A Visit to ICOT

Ian Foster

Department of Computer Science
Imperial College
London, England

June 14th - July 10th, 1987

1 Introduction

I was invited to visit ICOT to discuss issues connected with systems program-
ming in parallel logic languages and the design of programming systems to
support these Janguages on parallel computers.

I was very pleased to accept this invitation, as I was keen to see at first hand
how work on these and other topics was progressing at ICOT. The similarities
of our interests suggested that fruitful collaboration was likely. In addition, I
felt it to be an honour to be invited, as ICOT is widely recognized as a centre
of excellence in logic programming research.

‘I had been invited to visit ICOT’s First Research Laboratory. Until recently,
this was responsible for research on the design and implementation of ICOT's 5G
kernel language, KL1, and operating systems to support this language. These
are essentially my research interests. Recently, however, responsibility for these
topics has been moved to the Fourth Research Laboratory, which is starting
to design and build systems based on KL1. The First Research Laboratory
is now conducting more basic research concerned with problem solving and
inference, intelligent programming and the design of the next generation of
kernel language, KL2. This reorganization was explained to me by Dr Iwata,
who gave me an introduction to ICOT and more fully by Dr Tanaka of the First
Laboratory. After this introduction I realized that I would have much to discuss
with members of both the First and Fourth Laboratories.

2 Presentations by ICOT Researchers

The first week and a half of my stay were largely taken up with presentations
by members of the First and Fourth Laboratories on the current status of ICOT
research. These were all extremely interesting and resulted in some stimulating
discussions.

2.1 First Laboratory

Dr Furukawa described his recent work on unfolding rules for GHC. This work
answers earlier criticism concerning the semantics of the transformations per-
formed by partial evaluation. Dr Furukawa suggested that simple algorithms

— 101 -

for the application of these rules can be developed. Mr Fujita described his
self-applicable, incremental partial evaluator for Prolog, which he hopes to ex-
tend to handle GHC. I was interested by his observation that partial evaluation
of programs that manipulate complex data structures such as streams requires
some type inference system to avoid generating superfluous code.

Mr Matsumoto described the layered stream method which he and Mr Oku-
mura had developed and applied to searching problems. Though producing more
complex programs, the method appeared to lead to substantial increases in po-
tential parallelism and also provides useful structural information which could
permit more efficient implementations of searching algorithms. The increase
in shared data appeared to limit its application to shared memory machines,
however. It also makes compile-time garbage collection harder.

Dr Murakami gave a presentation of his verification method for GHC pro-
grams, based on a Hoare-like axiomatic system. This was an exciting piece
of work which I hope will be further developed. I found his requirement that
relations not be called with output mode arguments instantiated interesting:
earlier versions of PARLOG imposed the same restriction to facilitate imple-
mentation. Violation of this condition was flagged as a run-time error. In fact,
it was the example of GHC that inspired the incorporation of general output
unification into PARLOG. As this feature seems to be rarely used, it may be
that it can be removed from these languages, simplifying both their verification
and implementation.

Dr Ueda described the current status of GHC. We discussed problems in-
volved in compiling and executing GHC and PARLOG. The space reclamation
problem is clearly important. New syntax to denote stream operations and block
compilation are hopeful avenues for future research. Dr Ueda also mentioned
some issues being considered in the design of KL2.

Dr Tanzaka presented his work on parallel operating systems based on virtual
machines and arranged for a demonstration on the multi-PSI simulator. He then
deseribed the current status of KL2.

2.2 Fourth Laboratory

Dr Taki gave an overview of the multi-PSI project and described simulation
studies on the multi-PSI. I was also interested by his description of the PSI-II
machine. The high performance of this machine will permit useful experimen-
tal studies of problems such as load balancing, metacontrol mechanisms and
garbage collection. The relatively low performance of the current distributed
implementation makes it hard to evaluate the likely cost of these mechanisms.
Nevertheless, projected communication costs emphasize the need for intelligent
load-balancing mechanisms.

