‘%ﬂi
Bihatshapire MP XETVAE DN THE MM
Tﬁ.Mﬂ"ﬂﬂﬂi?ﬁ?UiEMMW?EﬁEﬂTﬁ
., CFHHE‘E:T.'B‘@EHL-?::I?#Jltﬂﬁﬁ'{‘dﬁﬁ.
EFO7 045 Ashapiro DAL R TY SEECHEE
Lmﬂﬂﬁﬂatwfﬁbtﬁmrma.!mmﬂmﬁv
BConiCdeadlock@ME, systemd I, debug , trace -]
fESHiiman, MR E s L#Ec s,

DeolA):-
schedule(A, X-X, Head-Tail),
solvelHead-Tail).

@soive((]-[1):- |
solve([A | Head]-Tail):-
systeminl, 1, A,

I
1
i
!
[
I
|
1
1
]
1
I
1
1
1
1
i
[
[
I

| solve(kead-Tail),
| solvel[A| tiead]-Tail):-
| reduce(d, B).
schedule(B, Head-Taif, Newtead-NewTail),
I, solve{Newlead-YewTall).

dreduce(d, B):-
guarded-clause{d, (G| B)},
cplGy, 1,

reduce(p, A).

iquarded-clause (. 8) -
copy-func(A, A1),
clause(Al, B),
unifyia, A1),

thscheduled{true, Head-Tail, Head-Tail) :- .
schedule((A 8), Head-Tail, Head2-Tail2) -1,
schedule(A, Head-Tall, Headi-Tail1).
schzdule (8. Head1-Taibl, Head2-Tail2).
schedule(d Head-[& | Tail], Head-Tail),

COFOUSANERELTOROTHS, (LTOH
ALSCTRFO~0R. 7045402 RTD~8
EHELTWS,)

Do T LRA ERMEERDICR, A 22T 51— D
ATa-UndL, ThERTEVE,

@aolve BFa-KBREALT-LE4R<RETHA,
FI-HFEGSABREOTHES. TRt ta-n%
EST-LEROBELTROK, ROHESnE - L4
HlhaDRmcsTheERgL, a—FEHoERTs T
frEreducel, TOERORLOT-LES1 - EEAT
B

D@reduceid - FERDT-ALEH<ERTSE S, quar
ded-clanselt, Sx NI -LED0Tunify WMiEse]
ause® @ L 77, reducert, 2 ovarded-clauseT 5316
Nz -Ric20Tunify Fghclasets—2W UL,
TON-FER<, H-FHRSvBACzadne s
ORI ILT, MOunily FEAClaseEBLIEL
DfFEAMTEETIOIAY, gLTNEFLTHIIL
GhokEFicduseend FAGLT-LETOLSEIER
ELTHT.

Bschedvleit 536N - LBET 2 - CHBRTS, i
heduling quevektd-listmETEAATVWAIIELAAS
fircy, dschedufe T — A Mtrue T iz A BEML
BV, T~LAFAB) DETHSAL, A £BNLTHS

-

EEHMTa,. TORDY-AKBI-LEr1-D%RE
CEATS.

4.2 ECP MimAoiER

P MIMER(Interpreter) BMEC ST, BT S,
Shapiro CP Interpreter [Shapiro 83] ML TR
Eok. B4 BROECEFAULTFOEN THS,

wihapire MARRTRUADBDERLELIC, BENES
RS FIvICLDUBLTWS, @0 reducaig—2—
COH=FIEL P T s LR LORSENE0T, 3
Rodst LI, —DOMMERT £ 5 —>T schedul |
ng aeleFES NS LGS, Ba, IREEy -7
fHET IOl ascheduling quenei ML . RS A%
ERHLE,

Trihapire MABERTE, J-LOAB (2T s &
SV REGNT, EREYINYFEERL TG,
BHADNBRTH, EMEHIAYVFEENTBLESEL
e CHESURENC ST - FOERERS S &H
BifEefat,

wihapire DOMBRTE., HES Y FUAYFLTING S
aflth, BAE, SABSEEE, FaNRAEL 20T,
VoAt E THEHEscheduling queveic ARBC AL, o
?#TU&EEﬁ?—hﬂﬂﬂ%EﬁétﬁtLt.

AR VAR T80 OC-ProlopBFDEC2060) DEC-10
Prolog ETHEEL. MIERETL, 25T 1 -0V SEe,
VohUHD. RUPure Prolog MBEBANSL L, &
BEOsize, BC®m 15007, 17017, S0 THS, BE
E2NTH, IMREXRLTr28EwE89, Shapiro
DOPRCEAR 2~ EOFITHS. Chiz, 2mE
Dachedul iMEFT-nO0LE (AL, A—FEF2I
BLa®E., scheduling quevediciz, B E<O T
LALT=NLHBRSNE) CEMAANELEOTSHS,
ANEROMESELTIR, $SEBLERTIENHE 2
—EERTLILE, BUFHLOZ I AR S HProl
QUEROstack EXRBLHEBLILEICE, LS
Hohnsd,

5. HP 7 OS5 LE

ECP DFOSILAL L Tohell MMEE22, “hit
2.3TMt-shell CM[Clark B4)% Errealistic L
LeOTHS,
CODFOTSATR, shell BARBOY s 7EEE -
ESR, EETORTEIYRO-LTELA5TES,
(2.30MTR, forground Y2 T R—BE—FLAES it
SCLHTET, backgrovnd P s FR—BEENEES

LILHFTESZHOO, TOEFEAXFO-LTEZL
HTE&hol.) SOTOFSLTR, shell ATED
FharaTiR,. TATTOERANERILICA2TH
B, osheil BZFOEIDEHFELT, avrrFaEdnn,
FaTOmE, LE, PEETAILHMES,

@& shelll[proc(ID,Geals}|{Input],I0L) :-
proeloglid print(IDL,ITL1))
almulate{® Goala R,),
shell{Input?,[{ID,R,C)IIDL1}).
shell{[wprae(ID,W,0cal=) | Tnput], I05L)
prelog(id_print (IDL, IDL1))
¢ sipulate(W,Goals, R, Cl,
shelllInput?, [(ID, R, CHITOL1])).
snell([Com [Input],IBL) -
prolog({id_primt{IIL,ITL1},
send{IIL ,Com, New ITL) 3)
t shell{Imput?, NewILL),

e

secd([],_,[1).
send([{ID,R,C}|I0L], Com,
[(ID, R BewC)|IDL]) 1=
Com =.. [M,ID],1.C = [MINewC].
send{[{ID, R, CHIICLT, Com,
[({ID, 7, €} [MewIrt1) :a
send (IDL, Com, MewIDLY,

c@shell MOFYFEEHTOEOSSD,

A e e e B B o o e e e o

ATy H

proc(I, Goal s | 0= F - -ADHRT
=R ER<

wproc QD HRE, | S3sncMERTI-LRE2R

Goals) <,

[stop(10) BERGNEIEED S OE ADE
FahmTa

cont (o) SRAGNTIERDIRHSATK
LH7OEAEEMTS

abort{in) SAGREIERDTOL &
METYS

CORRLE, shell FodSLoBRgadToEsAn
Thd, (BTFORELSNTEZO~IE, 70554
ORFO~DEHBELT AL)

Dshell FOLTLOb v FLALTEY, 23 Msheil
. BainERUTHT, 25mehell &, iSOyt
—DERFTOC.

mmﬂlrnrﬁammmrﬁﬂ‘a1yﬁu,ﬁmma

AYYFDANERAIA LY=L, B238d. ALY
FPEBCTVA70L20UILTHES, (ChEally3
bkﬂ&,}::?1ﬁ1?MTntZEEWJjJTﬁ
SDENTVS, IMETOCIERNTTa-BOidentifi
er, R R ARREAANELILNOES. L 370020
BEEAYPO-LTIEHOF v RILTHA.

