Visiting ICOT: A Trip report

Catriel Beeri
The Hebrew University

February 14, 1989

Abstract

My visit to [COT follows an invitation about two years ago by H. Iteh. The
purpose of the visit is to learn about the activities in [COT in certain areas of Data
and Knowledge Management, to present the results of my research in these areas,
and to discuss the state of the art. The areas of mutual interest are recursive query
processing, nested relation and complex object models, and object oriented database
models (OODB). All three areas have been extensively discussed. An important
result of the discussions is the emergence of a framework for understanding general
recursive query processing methods.

1 Background

Since its inception, ICOT’s mandate has been to investigate hardware and software
architectures for knowledge management. This is a very wide area. It includes, in
particular, recursive query processing over large databases, and advanced models for the
representation of both data and knowledge. My work in the years 86 to 87, as represented
by papers in PODS 87, involved both recursive query processing, and a development of
a recursive language that can handle sets as data elements. The magic set method for
recursive query processing is quite similar to methods developed in ICOT and related
institutions at about the same time, or slightly later. This convergence of ideas led to
the extension of the invitation to visit ICOT.

The actual visit was delayed for almost two years. In the meantime, [continued
my work on complex objeet languages, and started to develop ideas concerning object
oriented databases. The presentations and discussions during my visit dealt, therefore,
with these three subjects.

2 OQOutline

In this report [summarize the talks I presented, the discussions I had with members
of ICOT, and in the last section I present a framework for understanding recursive
query processing, that is an important result of these discussions. This last section is
technical in nature.

192 —

3 Talks

I presented two talks at JCOT, attended by members of ICOT’s laboratories, and of
the working groups. I also presented a talk at Kyoto University (on February 13). The
subjects and main ideas of the talks are described briefly below.

¢ Languages for Complez Objects: This talk described extemsions of classical lan-
guages to a complex object model, that allows unrestricted a,pplica.tiun of set and
tuple constructors. Both a calculus and an algebra were presemed the main points
that were emphasized were:

1. Both languages need to support restructuring of objects. In the calculus this is
accomplished by types attached to variables. In the algebra, it is accomplished
by explicit restructuring operations, like project, and by a facility that allows
recursive use of operations deep inside objects. The similarity of this facility
to those found in general functional languages was emphasized.

2. In contrast to the languages for flat relations, these languages are very pow-
erful. Their power extends beyond first (and even second) order. The need
to contro] the expressiveness of the languages was pointed out, and a way for
doing that was presented.

s An Object Oriented Database Model: A major difference between “object oriented”
and “complex objects” is the addition of object identity. This talk described a
major difficulty in the development of a formal model for object oriented databases,
namely, how to provide an interpretation. It was shown that the right approach is
not to comsider the type equations as defining how the domains for the types are
to be constructed. Rather, they only specify the type structures. The domains
are supplied as part of any given database structure. It was shown that with this
approach, a first order calculus for the model exists, and it was briefly discussed
how various additional structural features can be incorporated.

e The talk at Kyoto University combined the subjects of the two talks described
above. Rather than describing the algebra, the talk emphasized the power of the
complex object caleulus. Thus, the talk has illustrated two aspects of a problem
that is encountered when we try to extend relational languages to more advanced
models: The need to control the expressive power of the languages.

4 Discussions

I was given a general presentation of the goals and structure of ICOT, upon arrival, by
Iwata-san. The following days, I was presented with talks about the activities of the
third laboratory, by Morita-san, and of the fourth laboratory, by Yokota-san, and on the
CAL system, by members of the CAL team.

—193 =

The description of the activities of the third laboratory included a brief description
of the PSI machine, of term relations and unification based operations, the knowledge
machine of CHI, and PIM. For me, the unification based operations were of special
interest, and their understanding supported the development of the general framework
for query processing.

The talk by Yokota-san described in ‘details the KAPPA project. The underlying
data model is nested relations, but the operations defining the semantics are different
from those that I used in my work. The system -also contains deductive capabilities. I
was impressed with the scope and diversity of the system, which represents a very serious
development effort, and 2 combination of complex objects and deductive capabilities.

Following these presentations, and before and after my own talks, I had several
discussions with members of the laboratories. Several of these meetings were devoted to
recursive query processing, with the participation of Miyazaki-san, Seki-san and Morita-
san. We discussed the relations between the different methods that were proposed for
general recursive query evaluation, including the magic set, the BPA-restrictor, and the
magic/Alexander template. The result of these discussions is a better understanding
of the assumptions used in each method, and an outline of a general framework for
explaining the different techniques and their interactions. This general framework is
summarized briefly in the next section.