1 discussed with Mr Ichiyoshi the distributed implementation of FGHC on
the multi-PSI. I was already familar with the work, having read his ICLP pa-
per, but he was able to describe recent optimisations to their distributed uni-
fication scheme. We discussed alternative approaches to the implementation of
distributed unification and possible means of optimising communication, both
through specialized hardware and compilation.

Dr Goto gave a detailed presentation of the PIM machine design and in
particular his work on cache simulation and design. The simulation results were

= 102 —

very interesting. I was particularly interested in his results demonstrating the
advantages of the MRB scheme. The low memory contention rates were very
encouraging.

I then discussed the KLI-b instruction set with Mr Kimura. I had read the
paper describing this work, and had a number of criticismas: I felt it was unduly
complicated compared with a Flat Parlog instruction set I had designed with
Steve Taylor. However, since preparing the paper describing it a number of
improvements have been made, with the result that the two instruction sets are
now very similar. This is perhaps not surprising, as KL1 and Flat PARLOG
are essentially equivalent languages, but it was encouraging to see similar solu-
tions being adopted. We discussed briefly the use of decision graph compilation
techniques to improve the quality of compiled code. I was able to familiarize Mr
Kimura with some recent work by Steve Taylor on this subject which appears
to provide an excellent basis for efficient KL1 compilation.

Dr Chikayama gave a detailed presentation of both his MRB scheme and
the current status of KLI-c. I was interested to see that the KLI-c specifica-
tion is very similar to the extended PARLOG language 1 am using for systems
programming.

Dr Sato presented the current status of PIMOS design. In particular, he
described their approach to managing communications between application pro-
grams and aperatmg system so as to ensure application program behaviour cnu[d
not compromise operating system safety.

Mr Nakajima gave a detailed description of the design of PSI-I and PSI-II. I
was interested to see that PSI-II is primarily a Prolog machine: the design could
have been somewhat simpler if only KL1 were to be supported. Nevertheless, a
machine that supports both Prolog and KL1 will permit interesting experiments
in mixed language processing.

Finally, Mr Ishibashi gave an overview of ESP and SIMPOS and demon-
strated the PSI machine.

3 Presentations to ICOT

During my stay at ICOT I gave three presentations to I[COT researchers. Two
of these were concerned with language design and implementation issues and
the other with my work on parallel programming systems.

The first of my presentations, entitled "Efficient Metacontrol in Parallel
Logic Languages”, described some recent work concerned with the implemen-
tation of metacontrol mechanisms in parallel logic languages. I described an
efficient implementation scheme for such mechanisms on uniprocessors and pre-
sented benchmark results that permitted comparison with an alternative scheme
based on program transformation. I also showed how uniprocessor mechanisms
could be exploited in a loosely coupled implementation to provide efficient dis-
tributed implementations of metacontrol mechanisms without complex message
protocols.

The second of my presentations (chronologically the third) was entitled " Flat
PARLOG: A Basis for Comparison”. It described some joint work with Steve
Taylor of the Weizmann Institute on the design and implementation of a flat
subset of PARLOG. The implementation details were not of particular interest

=103 —

to ICOT researchers, as their own KLI-b instruction set is very similar to our
Flat PARLOG machine. I therefore concentrated on the presentation of bench-
mark results permitting comparison of Flat PARLOG and another parallel logic
programming language, FCP. These results are of considerable interest to ICOT
researchers, as the essential equivalence of Flat PARLOG and FGHC means that
the benchmark results can also be applied to FGHC. The results also indicated
the likely cost of utilizing a parallel rather than sequential evaluation strat-
egy for guard primitives. This is desirable for semantic reasons, particularly if
optimizing compilers may reorder guard tests. Some discussion ensued concern-
ing probable performance difference on parallel machines. I indicated that the
benchmark results only permitted comparison of single processor performance,
but agreed that FCP’s more complex distributed unification algorithm would
tend to result in higher communication costs.

My third talk was entitled ” PARLOG Programming System”, and described
the operating system/programming environment for PARLOG that I have been
developing for some time. PPS is an operating system intended to support par-
allel logic programming on parallel computers. Currently, only a prototype has
been implemented: this runs on SUN workstations and exploits SUN features
such as its window system to provide a friendly user environment. Neverthe-
less, a substantial subset of operating system functionality — such as secondary
storage management, exception handling and computation management - is
implemented in PARLOG.

