Programming Language and
Computer Architecture Research
at ICOT

John S. Conery

University of Oregon.
Fugene, Oregon, USA

June 22, 1987

I spent the first three weeks of June, 1987, as a visiting researcher at ICOT. I
met with members of the Fourth Lab, and discussed their projects on machines
and languages for fifth generation computer systems. I was also able to share
with members of ICOT some ideas on a project 1 started at the University of
Oregon. This report is a summary of these meetings and presentations, with a
few comments on ICOT and the direction of fifth generatmn computer research.

My first day at ICOT, June 1, was the fifth anniversary of the research insti-
tute. My wife and mother-in-law and I were all invited to attend the celebration
held that night in the annex of the Mita-Kokusai Building. We were impressed
by how outgoing and friendly everyone was; we talked about everything, from
technical subjects, to gossip, to comparing life in the United States to life in
Japan. This gathering seemed to set the tone for the following three weeks,
which were filled with many meore friendly and informative discussions.

Presentations by ICOT Members
PSI-IT

The first presentation I attended, on Tuesday morning, was given by Katsuto
Nakajima. He described the architecture of the PSI (personal sequential infer-
ence machine) and the improvements that were made in the design of PSI-II. The
goals of the PSI project are to do for Prolog what the Symbolics LISP machines
did for LISP: provide fast execution, in an advanced programming environment
tailored to support this one particular language, in a single-user machine. The
two main goals for PSIII are, one, to take advantage of advances in Prolog
implementation technology, and two, to use newer semiconductor technology in
order to build a smaller, less expensive machine. In addition, the processor and
memory of the PSI-II are expected to be used as a PE in the Multi-PSI. The
PSI-I1 is from three to ten times as fast as the PSI-I, depending on the type of
program.

To meet the first of these goals, the new machine is based on the Warren Ab-
stract Machine (WAM), a proven technique for implementing sequential Prolog.

The PSI-II instruction set is a microprogrammed implementation of the WAM
instruction set, whereas the PSI-I used a more complicated microprogram that
interpreted programs that were close to their original source form. In an ex-
periment to gauge the effectiveness of the WAM instruction set vs. the original
PSI-I instruction set, a WAM interpreter was microprogrammed on the PSI-I
hardware. The WAM instruction set ran selected programs twice as fast, on
the average. Performance figures given in the paper by Nakashima and Naka-
jima show that over half of the improvement of PSI-II over PSI-I is accounted
for by the use of the WAM instructions. The relative efficiency of the WAM
is attributed to compilation techniques that were not possible with the older
instruction set. Other implementation techniques (also used in PSI-I) include
the use of tagged data, a 20KB (4KW) write-back cache, and specialized stack
manipulation operations designed for Prolog stacks (more than two stacks must
grow in the same address space). :

To meet the second goal, the PSI-II uses a combination of new, commercially
available circuits (such as 1Mb RAM chips), along with custom LSI gate-array
circuits used in the processor. The resulting processor fits on three PC boards,
and the entire machine, which includes up to 160MB RAM, fits in a small cabinet
roughly the size of a Symbolics 3645. The cycle time of the PSI-II processor is
166.7ns, a rather modest increase of 20% over the cycle time of the PSI-I.

The PSI-II has certainly met most of the original goals of the PSI project.
The execution speed is orders of magnitude faster than the Prolog systems
most of us learned the language on, and the system software provides a rich
environment for program development {described in another section, below).
The goal of working as a building block of the Multi-PSI is also achieved. When
the PSI-11 is used as a node in the Multi-PSI, the microprogrammed interpreter
will be changed (it is in a writable control store) to an interpreter for the parallel
language KL1. '

The PSI-II represents one point in an interesting set of implementation
strategies:

« Implement the WAM via software on a host architecture; an example is
Quintus Prolog on the Vax.

e Implement the WAM in microcode on a microprogrammable host, without
changing the hardware. A paper by Gee, Melvin, and Patt at the last
ICLP described an implementation where the Vax 8600 instruction set
was extended to include WAM instructions.

s Microprogram the WAM on hardware designed to support WAM opera-
tions; the Berkeley PLM probably fits in this category.

» Microprogram the WAM on a host machine that has very little extra
hardware support. The PSI-II is in this category; the extra hardware is
for extracting and comparing tag fields.

« Compile Prolog directly to a lower level host instruction set, either for a
machine like the 68000 or a RISC machine (the LOW-RISC project is an
example of the latter).