Coshell @R 15IEMEA Y =T8T 2k Fact]
VEL TS, Thabh
a7 ForocllD. Goal) #Eid- L=, dEsimulates
BUHL, YO0-rA7—-3X-20URTS LSRG
M%ﬁE‘mﬁtmuzhcaianﬁm\wmmﬁnﬁ
ROMSEER . RUIYPO-LFv 20 #8CLT
BHL, koAbhesa,
= AT Ewproc(l0 W Goal)& BiF - 28, BIsinulate
THUTEL, HEY TinlE®RE, OECIUARESS
ShlD GuRlINHARIORLENR , BUs v ha—
MFr2LL SFLLTHERAL, XDALEED,

s ETOMODITLF (stop, cont, abort)EBirf b,

Ssend& UL, BAShEIER D7D AC A
E=DEED. ROAHERD,

#ﬁ.iﬂ—FETWUHEhé.meMH‘MUR

FOBE, BEOBTLETOEIADIINSAG G,
OEBEHL. TheIIAFMEHBRT S,
@sendit, stop. cont, abOrt WOTP LR ESHE L=
RHzh. (M AFOEHRE 37 Y FCEEShit7ob
AEALEL, T2V FO0-AMF rELESEIaRE
TYFERLERTHD.

SENGOMI S MBADT ALY, W23IME, A
AENRZTTUF, BAURRLAS BRI L THD,
Wshell LaiMrns,

BRseNIDBEEFLCNATZEUTOEDTHS,
U AT THRE, Newld AbETEEET,
U FDEHNAS, BASREIYYFOINEFL
G, TOVOERAOI Y PO-LFp AN A wtr—
DEED, TOTOEAIFraLETFr2LEEAS
By
- LERADESCR, IVALOFOEIR, T2 2
BOO7O4 I sende mrg T,

Chshell 7O/ S LEERNECHNELFERY,

7- szolwve{zhell R}.

» proc(pli, primes).

> wproc(pd?, g, prise(10)),
2

3

it T S ———

Lub P
In

e
{a

i
|
5 I
> stoplpdt}, |
i 5 {z) |
H T (2}

: > gont{pd1}. !
1 Resul t({p0Z, success]) i
i 7 I
! LA

: > atart{all)., !
! Resul t{{p01,aberticn]} !
] 1
] 1
3

e e e e e e e e N o e e P . e .

COTRE, 00V ELTHENEMBR LN T S0rines,
02T ELT, 1ASNEITORNEERTSrizel10)
ELoWHHEs TEHLTWS,

COETWTE, pol A 23,08 MA LS, stoplpol
) #ED, pot £hHLL, pol HTETHALLE L=
nilpol) £ED0, po) FEEAHE, TOE, 002 © 15
BNETORAMETATERLED THEET L, pol #
NEHALLE, abortipo) £ H0, pol £h s,

6. FAMTOERN

COINT, AEECHALL, Concurrent Prolog @
Eﬂﬁﬂ{PTUf?f—?:kﬂﬁﬁMﬁEﬁHTmm
EEEMTAaT,

DRERAC IO TR, Lewk &= T 40 -0 Sguaye
FEIANSAMEEREI R T A [levy 1] |, 2 100TK
B ThH, RRRASABROID AL TEASR TV [Hi
Yaraki 84, Sato 84, Tamakadd] , LALGHS, =S
@??n—EESMTHJ}?Ui?bﬁNwN¢UH$
EOARBERTEENTSEY, Haopurely logicals 7
FO-FEERT2THS,

EESE[LCOINTE, BN SOPOPS[Hirakawa 4]
kD, BRAESHSNTE L, PIPSE ., Concurrent P
rolog T@MnrPure Prolos Mo 4704 THn, 5
ABRET - LN TAeRERS ALY —LELTE
ALUP3, Bam7P7O0- 7. AEACROPSO T 70
~FEicheduling queneACF vy T LEEOERILN
e

DALHSHECODVTORAKR, HRZNO1 V47
UasH@EROEATOALERTIA LN S T8
S. KDV TE, Shapiro KK LW, Concurrent Pralo
9 TConcurrent Proleg M Y5 FULELET S, b
BOAE - v ETUSHARTHEFENSH T & [Sha
piro 3], TNEMAE. FARSLLOVTIR, TOM
Clark s &> THHEFANASATER[Clark 84), Ba
MEXRR., AGE90schedling qguogehic, MEah
SN2T-LERDALHAELTSHD, Shapiro DFE &1
RLERS, LDARMAREG2TWS,

[-4'=3F

k. MEC Ry Dextended Concurrent Prologic &4
LEEIARDERO LS OBRALRUBIRROBN L
?meﬂbt,ﬁﬁ~ﬁﬂ?ﬂﬁbhmﬁuﬁﬁbmﬁ.
EROASTVAZT 22 2KEE0TIR. RBICHES
TECOEROIY-DMATanaka 84) s EH5s0, 0
At LHETHED.

BATEMD-0R-CuetimE BRI LA, BR, £<8 1
BHMELEIONTVRRE RN, WAk ae, X4
HHﬁE%Eﬁ—?@ﬂﬂﬂ@¢?ﬂﬂ?EbCtﬁE{
NECLETHD. ERN=FI1FENARSIERLY
%, schecduling quene iMIRTC A A W L BB ImC <,
C@#H%¥Lu,?albh$—tbtﬁtﬁﬁ,Iﬂ
HENLEATAITHS, 21, —204 0= 5L Souey
e£ﬁﬁb‘%ﬂi&ﬂ?ﬂTﬂMDMﬁﬁkU%mﬁ&
mmféctu.xﬂhW&xMMHmEQQﬁafwé,
ER-T-1-W

QEAEKEIVTE., REMNERELTNES,

DEERDELONTR, BEDLTORMEHS, &
o LORRC AL DU a LTRSS EFT
23,

GAIHILENTE, BOADsisvrate B EAND &
M kD, #REPLF ST LAHES,

TT. WO-0R-uewingFEDEBREETHER, L34
BRE&EFEConcurrent Prolos CESSG, HELWKL @
HHELHTE AT SO0 (Veda 85] KENTETORHT
u#MTﬁﬁnEbaﬁﬂmiﬁﬁ$mﬁi¢ﬂbtwﬂ
EHESREFSE60 25, T8, NACLSTESS
RTVD, NW-REHMCEELA=T U — LAND wNES
SDELE [Takeuchi 84) EENTH., £NBAGS YT
AYFERERELTWSEBR LS,