Following my initial discussions with Dr Tanaka on KL2, he had suggested
that I consider how a system such as PPS could support knowledge represen-
tation and knowledge processing in application programs. As these appear
particularly important issues at this stage of PIMOS design, I gave only a brief
overview of PPS structure and facilities in my talk and concentrated on how
an operating system (and PPS in particular) could provide support for these
activities. These issues are discussed in more detail in a later section of this
report.

I also gave a demonstration of the PPS prototype on a SUN workstation.

4 Visits to other Institutions

I was fortunate to be able to visit both Fujitsu Laboratories and the Science
University of Tokyo during my stay at ICOT. At both institutions I presented
a survey of research in the PARLOG group at Imperial College and described
my own work.

Mr Hattori introduced me to the research of his group at Fujitsu. They are
involved in the development of a large FGHC application (a parallel router)
and in addition are investigating the implementation of parallel hardware for
ICOT’s PIM. Mr Kishimoto gave a very interesting presentation on an evalu-
ation of their parallel routing application. Their conclusion that tail recursion
optimisation was not particularly effective was interesting, as a similar analysis
of a Flat PARLOG compiler that I had conducted gave similar results. We had
an interesting discussion concerning possible compiler optimisations of FGHC
programs. I briefly described techniques that I thought could prove effective on
applications with simple producer-consumer relationships, such as compilers.

However, these did not appear applicable to the parallel routing application. It
is interesting to consider which is the more typical application.

I was invited to the Science University of Tokyo by Dr Mizoguchi. He pre-
sented the work of his laboratory and several of his students demonstrated
systems. 1 was particularly interested by their work on qualitative reasoning
and its implementation in both a constraints based language and FGHC. I also
enjoyed a Prolog graphics demonstration, particularly the "Winking Madonna’!

5 Discussions with Fourth Laboratory

Throughout my stay at ICOT I had a number of discussions with members of
the Fourth Laboratory. I shall just note the more interesting points raised here.

Dr Chikayama and his colleagues are working on the design of PIMOS,
the operating system for ICOT’s parallel inference machines. I had several
discussions with members of this group. It was interesting to see where our
views on important issues coincided and diverged.

QOur approaches to language design were very similar. The sho’en feature
described by Dr Chikayama is essentially equivalent to the extended PARLOG
metacall described in my paper at the 4th ICLP. However, Dr Chikayama and his
colleagues seem to have a rather different view as to its intended implementation
and use.

Qur views on the degree of kernel support that should be provided by a
parallel implementation differed somewhat. Dr Chikayama and his colleagues
seemed keen to implement significant functionality at this level. Their sho’en
would thus be responsible for resource management and control over many pro-
cessors. In addition, individual processes within a sho’en could be assigned
different priorities. ;i

I on the other hand favour a more light-weight metacall, perhaps imple-
mented initially as a uniprocessor mechanism only. A parallel implementation
then only needs to implement distributed unification. I find this approach very
attractive, because of its inherent elegance and simplicity. Of course, it is then
necessary to program load balancing, code mapping and distributed metacon-
trol in a parallel logic language. However, I believe that this is desirable, as
these issues are poorly understood at present and it is important to encourage
experimentation. As I showed in my first talk, distributed control can exploit
uniprocessor metacontrol mechanisms. My PPS architecture also incorporates
code mapping and load balancing mechanisms.

Naturally, it is more efficient to implement metacontrol, load balancing and
resource management mechanisms in a language kernel. However, this reduces
the amount of the operating system that is implemented in a parallel logic
language. This complicates the parallel implementation and discourages exper-
imentation with alternative mechanisms.

Another issue which was discussed on several occasions was that of deadlock
detection. Perhaps because the semantics of GHC as originally described do
not distinguish failure and deadlock, this issue does not appear to have been
considered in as much detail as other issues. However, once the concept of
task is introduced via sho’en or metacall, deadlock detection becomes extremely
important. It is for this reason that I support it at a very low level in my metacall

= 105

implementations.