Making meaningful comparisons based on experience from these projects
will be very difficult, given the wide range of goals and execution environments,
but there should be a wealth of experience to draw on for the next designer of
a Prolog machine. The designers of the PSI-II feel that their approach shows
that a modest investment in hardware can lead to a significant improvement in
speed. In this case the just over half of the improvement of PSI-II over PSI-I
is due to a better instruction set, and the remainder is due to the addition of a
small bit of hardware for tag checking.

PIM and Multi-PSI

The PIM (for parallel inference machine) is one of the long range goals of the
fifth generation computer project. The PIM project is now in the middle of
its intermediate phase. The main goal for this phase is the construction of a
prototype machine, with approximately 100 processors, capable of 5§ MLIPS
processing speed.’ At the beginning of the intermediate phase, a new project
was started. Recognizing the need for stable hardware to test the operating
system and application software that will eventually run on PIM, plans were
made to develop a testbed for parallel software. This is the role of the Multi-
PSI, which is a network of 64 PSI-II processing elements.

Dr. Atsuhiro Goto gave a presentation on the history of PIM and the plans
for development in the intermediate phase. In the initial phase, several alter-
native machine styles were investigated, and some were implemented in hard-
ware. These projects were PIM-R (a reduction machine), PIM-D (a dataflow
machine), and Kabu-Wake (a multi-sequential machine, with a novel task as-
signment method). In the next phase, the intermediate PIM will consist of up
to 100 processors, each slightly more powerful than the PSI-II, connected in a
network of local clusters. Each machine will have its own local memory, and
machines within a cluster will also have access to a shared global memory. Clus-
ters will be connected via a high speed network. Each processor will execute

ITo get a feel for what this number represents, the PSEIT runs about 150 KLIPS on its
small benchmarks; the designers of the Berkeley PLM hope to achieve about 350 KLIPS, and
the fastast “mainframe” execution I am aware of is just under 1 MLIP.

KLI1-b as its instruction set (KL1-b, the “base language” of KL1, is an abstract
machine instruction set; I will describe it in more detail, below).

Dr. Kazuo Taki gave the presentation on Multi-PSI. The goal of this system
is not to be a prototype PIM, in the sense that it is to test PIM hardware
design ideas, but to be a stable environment for running and evaluating parallel
software. The important attributes of PIM that must be supported by a software
evaluation workbench are: it must be a large-scale MIMD machine, without
shared memory; it should have dynamic load balancing, and a large amount of
local memory at each node. The Multi-PSI clearly meets these requirements.
The first version of Multi-PSI, which is now operational, consists of 6 PSI-I
machines connected via local network controllers. Each machine is a complete
PSI-I, with I/O devices, keyboard, and monitor. The second version of Multi-
PSI will be running later this summer. It will have 84 nodes, each of which is a
PSI-II processor with local memory. This machine will not be a shared-memory

— g1 -

machine; instead, messages will be passed via network controllers in each node.
The interconnection network will be an 8 x 8 grid, with each PE connected to
four neighbors. The microprograms in the PSI-II nodes of the Multi-PSI will
be changed, so the instruction set is KL1-b, instead of the WAM instruction set
of the sequential PSI-II.

The software projects that will be investigated using Multi-PSI are:

e KL1, the application language for the machine. This “second generation”
parallel language is basically flat GHC, with constructs for object oriented
programming and pragmas for process allocation.

e PIMOS, the operating system for PIM (described in a later section).
s A dynamic load balancing mechanism.

Initially, program development will be on a host PSI-II, used as a front-end to
Multi-PSI.

I think the plan to use Multi-PSI as a testbed for PIM software is an excellent
idea. Aside from the obvious benefits of giving programmers a chance to run
their programs before the final system is ready, it will give members of each
project valuable feedback on their projects. A while ago, on a visit to Berkeley,
1 talked with some of the people who had developed some VLSI design tools.
They said that one thing that helped them ftremendously was that another
research project at Berkeley (I think it was the RISC project) used the tools as
they were being developed, and provided feedback on how they worked. This
sort of symbiotic relationship should occur here as well: the software group will
have a machine to run their programs on, and the hardware group will have a
large body of real software to use for performance analysis. The existence of two
large groups that can interact in this manner is one of the greatest strengths of
ICOT, I feel. _

A word of caution is in order here: the feedback can be negative, as well as
positive. By this I mean the feedback from one project to another could lead
to a development path that settles info a static set of concepts. At the risk
of mixing metaphors, the process might be like a hill-climbing algorithm that
is drawn toward a local maximum instead of the best long-term solution. Is
it possible that software developers will create programs that run well on the
hardware they have to work with, and then the hardware developers will react
by building machines that run those programs better? Instead of a “positive
feedback system” that continues to move toward better and more advanced
concepts, there might be a “negative feedback system” where input from one
group acts as a damper on the other.