B, BRAHE, HE

ERAE, MMM IVE2-F-TOT O RD—1
tbtﬁﬁnﬂtEMTh%.Eﬁﬁmﬁﬁﬂﬂ?m&ﬁ\
(P f2a7ULDRMRBCOSVTH, @8, Ads,
I-—FAIRI0TR, TELT, BFHASLE,
ARSIz T, TR THRTONHE, FROG
&ﬂE.E&ﬂmmbtﬁﬂtﬂﬁﬁﬁfﬁmt.xt\
ERMOXNEREUVHERE., IUTOHIE 1 FNER
DEWMSEMNE, T, BE4ESL OHEELD, 3
WOEBHERN, MRSRCHHTARRA TS S,

[zt

[Clark 84K Clark and 5. Gregory: Notes o Sysiems Pr
Lgramming in Parloo . in Proceedings of the Internat
ional Confersnce on Fifth Generation Coxputer Systen
3 1984, pp.299-305, 10T, 1984,
HMHmaHH+E:HEE%?HHH&EEWHRE#
Eﬁﬂﬁ§a~m&smm1mmﬁﬂﬁv?r¢:?~ﬁ
E{TE® Parc 11, 1984,
Uﬁnwﬂﬂzrﬁ:Hfﬁ%?ﬂﬁﬂﬁaﬁﬁﬁ%#ﬁ
ﬁﬁiﬂﬁaxNEEHE1ﬁMHE%v7P¢:?-E
HEHELQEHP&UERHm?-?Pwt]_wﬁ.
[Furukawa 84] &)1, BS. v, FE- BEEBRE NG
Serig®. 10T, 19845 18,

[Hirakawz 841 H.Hirazkawa and T.Chikayama: Fager and
lazy Enuzeralion in Concurrent frolcy . in Procesdia
g5 of the Second International Logic Proramaing Conf
erence. Uppsala, pp.839-100 1984,

Levy 847 J. Llewy: & Unification Algorithe for Concur
rent Proiog . in Proceedings of the Second Internati
andl logic Proranzing Conference, Uppsala. pp.33des
41, 1584,

(Miyazaki 84) B85, WM. &0- Concurrent Pralog @
&"#?ivm-4piuxpf—#a:mmumhmm
MEiE;é&Eﬂ@iﬁ}‘Exv?hﬂi?ﬂﬁﬁ
TERZERM, 30-2, pp.295-296. 19845128
[Sato 84) &\, Mg, @, =K. wiy: Concurrent P
MMEﬂ#—#?ivm-Jy?UI}%—?:LH%n
Nmmﬂﬁﬁﬂ$éﬁﬁﬁﬂ!ﬁ?ﬁHIU?F?I?H
i%a1ﬂtaﬂzu\mdﬁmjw4u,mmgmg,
[Shapira 83]€ Shapiro: A Subset of Cancurrent Prolog
and Its Interpreter, 1007 Technical Repert | TR-083.
1983,

[Shapiro 84 Shapire: Systems Prograaming in Concur
rent Prolog . in Proceedings of the 11(h Annual ACH
SYmposium on Principies of Programming Languages. S
alt Lake City . op.93-105 |
[Takeuchi 84] ¥regs—. ARU—LAND BRSO ED
H—EﬁtjwtkEﬁ??h?:?ﬁ?%ﬁ1ﬂk%ﬁ
WIE, 30-1, pp,291-294, 188412 E .

[Tanaka 34] Bdr. =iy, ¥Tr: Concurrent Prolog @ =
—#}Prm-#}Tiji-vngWvEEE;%
ﬁﬂﬁ@:ﬂ]‘HXU?hjz?H¥%¥1Eiﬁﬁﬂ
. 30-4, pp.303-308, oMy,

[Ueda 85] K, usda: Guarded Horn Clauses, ICOT Technic
al Report . TR-103, 1945,

APPENDIX 4
P ATV 4DL Y TYAY R ER

prdmil Mot TAY S
$i¢?¢‘Ej-mmfﬂﬁﬁﬁmﬂéﬂéﬁﬁtﬂ
EbtwweWEﬁM?@tEnbtﬁ\4:?Ux}b
T, Y=hn&iGL,
P OT—a, R
DRESERNE,

LT -—hHionT
tim?E\HH%ﬁTKMC,HMWHMQMMWW
?—hu‘iﬂﬁﬁﬁ?ﬁbtﬁ‘Imw$>7Uﬂ}h
tmbru\umeiﬁ?—ﬁEmwt.

[Tz =P
[7 (c) $65(C)

A | ALCF V.o $G(C. F.V,CV)
A | ACC.F 5) $6(C.F,)

= | i) SCE(C)

*

&ln 3551

B AAM | 00) | SSET(H, (X | =)
2 | %M () SESETIH, L)

&

%

2 | AL $SIMULR,)

| A $SIMUCR)

=

!

APPENCIX B
P A&7 E .0

/3 ogpepatap friority declarztion #/

t= op(1200, 8% ({{-=))], 392 FOR SET EXP.

op{550 ,¥fx, "L). inz
i= oplds0,yr, "800, %53 WRITE EARLY
aplUeD v vt), 5 READ QLY

opl 1025, yr,'&"
{2

]!' g
op(1053, =y, {{:})). £3% copguT op.

#% tep level of

solve(i, k) :a
kKl_systeal(d), !,
eolve_myates(i, R, L.

zolveld,R) ;- 1, .
schedul el 4, XN,

Hul'ssir iRy,
"IEIMITLR, *R)IT]Y, L,

simulate{HA\T), 1.

/7 sphecul er 37

senecdule(true, HAT,BAT) -,

s-:h&iulu{'..’n."lc,':;'..,E]I,.'-!":,[-"_"'.'.‘E.'l t-
achedul e{Werld, &, AT, H1VTT),
sanedul e{World, B, HINT1, H2AT2) .

- sthedule{lorld, A, HATYSPY (4 Horld) |T],

HYT) i=1.

/% sipulate ... gqueue handling #/
simulate(LIN[]D = 1.

sioulate{["¢EIMI (R} IE N
[*SSnUr(RIIT]) := i,
sloul abe (ENT), 1,
sinulate{["$SIMI'(R,_}IHI\T) =
R=: faitwres i1
del sfoulH,MH), !,
simul ate (HHAT), 1.
alzulate(l 33310 (sucoess,),
"ISIN (soucoess) IH)VT) 1- 1,
simulate(H\T], 1.

Simulate{["SS5 (R, CHI D,
["$5IM7 (R, C)IT]) 3=
(C == #var(g)),|,
simalate (HNT), 0,
aimulate (['3ETMI' {abartion, 0} !
HIND) 3=
mem_zbert{Cl, I,
del _siou{B,HH), I,
simul ate (NHA\T), 1,
slmd ate{['S5 IMI' (R, [stop, Cont 10]!
HIN['$s T (R, C}IT]) 3-
Cont == pone, |,
simul ata(HAT), 1.
simulate (["35T190° (R, [stop!C]} IH]N
[r38Imim, [stoplc] iTT) 5= 1,
aklp_aimulK, T, %M, HT), 1,
n.iml.u.i.a.l:a{!fﬁ‘-ﬂﬂ, l.
siput ate{["33 110 (&, [cont eliEn
f'ﬁBIlII'T{H.L".}IT]] N
sizulate{H\T), 1.