I had several interesting discussions with Mr Ichiyoshi concerning distributed
unification algorithms and distributed deadlock detection. He described a ter-
mination detection algorithm that he had developed and proved correct. Unfor-
tunately, though very elegant, the algorithm and proof of correctness appeared
essentially equivalent to one due to Dijkstra. Mr Ichiyoshi pointed out a weak-
ness in the distributed deadlock detection scheme I had presented and this led
me to formulate a revised distributed unification algorithm that would permit
deadlock detection within a computation. The new algorithm introduces some
extra communication however.

In further discussions with Dr Goto, I described an alternative implemen-
tation technique for FGHC on shared memory machines. We discussed the
applicability of this technique (the usefulness of which depends on the relative
costs of lock and memory access operations). Dr Goto offered to use existing
simulation data to evaluate it.

6 Collaborative Research

Following his presentation of KL2, Dr Tanaka suggested that I consider how an
operating system such as PPS could provide support for the knowledge process-
ing applications which the Fifth generation computer is intended to support.
I talked about these issues in my presentation to ICOT and subsequently dis-
cussed them with Dr Tanaka and Dr Ueda. Jonas Barklund, visiting from
Uppsala University, also provided some very valuable comments.

The ability of parallel logic languages to express parallelism and to support
symbolic processing applications has motivated their selection by ICOT as a ker-
nel language for their Fifth Generation computers. Techniques for expressing
the Al problems that these computers are intended to solve in these languages
must now be developed. Several approaches to the formulation of such problems
in parallel logic languages are being investigated. The direct approach attempts
to implement solutions to Al problems directly in parallel logic languages. The
embedded approach attempts to reimplement existing methodologies and lan-
guages (such as object-oriented languages, or Prolog) by providing compilers to
parallel logic languages. The interface approach aims to provide interfaces to
existing knowledge representation systems, such as DBMS, KBMS and Prolog
systems. ICOT’s Fourth Laboratory seek to take a fourth approach, designing a
new language (KL2) that provides powerful knowledge representation and prob-
lem solving capabilities and in addition is compilable to KL1. This approach
has great promise, but perhaps is the most difficult avenue to pursue in the
short-term.

Whatever approach is taken to knowledge representation and processing,
the knowledge must eventually be expressed (in some form or another) as par-
allel logic language programs. It is therefore very important that it be easy to
experiment with changes to such programs, the inference mechanisms used to
evaluate them and their structure. It should therefore be possible to describe
such changes using parallel logic language programs.

QOne approach to providing such metaprogramming functions is to program
them on top of a conventional programming system using metainterpretation

— 106 —

techniques. This was the approach taken in Mandala. However, in practice this
lead to unacceptable overheads. Also, metainterpretation; by simulating change
in the language, separates the tasks of describing and implementing change, The
implementation of change impacts on distributed operating system functions
such as code mapping. The description and implementation of change should
therefore be closely linked.

I therefore believe that it is necessary to provide support for metaprogram-
ming functions in the operating system itself. They can then be made available
to the programmer in terms of an enhanced parallel logic language. This lan-
guage can be used to program tools for maintaining, structuring and modifying
applications programs represented as parallel logic programs. It can also be
used for writing these programs, as of course many Al-like applications require
the same ability to describe and reason about change.

These considerations led me to reconsider the function and design of PPS.
Comments from Mr Barklund stimulated me to redesign the system’s metapro-
gramming facilities to provide a purer declarative semantics. I also removed the
previous built-in inheritance mechanisms and provided tools (essentially reflec-
tion mechanisms) which permitted the programmer to define his own inference
mechanisms (including inheritance). The result of these modifications is an
operating system that supports a parallel logic language with extensions for
metaprogramming. This language is named PARLOG+ to distinguish it from
the PARLOG language on which it is based. Briefly, PARLOG+ permits a pro-
gram to access first order representations of other programs, to construct alter-
native states in which modified versions of these programs apply and to specify
that some modified state be made available to other programs upon successful
termination. Concurrency control mechanisms ensure conflict does not occur
when state-changing programs execute concurrently. PARLOG+ programs can
also define non-standard inference mechanisms.