In another meeting, with the above and with Yoketa-san, we explored the applications
of recent work on complex objects and object oriented models and languages. My views,
as put forward in these meetings can be summarized as follows: (1) When defining
a new model and language, it is necessary be be very precise, and to investigate the
expressive power of the model and the language, Delicate interactions between the
features of the model and the language may exist, and at least for some models that
have been considered, the languages seem to be too powerful. (2) There is a wide
spcctrum of applications for combined data and knowledge management systems, and
correspondingly there is a spectrum of possible systems types. For applications with a
lot of data, the system model should emphasize structural aspects, as these are central
to data manipulation. For other application types, a programming language approach,
emphasizing behavior, may be more appropriate.

During the visit to Kyoto University, I had disussions with the following: With
Yoshikawa-san, about his recent work on object oriented models. I was interested, in
particular, in the work on views, and on behavior analysis. Ibaraki-san told me of
his recent work on the complexity of join sequence selection, and on recursive query
processing for one-sided recursions. Connections to recent work on such recursions were
discussed.

5 A Framework for Recursive Query Processing

Many strategies have been proposed for recursive query processing. They may be classi-
fied as special purpose, i.e., applicable only to special types of programs, and general pur-

pose. This discussion concerns general purpose strategies only. Even this class contains
numerous strategies, such as magic sets (and generalizations), the Alezander method,
and the BPA, restrictor based, method. These methods were believed to apply to recur-
sive queries over databases only. Very recently, they have been generalized to arbitrary
logic programs. The framework is an attempt to explain the different optimization ideas,
the roles of various assumptions, and how they relate to each other.

A key idea is that there is a lot of similarity between the bottom-up and top-down
approaches. Optimization ideas that apply to one of them can work for the other,
although sometimes in a different form. The only one for which this observation seemed
at least partially false so far was that of information passing, and the recent developments
are closing this gap.

The first observation is that semantics of programs are treated somewhat differently
in the database and in the logic programming communities. In databases, only ground
facts are assumed to be given. The semantics of a program is its least model — a
collection of ground facts. The answer to a query is the set of all ground instances of the
query atom that are in the least model (j.e. are implied by the program and the given
database). In logic programming, an answer is any instance (not necessarily ground)
of the query atom that is implied by the program. This difference entails differagt
approaches to computation. The database community favors bottom-up computation,
in which only ground facts are generated, using matching based joins. This implies
that if a rule’s head contains a variable that does not appear in the body, than the
computation will instantiate this variable with all values in the universe, typically a
large (or even infinite) set. For that reason (and others), programs and queries are
required to be domain independent, and a covering condition that requires each head
variable to appear in the body is imposed. In logic programming, top-down computation,
using unification, is the paradigm, and non-ground facts are easily accommodated. No
covering constraints are imposed.

However, it is possible to use a bottom-up computation for general logic programs:
given a collection of facts, new facts can be generated by unification join operations
corresponding to rule bodies, followed by projection on the heads. Subsumption tests
are used to eliminate redundancy. Since facts may contain variables, if some program
rules are not covered, the number of facts generated will be smaller than that generated
by the database approach. The unification join, however, is much more expensive than
matching, or even than unification, as used in top-down computations.

Top-down has an advantage that it can compute only facts that are needed to answer
a query, whereas bottom-up needs to compute the complete least model, then it computes
the answer by a selection. Note however, that top-down can also be inefficient, if we
so desire: We can imagine a top-down computation that starts from a general atom
corresponding to each predicate, works on all current unit goals in parallel by unifying
each of them with each qualifying rule, thus generating new unit goals, and so on. Of
course, once we have answers to the unit goals of a rule’s bedy, we have to “join” them
to obtain the answer to the head goal. This is not very different from the unification
join used in the bottom-up approach. (It can be viewed as a combination of “and™ and

“or” parallelism.) Thus, in a naive approach, bottom-up and top-down are similar.

An obvious optimization of the naive top-down approach is not to use a goal if it (or
a more general one) has been used previously. (This is essentially the idea of memoizing,
also called tabulation, or lemma resolution.) A similar idea for bottom-up is the semi-
naive method, also called the differential method. Another optimization is to restrict
attention to the predicate of the query goal. This optimization applies, although only
to a limited extent, in the bottom-up approach: we can analyze the program to find out
which predicates (and rules) can contribute to the query predicate, and compute only
their extensions. '

However, the real advantage of top-down is in the utilization of information passing.
Giving up “and”-parallelism, we evaluate the atoms in a rule’s body is some partial order.
(Essentially all compilers actually use a total order.) Bindings for variables obtained by
the evaluation of some atoms are available for the following atoms in the rule, and thus
more restricted subqueries are generated. Further, when the query contains some binding
information, the computation starts from the query goal, rather than from a general goal
on the query predicate. It is this optimization, that is inherent in essentially all top-down
language processors, that has been hard to imitate in bottom-up computations.