ma® SEQEITIAL In

simulate (["$SSET"(_),
VEESETV(_, [JHIEINT) -
simul ata{(H\T), 1.
simul ate (["8SSET' {0
['¢83ET (CHIT]Y 2= 1,
simulate{E\T), 1.
simulate(["$3ET' (Mess, L)l INT) oo 1,
reduce_ses{Cls, Mess, T, T1), !,
simulata (H\T1), 1.
mimulate (["AESET (Meas, 5} ETN
["GESET' {iie==1,31)!T7]) 2-
ealleet_s{lless,Mesal,s,581),1,
sinulate(H\T), 1.

siod ate(] "$P' (susp(ROVEA), World) !
HINT) 1= 1,
(aheck_nonver(ROV), 1,
simlate(["3PT (A, Werld) [H1NT)

i Tz [‘ﬁP‘ESusp[HGE’*A].’.'IDrlﬁHT'IJ.!

simul ate{H\T1}),1,

sizulate{[4G5 (St} NINE) 1=
Ct == coomittea, |,
simulace(EVT), !,
sioulate({ 'SCE'(CE)JHINT) ==
CL == comnitted, |,
siculate(HVT), L.
soiate{["6 (Cs, Fadl,_,_J HIAT) 1=
{CL == committed
iFRil == [ailed],!,
del_sard(H 0HY, 1,
simulate(HAT), 1. .
;iﬁ'.ll-!tﬁfl '$L'“IF":"-::..._i_p__l_:_n_l_}ﬂ
HINT) 1=
Ct == committed, |,
zimulata(H\T), I,

sindate ([4657 (CL), "S0E (CLYHINT) :-
del_pmeals at failure(H,T,NH,NT), 1,
aimulate(HEWWT), I,

simulaze (['SUNIF' (CL, OV, OV, ROV,

World, Misal, Head, Bs) B INT) -

check_unlfy(CL, O, OF, ROV, Yorld,
CGeal , Head, Bs, B, T, 0a},
sioulate{Ga),l.

sioul ate(["3G' (commitred, LV, 07,
‘30" {coonitted,
(Bedy,Werld)} HINTD ;-
urifylov,ovl, !,
schecul e{lorld, Dody, H\T, =), 1,
simulate{Qs), 1.

simulate{['3ES (CL)HN
['3637(CL)iT]) 2= 1,
simulate(HEVT), 1.
aimd ate(["$0E {ox)]
[TaCE'(CE)iT]) = 1,
simul ate(HVT), 1,
simulate(["$6(Ct, Fadl, ov, V) Ty
[*$cv{Ct, Fall,No, qC}{T]) := L,
oy (OV, OV, 10, KC) , 1,
simul ate(HVT), 1,
simulate([30" (Ct, Fail, Ba} H]
['5Gr(Ct, Fall,B3)!T]) :- I,
si=ulate HVT), 1.

slmulate(["4P' (simul ate{Werld, Goal,R,

Cl) N SSTIUT (R, €)IT]) 1= |

achedul e{lorld, Gagl + HAT,
ML S3 T (RO INTYD, 1,
Eimulate (NH'WTY, 1.

¥

sioulate{["3F" (set{{X:Geal},5er),_}IH]N
[r&==ET'(C),
PESET' {Mess, (XX : Goalll),
"SESET' (Meas, Str}iT)) - !,
espypl iR, Goal} (XX, Geall)), 1,
simulate{E\T), 1,

sizulate(['SP (A, _MIHINT) o

Kl _mystea(al,:,

zalve_sratesm(d, B1),1,

{H1 == zuecsss, !,
zimul ate [HAT]

iR1=suap(ROT), 1,
T= [‘!":-P‘E:uap{RW*ﬂ},_HT‘]],],
mimulate{H\T1}

i del_gozls at faf] urelH, T, 1, NT), 1,
simuface(MNIT)), L.

siawlate({ 'SP (A, Werld} IHINT) &=
{2iz2u_reduce (Harld, 4, HAT, MBI T)
H dul_gnnla_at_railure{!!,‘!‘.mi,!iﬂ]..I,
simul ate(GT\HT), 1.

£? roduce 8y

laou_reduce (dorld, Gazl,

EALPSCS (Cu)IT), RHN\RT) =1,
W_clausea(Werld, Geal, ol auses), 1,
reduce (Werld, Geal , Clauszes, H\T,

RIN['3GET () IAT],Cea,t,

redoca(_, , ,0s,0s,Ct) 1=
C% == compmitred,
recocel_,_,[1,9s,95,_).
reduce {(World, Goal [(.eeq <e- Bs}iC]l auses)
@s,082,Ct) 1=
copy{Goal , (oal, OV, CY),
tnifyi{Cloal, Hezd, UR},
erguene (World, UR, Coal,Head, Ba,
W,E’l".ns,ﬂﬂhﬂt].
reduufwnrl:,cml,Clausuafnm,nsz.l::}.

It emgueue #y

efjueue(_, :"-.1_{_1-.:re,__,_,_,__,_,qz,-:th_}_
emueve {Werld, sucesss, _,_,(Cuard : Body),
w,m.ﬁx[fmr{m,hu,uu,r.vjiﬂ.
HEMIT, Ct) i m
Guard \== true,
schedul e{World, Cuard, B\T, NHY
{125 (ce, Fatl,
(Body,Werld})[HT]).
emuews (Horld, suceesna, _,

{true : Bedy) OV, 0V,

Qa,0s1, conmitted) ;-
unify(OV,CV),
schedule(lorld, Body, Qa, Qa1),

erg ueue (Horl d, suceess,_, , Hody,

av, Cv, Q3,081 , committed) :-
unify(QV, V),
schedul a{World, Body, Qg,Q21).

emuaue (Horld, susp([ROV]), 020al, Head,

Bs, OV, OV, HA " SUNTF (Ce, OV, OV,

ROV, World, Meal , Head, Bs)iT],

HAT, CGE).

/% pure proleg reduetion #/
reduce_set{Cls, Mess, T, T1) :-

reducep{Cls, NexzCls), 1,
Terk set{Cls,MextCls, Meas, T, T1), L.

0

reduce_set(Cls, *330L° (Mdens) , T, T) ==
termine tep{Cl s, Meas),).
reduce _set(Cls, [ess,
["$SET' (Me=zs, Newls) |T].T) 1=
oyctemp{Cla, Mew =),).
reducs sec{_ "HSFAILAY,T,T) := !.

fork_set(Cls, Next s, Mess, T, T1) = 1,
select(Next{ls, Claliat),
Popls{Clslist, 2=, Mess, T, TV}, 1.