These extensions to PPS and the preliminary definition of PARLOG+ seem
to me to indicate a promising direction for work on operating systems designed
to support parallel logic languages. Metaprogramming functions are necessary
if effective program development tools are to be built and Al applications pro-
grammed. Low-level support for these functions ensures that efficient execution
is not compromised by unnecessary layers of interpretation. Also, as these
mechanisms are implemented in a parallel logic language, they are not difficult
to implement on parallel machines.

Another issue that I discussed with Dr Tanaka and Dr Ueda was how pro-
grams could be provided with the ability to reason about their own behaviour
and situation. We did not reach any firm conclusions as how such functionality
might be introduced into parallel logic languages. However, I was able to show
how PARLOG+ programs could take advantage of limited inforamtion about
their situation to define (for example) load balancing shells.

The facilities provided by the redesigned PPS are summarized in a draft
document written by me at ICOT. This describes the PARLOG+ language and
shows how it can be used for metaprogramming and to implement alternative
inference mechanisms — in particular, inheritance and query-the-user evaluation
mechanisms. It also illustrates the application of simple reflective programming
techniques and shows how PPS can support other languages.

- 107 —

7 Future Collaborative Research

I plan to further investigate the question of distributed deadlock detection and
will attempt to prove my scheme correct when I return to Imperial College.
Experimental studies currently being performed by Mr Ichiyoshi and his col-
leagues will permit me to quantify the overhead introduced by the additional
communication.

Dr Tanaka and I plan to continue discussion of issues connected with oper-
ating system support for metaprogramming in parallel logic languages. T will
revise the draft document I wrote at ICOT, and plan to eventually release it as
an ICOT Technical Report.

8 Impressions of ICOT

Several of my colleagues at Imperial College had visited ICOT in the past and
had spoken very warmly of their experiences there. Their only warning to
me was that the laboratories were rather crowded! However, ICOT’s recent
expansion meant that this was not a problem. I was very happy to be given
a desk with a view over Tokyo harbour. In general, I find that open-plan
environments such as that at ICOT rather noisy, but perhaps because ICOT
researchers are quite polite (or perhaps because T don’t generally understand
Japanese!), this did not seem to be a problem. On the contrary, it appeared to
encourage an open and friendly atmosphere that I am sure is good for research.

My impressions of the research being performed at ICOT were very favourable.
It was very exciting to see so many able researchers working on what I believe
are important problems. ICOT has already achieved significant results, and
judging by progress made to date, the FGCS programme will be a success.

One of my few concerns is an apparent tendency to push functionality that
might be better realized in software into hardware. The problems being tack-
led by ICOT researchers are new and as yet not well understood. We are still
learning how to implement parallel logic languages and how to build operating
systems to support programming in these languages. Clearly, if the aims of
the Fifth Generation Project are to be met, it is necessary to begin building
paraliel implementations now, using solutions developed to date. However, im-
plementing these solutions in hardware may discourage a search for even better
solutions.

For example, hardware can be used both to reduce the cost of frequent con-
text switching and to reduce memory usage. But it is also important to investi-
gate compilation techniques that perform compile-time garbage collection and
reduce communication and context switching by increasing granularity. Both
techniques will require global analysis and thus appear difficult; nevertheless,
such techniques are likely to be cheaper than hardware in the long run.

Similarly, though distributed resource management functions are important,
it is also important to consider what facilities an operating system must provide
to support logic programming. The full benefits of logic programming may not
be realized if the operating systern forces the programmer to think in too imper-
ative terms. PPS might suggest alternative ways of structuring the operating
system.

- laE —

Finally, I note a discrepancy between the hardware being built to support
KL and applications built in higher-level languages. 1 was surprised to see
that several of the applications groups rely heavily on languages incorporating
enhanced unification mechanisms: such languages are unlikely to be efficiently
compilable to KL1. As design and implementation of KL1 machines begins, it
is clearly essential that techniques for implementing Al applications on these
machines be developed. The work of the First Laboratory thus seems very
important to the success of the Fifth Generation project.