The solution is called by different names: resirictor, BPA, magic set, Alezander
methods . (These are similar, but non-identical, variations.) In the most general form,
developed recently, it works as follows. We can restrict the bottom-up computation by
adding to the body of each rule an additional (restrictor, or magic) predicate. This
certainly reduces the number of facts generated in the computation, but it may also
climinate some legal answers, depending on the rules defining the new predicates. It
turns out that a good choice of such rules is that they compute for the new predicate
added to a rule the set of bindings in queries on the head of the rule that can be generated
in an optimized computation. On one hand, this choice guarantees that the modified
rule will still produce the answers to all queries on its head, and on the other hand, the
body will generate only answers to relevant queries, and not a large, partially redundant,
set of facts. The new predicate added to a rule has therefore the same arity and same
arguments as the rule’s head. It is possible to use restrictor predicates with smaller arity;
with a good choice of the arguments, there is no loss of efficiency. This is the case, for
example, in the magic set method.

The information flow when a rule is processed can be represented by a suitable
graph, representing the (pa.rtia.l}'order in which the body atoms are evaluated. This
graph can be used to generate rules for the additional predicate from the original rule.
Essentially, the bindings passed into an atom in a rule’s body constitute a new query
on that atom’s predicate. The new rule captures these bindings in the new restrictor
predicate. Note that in contrast to the idea of a sip, as defined in the magic set method,
the information that is passed is not represented or used in this general version of the
method. The bottom-up computation is optimized simply because we have a container
for the information that will be passed at run-time. At compile-time, we only use the
knowledge about the direction of the information flow.

Adornments have been presented as part of the magic transformation. But now we

— 196 —

see that, to a first approximation, the use of adornments is an independent idea. In the
c.adest form, we may consider when information is passed to an atom in a rule body,
which arguments will be bound in a meaningful way. That is, their bindings will restrict
‘the computation. We may abstract such knowledge as a string of zeros and ones, where
zero means ‘no restriction’, and one means ‘meaningful restriction’. Call such a string
an adornment. It can be viewed as a representation of a class of queries that will be
generated for the corresponding predicate. We may decide to select a processing strategy
for a rule, namely the partial order of evaluation, based on the adornment for the head.
To do that properly, we use an adornment algorithm. Essentially, for each rule we create
as many copies as there are adornments for its head. We obtain a new program, and
of course it makes sense to apply a restrictor transformation only after the adornment
stage, so that we have a restrictor predicate for each adorned predicate.

An inherent disadvantage of the general restrictor transformation is that in many
cases the new rules will not be covered, that is, their head may contains variables not
appearing in the body, even if in the original program all rules are covered. Consider,
as an example, the well known ancestor example.

anc(X,Y) : —par(X,Y)
anc(X,Y) : —par(X, Z),anc(2,Y)

For a query anc(john,Y), we can use the restrictor predicate r_anc(X,Y’), and the new
program is

anc(z,Y) : —raanc(X,Y),par(X,Y)

anc(X,Y) : —r_ane(X,Y),par(X, Z),anc(Z,Y)
r.anc(john,Y).

raane(Z,Y): —r.ane(X,Y), par(X, Z)

Now, we can see that the second argument of the fact given for r_anc is a variable, and
it will contain variables during query evaluation. Thus, in a bottom-up database style
computation we need to instantiate it to all elements of the universe.

The first step of the solution is to remove from the restrictor predicates all the
positions that do not carry useful restrictions at run-time., Adornment is useful for this
optimization, since it separates different information passing patterns from each other.
For the example above, we remove the second position of r_anc, and for this example this
is sufficient -— all rules are now covered. In general, when function symbols may be used,
this optimization is insufficient. If we know that a possible binding passed into an atom
p(X,Y) in some body is that X = Y, then we still need the two positions, Similarly,
if the binding instantiates some variables in a term to constants, but leaves some other
variables free, than we need this position. In such cases, we must use unification-join
in the bottom-up computation, or alternatively instantiate uncovered variables to all
possible values. Both alternatives are unattractive.

— 197 —

The solution for the database world is the following: We -know that facts in the
database are ground. All original rules are covered. It follows that bottom-up database
style computation for a derived predicate produces only ground answers, hence the in-
formation passed to an atom is always of the form ‘variable bound to constant’. We
eliminate the positions of the restrictor (magic) predicate in which some variables (ap-
pearing in a term in that position) may not be bound at run-time to constants. We are
left with positions that at run-time are always completely bound to constants, and it can
be shown that the rules of the resulting program are covered, and bottom-up matching
based computation can be used. Note that since some positions are omitted, we have
a partial restrictor rather than a full restrictor. In particular, we may have eliminated
some positions that carry useful binding information. Therefore, the scope of this variant
is restricted, compared to the general case.