Forks([H],Clz, [Me=a],
["#5ET* {Hess, Hew 1 s) |T],T) 1= 1,
newsetiH, s, HewCls), !,
ferk={[¥|2],0ls, [Hess1ittess],
["3SET" (Mess1,dew@a} T, T1) 1= 1,
mewsst(H, da, Newls), I,
forks(R, s, Mess, T, T}, 1,

calleet _s(X,Flatk, Str,3tr1) := 1,
conrect_a{X, [I\FLat¥, Str\Stri), 1.

f3 upifier #/

uBA XD, T, R 1.
unffiec(X0,¥1,R),
ehesk result(H).

unifyi_,_,failure} =1,

wiifier(_, ,R) z=
nonvar{®), 1.
vnifier{X0,¥1,R} t=
nonvar(Xo),
X o=,. [#,%00],
(evar{f00,x000},1,
irmer{t(Y1,¥11,R]},
(var{R},
M o= ¥,
111 = Xo00
7 true)
H unifiﬂr{xilﬂ;‘.’hﬁlhl-
unifier{¥0,¥1,8) -
nomwer{¥1),
¥ o=.. [¢,¥11},10,
wndifier{¥1,X0,R), 1.

unifder (X0,¥1,_0 -
(var{X0};var(¥1}),1!,
X = 1.

udfier(X07,¥1,R) a1,

{ovar{X0,100),

B = suspl([X00])

i unif‘ier{Iﬂ:T‘l.R”-T-
unifier (X0, ¥17,R) =1,

[ovar(f1,111]),

B = suspf[¥i1]}

i unifier(X0,¥1,R)), 1.
uniries([1,01,_0 =1,
unifies([X0JX02],[¥1iX11],R) &=

unifier(X0,¥1,R),1,

unifier (X00, 11,81, 1.

wnifier(X0,¥1,8) -
gub_unifier{X0,¥1,R),1.

sub_unifier (X0, ¥Y1,R) 1=
X0 =.. [FunctoriXao],
¥1 =.. [Puneterl¥i11],1,
unirdier{X00,¥11,8),!L.

sub_unifier{_, ,lfailure),

ICOT Technical Memorandum: TM-0120(E)

I'M-01200E)
AND-OR-Queuing in Extended

Concurrent Prolog

by
T. Yokomori, M. Kishishita
{Fujitsu Ltd.)
and J. Tanaka

September, [983

CI98s, 1COT

Mita Kokusai Bldg. 21F (03) 456-3191—5
|| :D | 4-28 Mita 1-Chome Telex ICOT 32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

1
AND-OR QUEUING IN EXTENDED CONCURRENT PROLOG:

Jirc Tanaka®s, Takashi Yokomori**, Makoto Kishishita***»

® International Institute for Advanced Study of Social Information Science (ILAS-SIS)
Fujitsu Limited, 1-17-25, Shinkamata, Ohta-ku, Tokyo 144, Japan

*¥ IIAS-8IS, Fujitsu Limited 140 Miyamoto, Numazu-shi, Shizuoka 410-03, Japan

**%* Fujitsu Social Science Laboratory, 7-5-9, Nishigotanda
Shinagawa-ku, Tokyo 141, Japan

ABSTRACT

We have modified Concurrent Prolog {CP) Interpreter {Shapiro 1983) and implemented
Extended Concurrent Prolog (ECP) Interpreter (Fujitsu 1985), which bas OR-parallel,
set-abstraction and meta-inference facilities. In Shapiro’s CP interpreter only the AND-
related goals are enqueued to the scheduling queue. None of OR-related clauses is dealt
with. However, our ECP interpreter has only one scheduling queue to which all the
AND-related goals and all the OR-related clauses are enqueuned. This scheduling method
is designated “AND-OR queuing.” AND-OR queuing makes it possible to handle all kinds
of AND-relations and OR-relations in a uniform manner.

1 INTRODUCTION.

Concurrent Prolog (CP) (Shapiro 1983) is a parallel logic language which includes a
commit operator and read-only annotation as language constructs. We have extended
Shapiro’s Concurrent Prolog {CP) Interpreter and implemented Extended Concurrent
Prolog (ECP) Interpreter (Fujitsu 1985), which has OR-parallel, set-abstraction and meta-
inference facilities. A “scheduling queue” is often used in implementing a parallel logic
language on a sequential machine, Processes reduced in parallel are enqueued to the
scheduling queue. They are dequeued from the queue and reduced one by one. In this
paper, focusing on the role of the “scheduling queue,” we outline the implementation
method for realizing extended features, and show how one can nicely handle those features
in a uniform manner.

2 EXTENDED CONCURRENT PROLOG.

As mentioned above, ECP is an extension of CP with OR-parallel, set-abstraction and
meta-inference features. Each feature is based on the conceptual specification of Kernel
Language Version 1 (KL1) (Furukawa 1984). We briefly explain these features in the
following sections.

2.1 AND-parallelism and OR-parallelism

AND-parallelism and OR-parallelism are the basic parallel inference mechanisms of ECP.
AND-parallelism is the mechanism which evaluates AND-related goals in parallel. This

! This research has been carried out as a part of Fifth Generation Computer Project.

*Current address: ICOT Research Center, Inctitute for New Generation Computer Technology Mita-kokusai-
building 21F, 1-4-28, Mita, Minato-ku, Tokyo 108, Japan

*Current mddress: [LAS-55, Fujiteu Limited, 1-17-25, Shinkamata, Ohta-ku, Tokyo 144, Japan

2

function can be realized by enqueuing goals to the tail of the scheduling queue, dequeuing
a goal from the head of the queue, and enqueuing the newly created goals to the tail of the
queue. This AND-parallelism has already been implemented in Shapiro’s Interpreter. On
the other hand, OR-parallelism is the mechanism which realizes the parallel evaluation
of guards, when there exists more than one potentially unifiable clause with the given
goal. This OR-parallelism was not implemented in Shapiro’s Interpreter. The following
program is an example of exploiting OR-parallelism,

solve(P, Mes) = call(P) | ...
solve(P.Mes) :~ find _stop(Mes) | ...

When “solve” is called, the above two clauses are executed in parallel by OR-parallelism.
The first clause executes “P.” However, as soon as “stop” is found in “Mes” in the second
clause, the second clause is committed and the first elause is aborted. This realizes the
“golve” with abort.

2.2 Set-abstraction

Set-abstraction is a mechanism for realizing the all-solution-search feature in a parallel
environment. The following two predicates have been proposed {Fujitsu 1984).

eager_enumerate({X|Goals}, L)
lazy_enumerate ({¥|Goals}, L}

In the above description, “Goals™ is the sequence of the goals defined in a Pure Prolog
world. We assume that the Pure Prolog world is defined as follows:

pp((<head> <- <body>)).

That is, the Pure Prolog world is asserted as the set of “facts” which have a functor name

HPP.!I
These two “enumerate” predicates solve the Goals in the Pure Prolog world and put the set
of all solutions in L in stream form. The following is an example of “eager_enumerate.”

cager_enumerate({X | grand_child(jire,X){, L}

We assume that the Pure Prolog world is defined as follows:

pp({grand _child(X,2) <= child(X,¥),child(Y.Z))).
pp{(child(jiro.keike) <- true)).
pp{{child(yoko,takashi) <~ true)).
ppl{child(jiro,yoko) <- true)).

pplichild (keiko,nakoto) <= true)).

In this case, L is instantiated as [takashi,makoto],

The difference between “eager_enumerate™ and “lazy_enumerate” is the way it instantiates
the second argument. “cager_enumerate” instantiates it actively. “lazy_enumerate”
instantiates it passively in accordance with the request from the stream consumer. In
the following example, a solution list “L" is created in accordance with the request from
“display.”

1= lazy_snumerate ({X | prime{X}}, L7},
display{L. Mes?), keyboard{Mes).

2.3 Meta-inference

Meta-inference means to solve a given goal using knowledge defined in a user-defined
world (Furukawa 1984). We set up the predicate “simulate” with the following form.

simelate (World, Goals, Result, Contrel)

Here, “Worid™ is the name of a world, “Goals” is the goal sequence to be solved, *Result”
is the computation result, and “Control” is the stream through which we can stop and
resume the computation. We assume that knowledge of the world is given as a set of facts
whose principal functors are the name of the world. That is, knowledge of the world has
the following format.

world_name((<Head> <- <Guard> | <Body>)).