9 Conclusions

This was my first visit to both ICOT and Japan, and I found both wonderful
experiences. [consider myself very fortunate to have been able to spend four
weeks in the midst of the Fifth Generation Project. I gained a lot from this
experience. I hope that some of our discussions and my work on PPS will prove
useful to ICOT people.

I think it is important for both logic programming and computer science as
a whole that ICOT succeed in achieving its goals. I was thus very happy to find
how much progress is being made at ICOT. I was also impressed by the broad
range of research topics being pursued. Many of these topics are of intense
interest to me personally, so I look forward to hearing of the future results of
the project.

10 Acknowledgements

I would first of all like to thank Dr Fuchi for inviting me to visit ICOT. It was a
very stimulating experience and will, I hope, lead to fruitful future eollaboration.
I am also grateful to Dr Tanaka for arranging my visit and organizing a very
interesting schedule, and to Dr Itoh for making me welcome in his Laboratory.
It was an unexpected pleasure to meet Ken Sato at ICOT on my first day:
I had last seen him at Imperial College, when he visited two years ago. He and
Dr Tanaka took very good care of me during my stay. Ken Sato was also kind
enough to teach me the 5 essential phrases which, I am ashamed to say, still
constitute the bulk of my Japanese vocabulary at the end of my stay.

I found everyone at ICOT very friendly, and always ready to help in what-
ever way required. I particularly appreciated the efforts of Mr Ichiyoshi, Miss
Nakamura, Mr Rokusawa and Mr Sato, who arranged some very enjoyable visits
outside Tokyo, enabling me to see a little of the rest of Japan.

I must also thank Mr Takagi for permitting me to use the Sun for demon-
strations and granting my excessive demands for disk space!

Finally, I would like to thank Dr Iwata and Miss Nakamura of the research
planning department for their many efforts on my behalf, both before and during
my stay.

— 108 —

l'."Ju.rncu.'Lm Vitae

o o -

Marme: lan Foster

Hationality: Wiy Zzaland

pata of Birth: 1st Januacy, 1959

present Position: Rescarch Rssociate, Pepartment of Computing,
{1985-19ET) Imperizl Collece, Londenm.

Ressarch Areas: Imolementation ard application of parallel Lc-gi::‘

languages, with particular emphesis oo the use of
sueh language for systess pesereeming.

gualifications:

B.Sc. Honours (First Class) in Computer Science, University of Canterbury,
Mew Zealand, [1578-15%80). (A four year degres, completed in three).

visiting Positions:

February-March, 1907: Visiting Sclentist, Department of Applied Mathematies,
welmann Institute of Sclence, Rehovok, Isrsel.

April, 1985: visiting Scientist, Argonne Matlonal Laboratery, Illinois.

October-Decenber, 1985: Visiting Profeszor, !.Fn.iwr:l.l:y of Rom: and
consiglio Watlonale della Richerche, Rome, Italy.

Refersed Publicatlons:

ie Operating Systems: Design Issuves". To appear: The
J_'ﬂﬂmln.tml:im 1 conference on Logic Programming.

*“a Programming Envirooment for Concurrent Logle Programming™. To appear.
““Flat Parlog: A Basis for Compariscan”. Submitted for publication.

*“hn Abstract Hachipe for the Implementatien of Parleg on Uniproceszors".
Submitted for publication.

*“A Sequential Implementation of Parleg". Inr The 1986 International
Cconference on Logic Programming.

**a peclarative Treatment of Secondary Storage”. In: The 1286 International
Sympesium on Logle Programming.

Invited Papera, etc

“"p Declarative Enviropment for Concurrent Logle Pregrasming™. In:
TEFSOFT '87.

panelist, ~“Logle ngmm!.ng for Systems Programming®. 198& Interpaticoal
Syrposivn on Legic Programming,

Industrial Experfience:

1683-1984; Scientist, BAS Eurcpe. Research and developmant inte
advanced information storage and retrieval systems.

Awards:

e, Wellington College, 1977
Senior Scholarship, University of Canterbury, 1980

- 110 -