One small problem: In different rules, the patterns of information passing into atoms
of the same predicates may be different. If we eliminate positions according to all these
patterns, we may be left with no positions, and no restrictor. The answer here is to use
adornments, so we have a separate restrictor predicate for each pattern. Further, we
now use a different abstraction for the adornment where zero, or free, means that we
cannot guarantee that this argument will be completely bound, and one or bound means
we can make this guarantee. The details are as in the magic set paper.

The above outline is necessarily brief. However, it was accepted positively by ICOT
researchers with whom it was discussed. This approach leads to some obvious problems
for further research: What are the most general cases when matching based, bottom-up
computation can be used? Can they be found by efficient algorithms? What is the
precise role of adornments? What is the cost of bottom-up unification -join computa-
tion, compared to other methods? Finally, can some special purpose techniques also be
described in this framework?

6 Acknowledgements

The atmosphere at ICOT has been extremely friendly from the first day. I would like to
thank especially Iwata-san for taking care of the initial arrangements, for helping me to
rent an apartment (which enabled me to live a little more like 2 Japanese, rather than like
a tourist), and in particular for caring so much about my specific dietary requirements.
Thanks are also due to to Morita-san, who arranged my meetings, and took care of many
small details, such as instructing me on how to obtain lunch, and so on. Many other
members of ICOT did their best to make my stay enjoyable. Finally, thanks to all the
people I met for technical discussions, that have contributed to, and helped clarifying
the outline and many details of the general framework.

198

1. Catriel Beeri - short cv

B.Sc. (Math, Physics), M.Sc. (Math) and Ph.D. (Math & CS) from the Hebrew University
of Jerusalem. Ph.D. awarded in 19735.

Posi-doc fellow in Computer Science Department, University of Toronto (1975/6); Visit-
ing instructor at Department of EECS, Princeton University (1976/7).

Lecturer, Departument of Computer Science, Hebrew University, (1977); promoted to
senior lecrurer with tenure (1978), and to associate professor (1982). Chairman of the
department 1983-1985.

Visiting scientist, IBM Research Laboratory, San Jose, summer 1980; visiting professor,
School of Applied Science, Harvard University (1982/3); visiting sciendst, Computer
Corporation of America, Summer 1983; visiting scientist, Microelectronics and Com-
puter Technology Corp (MCC), summer 1986, spring/summer 1987.

Area of Interest: Database and Knowledge Management Systems, including: theory of
data models and languages, logic based declaratve languages, concurrency control and
recovery with emphasis on nested transactions, intelligent DBMSs.

2. Catriel Beeri - academic resume.

My main research activities over the past ten years have been in the theory of database
management systems. Although I am in principle interested in all aspects of database sys-
tems, I have mainly been involved with the following topics.

Starting in 1975, untl about 1984, T have been active in the area of design theory for
relational databases. This included the investigation of data dependencies and algorithms
for their manipulation, and later research on schema design methods. Among the contri-
butions of this period are axiomatizations and basic algorithms for functional and mul-
tivalued dependencies, the development of general types of dependencies and a theory
that explains the roles of different types of dependencies in the schema design process.

Since 1982, I have been working on the development of a model and of proof techniques
for nested transaction systems. Although transaction management seem to be well
understood, nested transactions are still a challenge. They are becoming important now
with the advent of object oriented programming systems. I have fdeveloped with col-
leagues a model and a substantial body of proof techniques, for both concwrency and
recovery. Only a small part of these results have been published, I am now preparing
additional papers on the subject.

Since 1986, I have been working on the integration of declarative programming methods
from the database and the logic programming areas. While the logic programming
languages provide the additional expressive power, the database approach emphasizes
efficient processing of large amounts of data. My interest so far has been mainly in the
development of general methods for optimizing recursive programs for bottom up com-
putation. Another direction is the extension of such languages to data models that allow

— 198 —

richer data structures, notably sets and tuples together.

Another recent development in the database area is the emphasis on data models that are
moere expressive than the reladonal model. I have investigated languages for one exten-
sion of the relational model - the complex object model. The results characterize the
power of versions of algebrz, the calculus, and of recursive langnages. These results have
recently been extended to an object model thart allows, in additdon to mple and set con-
stoucts, also object identty and ISA relatdons.

In summary, I see database systems evolving towards richer data models and more
expressive, declarative, languages. Such systems will manipulate both data and
knowledge. The expressiveness of a model and of the languages defined for it are inti-
mately related. Understanding this relationship and exploring it for the development of
more powerful and flexible data and knowledge management systems is a goal that I
intend to pursue for the next few years