As an example of meta-inference, we give the “shell” example (Clark 1984) which can
run the foreground and background jobs. In this example, the foreground job always
checks its control information while running. The background job rums steadily without
looking up its control information.

shell([1, _J.

shell ([fg(G) IN],C) .-
simulate (f_world,G,R,C) &
remove (C, NewC)i
shell (N7, NewC).

shell{[bg{G)iN].C) .-
simulate (b_world,G.R,),
shell (N7,C).

:= shell ([bg(primes) ,fg{primes}],C), control(C).

In this example, the “primes” programs to compute the infinite sequence of prime numbers
runs both foreground and background jobs. Execution of the foreground job can he
controlled by “c.”

3 THE IMPLEMENTATION OF ECP

We bave explained the extended features of ECP in the previous section. However,
Shapiro’s interpreter is not enough to realize these features. We need to implement AND-
relations and OR-relations well using a scheduling queue.

In Shapiro's interpreter, a scheduling queue only contains AND-related goals. It is created
for each OR-relation. Therefore, many local scheduling quenes are created at program
execution time. After extensive consideration, we have decided to make scheduling queues
global. In our approach, only one global scheduling queue is created. All AND-related
and OR-related goals are contained in one scheduling queue. We can imagine that the
AND-OR tree created at program execution time is encapsulated in this scheduling queue.

We have named this scheduling method “AND-OR Queuing.” Using this method, it

4

becomes possible to handle all kinds of AND-relations and OR-relations in a consistent
way. In this section, we describe the queuing method for each feature.

3.1 AND-parallelism and OR-parallelism

As we mentioned before, AND-parallelism has already been satisfied by enqueuing AND-
related goals in the scheduling queue. To deal with OR-parallelism, we have decided tc
eugueue OR-relations sandwiched in between two kinds of markers.

For example, azssume that the head of the scheduling queue is a goal “P" and ihe
potentially unifiable elauses for “FP" are as follows:

P1 .- G11, Gi2 | BL.

F2 .= 021, G22 | B2,

In this case, we put goals at the tail of the scheduling queue as follows:

< &(C) [2001, 00) [(61.%) | (@12.9) !uc.m,ﬁn
1}

&(C.F2,v.0v2) | (621,%) | (622,%) | 2(C.F2,B2) @(C)

Here, OR-clauses are sandwiched in between the markers @&and €. The guard part
of cach clauses is placed between the markers 5 and 2. Notice that markers ¢and
thexpress the OR-relation and that markers £ and 2 express the AND-relation. The
symbel “*,” the second argument of each goal, shows that the goal should be solved
by using the global database world. The argument C, common to all markers, contains
the information whether one of the OR-clauses is committed or not. The argument Fi
of the marker # shows whether the i-th OR-clause has failed or not. Mote that this
argument only needs to show that the i-th OR-clause has failed. Since the i-th OR-clause
is committed as soon as the i-th OR-clause succeeds, it does not need to show that the i-th
argument succeeded. The argument V is a list of variables which contains all variahles
in the original goals. The argument CVi is the copied list of V. The argument Bi of the
marker 2 is the body part of each clause.

Goals between markers are processed in exactly the same manner as the ordinary goals
when goals are picked up from the scheduling queue. However, when markers are picked
up, they are processed as follows:

(1) When marker &{C) or @(C) is picked up, the marker is aborted if “committed” is
set in argument “C.” Otherwise, the marker is put on the tail of the scheduling queue.

{2) When marker gis picked up and the top of the queue is marker ¢4, i.e., the markers
@ and thare neighbors, this shows that all guards failed for a given goal. Since the
“failure” of all guards means the “failure” of the given goal, “failure” is transmitted
to the AND-relations to which they belong.*

* If the goal is at the top level, it means the total failure of the computation. For more detailed description, see
the last paragraph of 2.3

g

(30 When marker 2(C,Fi,V,CVi) is picked up, it checks whether “committed® is set in
argument “C” or “failed” is set in argument “Fi.” In these cases, all goals from £ to
1 are removed from the scheduling queue.

{4y When marker #(C,Fi,V,CVi) is picked up and the top of the queue is marker g

' (C,Fi,Bi), i.e., the markers 2(C,Fi,V,CVi) and £(C,Fi,Bi} are neighbors, it means
that all goals of a guard succeed. In this case, we set “committed” to the argument
C, unify V and CVi, and schedule Bi.

(5} When marker 2(C,Fi,Bi} is picked up, the marker is simply put on the tail of the
scheduling queue.

3.2 Set Abstraction
We consider the case where the following goal is taken from the scheduling queue.
eager_enumerate ({X[PO Q00 L)

In our implementation, the goal is appended to the tail of the scheduling queue in the

following way.

Two pairs of markers appear again. The meanings of these markers are slightly different
from the previous ones. However it is still true that the markers @and @express
OR-relation, and the markers 7 and J express AND-relation. The markers &and
tosurround the OR-relation and work as a solution collector. The solutions are collected
m “M” in stream form. The markers £ and J compute one solution. The computed
value s substituted into the argument “M.”

S a2 LM X]P0, Q00Y D) | @(M,L)

When markers are taken from the scheduling queue, they are processed as follows:

(1) When marker &is picked up and the top of the queue is marker @@, i.e., the markers
@and Rare neighbors, this means that all solutions for the given goal have already
been computed. We put [] onto the tail of the argument “L” in this case.

(2) When marker 8 2 (M. {X | ...}, pp) is picked up, we find definition clauses for the
leftmost goal of this set. If more than two clauses are found, it is broken up into
several goals. The argument “M" is also reproduced by fission.

(3 When marker ga(M,L) is picked up, the argument “M” is checked. If it is instantiated,
its value is sent to the stream “L™ and the marker is appended to the tail of the
scheduling queue.

The following is an example of fission. Assume that the marker is picked up, and P is
defined in the Pur:z Prolog world as follows:

ppt(P(X) <= Bi,E2)}.
ppl{(P(X) <~ B3)).
ppi{P(X) <= true}).

There are three clauses, The marker A 2 breaks up into three goals and they are
appended to the scheduling queue in the following form:

(| = ’ SR M1 {X1 | B1,82,Q0¢1)}. pp)

J

Q

22(M2. (X2 | B3,0(X2)}, pp)
)

2L (M3, (X3 10(X3)},pp) | @([M1, M2, 43], L)

We can get all solutions for the given goal by invoking fission. Notice that the solutions
are computed by the depth-first search based on OR-parallelism. We have explained
all-solution computing in the case of “eager_enumeration.” The basic mechanism for
“lazy_enumeration” is exactly the same as that for “evager _enumeration.”

3.3 Meta-inference

We assume that the goal “simulate” is taken from the scheduling queue. In our implemen-
tation, the goal is put on the tail of the scheduling queue in the following form.

<

Markers 2 and 2 appears again. The arguments “R,"” “C" and “W™ express the Result,
Control, and World name, respectively.

A(R.C)]{m.m @wl|... [am

The following summarize the actions when markers are taken from the scheduling queue.

{1} When marker £(R,C) is picked up and “failure” is already set in argument “R,” all
goals from A to 1 are removed from the scheduling queue.

{2} When marker £(R,C)is picked up and the top of the queue is marker 2, i.e., it is
empty between marker £ and marker 2, we set “success” to the argument “R."

{3) When marker 7(R,C)is picked up and “C” is instantiated as [..., abort | vari-
able], all goals from § to 2 are removed from the scheduling queue and “abortion”
is set to the variable “R.”

{4/ When marker £(R,C) is picked up and “C” is instantiated as [..., stop | vari-
able], all goals from { to % are enqueued onto the tail of the scheduling queue without
reducing these goals.

() When marker A(R,C) is picked up, it checks whether “C” is a variable or instantiated
as [... cont | variablel. In this case, the marker is Jjust appended to the tail of
the scheduling queue.

(6) When marker 2 is picked up, the marker is appended to the tail of the scheduling
queue,

Just as before, the markers £ and 2 express AND-relation. If a goal between £ and
1 fails, “failure” is set to “R.” Goals between f and g are processed as exactly same as

7

the ordinary goals, except that goals are reduced in a specified world. No special problems
are created if OR-parallelisin, set abstraction and meta-inference are nested within each

other.

4 ECP INTERFRETER

In previous sections we explained the various features of ECP and the realization of these
features in the scheduling queue. We have extended Shapira’s CP Interpreter (Shapire
1983) and created the ECP Interpreter. In this section, we will explain the details of this
ECF interpreter.

4.1 Shapire's CP Interpreter

As mentioned above, our ECP interpreter is based on Shapiro’s CP interpreter. Shapiro's
interpreter is written in Prolog. The following program is a simplified version of his
interpreter. The actual implementation is more complicated since it includes deadlock
detection, system predicates and debug/trace features.

(1) cplA):-
schedule (A, X=X, Head-Tail),
solve (Head-Tail).
(2} solve([]-[1):-1.
solve([A|Head]-Tail) -
system(A), !, A,
golve (Head-Tail) .
solve([A|Head] -Tail) ;-
reduce (s, B},
schedule (B, Head-Tail, NewHead-MNewTail), !,
solve {(NewHead-NewTaill .

{3) reducelA B) -
guarded_clause(A, (GIR)),
cplG), !.
Teduce (A, A},
(4} guarded_clause(A,B) .-
copy_functor (A, Al),
clause(Al, B),
unify (A, Al).
(5) schedule{true, Head-Tail, Head-Tail) :- I.
schedule((A,B), Head-Tail, Head2-Tail2) = 1,
schedule (A, Head-Tail, Headl-Tailll},
schedule (B, Headi-Taill, Head2-Taill).
schedule (A, Head=[A|Tail], Head-Tail):- !.

The meaning of this program is as follows:
(1) To solve a CP goal, the goal must be scheduled into the scheduling queue first. The
“solve” predicate actually solves the goal.

{z) The "solve” predicate solves goals in the scheduling quene expressed as a D-list. If
the scheduling queue is empty, the process terminates. Otherwise, a goal is_ taken

g

from the queue. If the goal is a system predicate, it is executed and the rest of goals
are solved. If the goal is not a system predicate, the goal “A" is reduced to the new
goals “B,” and “B” is scheduled to the scheduling queue.

{33 The "reduce” predicate solves user-defined goals, The “guarded_clause” predicate
looks for 2 potential unifiable guarded clause for a given goal “A.” We solve the guard
part of the unifiable clause. If it succeeds, “B” is the body part of that clause. If it
fails, it backtracks and “guarded_clause” looks for another candidate clause, When
all candidate clauses have failed, the “reduce” predicate does nothing and the second
argument is equated to the first argument.

(4 The “guarded_clause” looks for a potential unifiable clause “g" for a given goal “A."
The “copy_functor” makes the copied goal “A1™ by copying the top level functor from
the given goal “A.” The “clause” finds a potentially unifiable clause “B” from “a1.” If
this succeeds, the “unify” predicate unifies A and A1

(s) The “schedule” predicate contains the given goals to a scheduling queue. As men-
tioned before, the scheduling queue is expressed as a D-list. The “schedule” predi-
cate enqueues nothing if the given goal is “true.” If the given goal is “(A,B),” “A”
is scheduled first and “B” is scheduled mext. If the given goal is “A” it is simply
appended to the tail of the scheduling queue.

4.2 Qur ECP Interpreter

We have extended Shapiro’s CP Interpreter (Shapiro 1983) and created the ECP Inter-
preter. The differences between our ECP interpreter and Shapiro's interpreter are as
follows:

» Shapiro’s interpreter processes OR-relations by backtracking as shown in (3) in the
previous subsection. Since the “reduce” predicate in {3) calls the top-level predicate
“cp” for each OR-relation, one scheduling queue is created for each OR-relation as
mentioned ip section 3. We have implemented OR-relations by appending them to the
global scheduling queue with markers,

» Shapiro’s interpreter does not distinguish “fail” and “suspend” on processing goals.
However, we distinguish them so that the failure of a guard can be handled in OR-
paralielism,.

= Shapiro’s interpreter does not directly realize OR-parallel, set-abstraction and meta-
inference features. We directly implemented these using one global scheduling queue.

QOur ECP interpreter is written in DEC-10 Prolog on the DEC2060 and in C-Prolog on the
VAX11/780. The interpreter consists of the scheduling part, the marker processing part,
and the Pure Prolog processing part. In terms of program size, these are approximately
150 lines, 170 lines, 50 lines respectively. The processing speed is two or three times
slower than Shapiro's system since our system realizes OR-parallelism. The slow speed is
caused by the fact that so many markers and goals are contained in the scheduling queue
when we have a nested guard.

Qur system was created to meet ICOT's research cbjectives. Therefore, our system has
still several problems, such as the consumption of memory, exhaustion of stack space and
others,

5 ECP PROGRAM EXAMPLE

9

We examine the “shell” program io this section. This is 2 more realistic version of the
shell program discussed in 2.3 (Clark 1984). The shell program in 2.3 can run only one
foreground job and multiple background jobs. We can control the execution enly for
the foreground job. However, in our “realistic” version, there is no distinction between
foreground and background jobs, so we can run and control multiple jobs at the same
time. In this “shell” prugram, every job has a process-ID and the execution of jobs can
be contralled by commands which include process-IDs. A job may be aborted, suspended
and resumed. The realistic “shell” program is shown below:

{1) shell :- shell(I?, [1), in(I).

(2} shell([proc(ID,Goals)|Input], IDlist) .-
true | priot_result(IDiist,lDlistl),
print_process(ID, Goals),
simulate (*, Goalg, R, C).
shell (Tnput?, [{ID.R.C)|ID1list1]}.

shell ([wproe(ID.W,Goals) |Input], IDlist) :-
true | print_result(IDlist,IDlistl),
print_wproc(ID,W, Goals),
simulate (W, Gecals, R, C),
shell(Ioput?, [{ID.R,C)IIDlisct1]).

shell{[Com | Imput], IDlist) :=
ctherwise | priot_result(IDlist,IDlist1),
print_com{Com) ,
send (IDLlistl, Com, MHewIDlist),
gbell (Input?, NewIDlist) .

(3) sendi{D._.0J.
send {[{ID R,C) [IDList] , Com,
[({ID,R, NWewC) |IDList]) :=-
Com =, [M,ID] | € = [MINew(].
send{{(ID.R.C) |IDList] ,Com,
[({ID,R,C)INewIDlist]) :- ctherwise |
send(IDlist,Com, NewIDlist) .

The meaning of this “shell™ program is as follows:

{1} “shell” is the top level predicate. It calls the two-argument- “shell” and “in.”

() Two-argument-“shell” i5 the main part of this program. The first argument of
“shell” is a stream which receives commands from the goal “in.” The second ar-
gument is the list of processes controlled by “shell.” This list of processes is called
“IDlist.” A process is expressed as (ID,R,C), where ID is an identifier of a process, R
is a variable which sends a message to the outside, and C is a variable which controls
its execution,

This “shell™ behaves as follows:

+ When it receives the message “proc(ID, Geals)™ at its first argument, it calls “simu-
late,” executes “GCoals” in the global database world, and adds this process “(ID,R,O)™
to the “IDlist.”

¢« When it receives the message “wproc(ID, W, Goals)” as its first argument, it calls

10

“simulate,” eXecutes “Goals” in world “W,” and adds this process “(ID.R,C) to the
“IDlist.”

» When it reccives other comuands, such as “stop(ID),” “cont(ID)” or “abort(ID) , as
its first argument, it sends that command to the control variable of the specified process.

The predicates “print_process,” “print_wproc” and “print_con” are used just for print-
ing out the message which “shell™ received. The predicate “print_result” is used to
print out the resnlt when a process is aborted or ends successfully. In such cases, it
prints out the process termination information and removes that process from the given
“IDlist.”

(3} “send” transmits a message such as “stop(ID),” “cent(ID)” or “abort(ID)” to the
process with a process identifier “ID." It looks for the “IDlist.” If it finds the process,
it sends the message to the control variable of that process.

The following is an execution example of this “shell” program.

7= golveiszhell, R}.
> proc(p0l,primes)
> wproc(p02,s,prime(10)}
i
3

2 (s}

3 (s)

W o

stop(p0l)
5 (s)
T (8)
> cont(pdl)
> resultu{[pD2, success])
T
11
*> abort(p0l)
> result([p01, abortion])

Here, we invoked two processes. One is the process “p01” which generates the infinite
sequence of prime numbers. The second is the process “p02” which computes prime
numbers up to 10 following the definition of prime in the world “s.” In this example, we
stopped “p01” after it printed out 2, 3 and 5, and resumed after “p02” printed out 2, 3,
5 and 7. The process “p02” is terminated after it prints out all primes up to 10. We also
terminated process “p01” by sending the abort message to “p01.”

6 RELATED WORKS
Here, we would like to survey various research on extended features of Concurrent Prolog.

(1) For OR-parallelism, Levy (1984) proposed the implementation method using a global
queue. His method is based on the lazy copying scheme, but it has been pointed
out that this method still has bugs. ICOT also tried OR-parallelism using several im-
plementation schemes (Miyazaki 1984; Sato 1984; Tanaka 1984). For these methods,
implementations were written in Pascal or Lisp. On the other hand, our implementa-
tion was done in a logical way using Prolog.

11

(23 The research in set abstraction is preceded by POPS (Hirakawa 1984). POPS is a
Fure Prolog interpreter written in Conecurrent Prolog. It enumerates all solutions for
the given goals in stream form. In our approach, the enumeration of all solutions is
directly realized by the scheduling queue.

(3) The key issue in meta-inference is how to implement the interpreter of the target
language. In this fie.d, research has been done by writing meta-interpreters (Shapiro
1984, Clark 1984). We have implemented meta-inference predicates directly onto the
scheduling queue. Compared with the traditional approach, our approach is more
direct.

7 CONCLUESION

In this paper, we described the rough outline for realizing extended features of ECP.
Related work in this field was also surveyed. Although we have omitted here, there
are various problems which oceur in the actual implementation. Oupe is the problem of
copying variables involved in the realization of OR-parallelism.

We proposed the “AND-OR queuing” method. It is surprising that the various features
of ECP, such as OR-parallel, set-abstraction and meta-inference, can be implemented in
4 consistent manner. From the architectural point of view, it is more realistic to assume
one global queue than assuming many local scheduling queues created dynamically. And
it leads to the more consistent scheduling. That is,

(1) It realizes OR-parallelism.
(2) In set abstraction, we can reduce other goals while generating solutions.
(#) In meta-inference, we can compute several “simulate” predicates at the same time.

By the way, the scope of this “AND-OR queuning” method is not limited to Concurrent
Prolog. This method is also applicable to GHC (Ueda 1985). In this case, implementation
is simpler because it does not generate multiple environments in implementing OR-

parallelism.

ACKNOWLEDGMENTS

This research was carried out as a part of the Fifth Generation Computer Project.
T.Yokomori and J.Tanaka chicfly designed the ECP interpreter. M.Kishishita actually
coded the ECP interpreter.

We would like to thank Akikaru Takeuchi, Kazunori Ueda, and other members of the KL1
implementation group at ICOT for their useful comments and suggestions. We would
also like to thank Dr. Furukawa, the chief of the First Research Laboratory, ICOT,
Dr. Kitagawa, the president of I1AS-5IS, Fujitsu, Dr. Enomoto, the director of I[IAS-SIS,
Fujitsu, and Mr. Yoshii, Fujitsu Social Science Laboratery, for giving us the opportunity
to pursue this research and helping us with it.

12

REFERENCES

Clark K, Gregory S (1984) Notes on Systems Programming in Parlog. Proceedings of the
International Conference on Fifth Generation Computer Systems 299-306

Fujitsu (1984) The Verifying Software of Kernel Language Version 1 - Detailed
Specification-, PART II. In: The 1983 Report on Committed Development on
Computer Basic Technology, in Japanese

Fujitsu (1985) The Verifying Software of Kernel Language Version 1 — the Revised Detailed
Specification and the Evaluation Result—, PART L. In: The 1984 Report on Committed
Development on Computer Basic Technology, in Japanese

Furukawa K et al. (1984) The Conceptual Specification of the Kernel Language Version
1. Technical Report TR-054. ICOT

Hirakawa H et al. (1984) Eager and Lazy Enumeration in Concurrent Prolog. Proceedings
of the Second International Logic Programming Conference §9-100

Levy J (1984) A Unification Algorithm for Concurrent Prolog. Proceedings of the Second
International Logic Programming Conference 333-341

Miyazaki T et al. (1985) A Sequential Implementation of Concurrent Prolog Based on
Shallow Binding Scheme. Proceedings of 1985 Symposium on Logic Programming
110-118

Sato H et al. (1984) A Sequential Implementation of Conc.rrent Prolog - based on the
Deep Binding Scheme. Proceedings of the First National Conference of Japan Society
for Software Science and Technology 299-302, in Japanese

Shapiro E (1983) .\ Subset of Concurrent Prolog and its Interpreter. Technical Report
TR-003. 1COT

Shapiro E (1984) Systems Programming in Concurrent Prolog. Conference Record of the
11th Annual ACM Symposium on Principles of Programming Language 93-105

Tanaka J et al. (1984) A Sequential Implementation of Concurrent Prolog — based on
the Lazy Copying Scheme. Proceedings of the First National Conference of Japan
Society for Software Science and Technology 303-306, in Japanese

Ueda K (1985) Guarded Horn Clauses, Technical Report TR-103. ICOT