GHC

I had a chance to meet with Kazunori Ueda, to talk about his Guarded Horn
Clause (GHC) language. By the time we met, I had had time to experiment
with the GHC compiler on the DEC-20, and I had written a couple of small
programs.

The current implementation strategy is to use what is called “flat” GHC. In
a procedure such as

p(X,Y) = X > 10 | q(X,Y).
plX,Y) ;=X <=10 | Y = 10.

the guards of the two clauses (the goals before the commit operator |) are
evaluated in parallel. In a flat language, the guards can contain only calls to
system predicates, not to user-defined goals. This restriction allows the system
to avoid maintaining OR-parallel environments for guard evaluation.

The people at ICOT now regard FGHC as an intermediate level language,
not the high level language that users will eventually write applications in. A
good example of the use of FGHC as a base language is seen in Ueda-san’s
technique for compiling nondeterministic search into FGHC programs. One of
the drawbacks of writing programs in FGHC is that there is no “don’t know”
nondeterminism in the evaluation of the clauses; clauses that generate multiple
results in Prolog must commit to one value in FGHC. However, it may be
possible to compile the clauses into an equivalent GHC program that gathers
all results, similar to Prolog’s bagoef, where each result is computed in parallel.

There are two drawbacks to this approach. The first (described in Ueda’s
paper) is that not all nondeterministic search programs can be transformed with
the techniques developed so far. In order to aviod the problems of shared vari-
ables in OR-parallel environments, the programs must generate ground struc-
tures at each step. This class of problems is larger than it appears at first,
however. By rearranging the order of the body, the “output unification” can
be placed where it will do the most good (the binding of ¥ to 10 in the second
‘clause in the example above is output unification; in GHC, the head cannot
be p(X,10) since unification of the head is not allowed to return bindings to

the caller of the clause). Instead of generating partial structures at each step,
which is a common Prolog technigue, the compiled clauses can generate com-
plete structures from the bottom up.

The second drawback is that the transformed clauses are now AND-sequential.
This is at first reminiscent of the OR-parallel search component of Parlog. How-
ever, it should be more efficient, since the need for multiple binding environ-
ments has been compiled away. There is another problematic aspect of pure
OR-parallel search: in some circumstances, the same problem will be solved
many times. For example, if the goal is p(X), g(¥), where both variables are
unbound, and there are n solutions to p(X), an OR-parallel system may end
up solving q{¥) n different times, each time performing the exact same com-
putation. These are the situations where the AND/OR Process Model and
Restricted AND-Parallel models would exploit AND parallelism, so that each
goal is solved once and the results combined.

I think the idea of compiling higher level languages into GHC is very promis-
ing, and worth pursuing further. Two of the attributes of logic programming
that distinguish it from functional programming are nondeterminism and the
logical variable. The committed choice AND-parallel systems and the AND/OR.
Process Model each do a good job exploiting one of these features, while ignor-
ing or doing a poor job of handling the other. Compiling a higher level language
into GHC may be a good way to unify the two abstract meodels so that both
features of logic are handled well.

.93_

KL1-b

Yasunori Kimura gave a presertation on KL1-b, the base language of the KL1
programming language. KL1-b is an abstract machine, in the style of the War-
ren Abstract Machine, that can be used for the family of flat parallel committed
choice languages. IKXL1-b will be implemented in microcode on the PSI-II pro-
cessors of the Multi-PSI, and will also be the base language of the nodes of the
intermediate stage PIM machines.

The principle execution unit at this level is the goal. The guards of the
clauses (which include the heads) in a procedure are compiled into instructions
that are executed when the goal is selected for execution. A scheduler on each
processor maintains a queue of goals, and decides which goal will be selected at
any time.

When a goal is made the current goal, the processor branches to the code for
the guards of the goal, and exscutes these instructions sequentially. If a guard
tries to bind a global variable, or fails in unifying the head of a clause, or the
execution of a guard goal fails, the processor branches to the next alternative in
the goal. If a guard is successfully executed, however, the output unifications in
the body (after the commit operator) can be executed, and goals for the other
procedures can be scheduled. If no guard in the procedure succeeds, the goal is
suspended.

An important feature of this machine is that it avoids busy-waiting. When
a goal is suspended because it must wait for another goal to bind a shared
variable, the variable is bound to a *hook” to the blocked process. The process
will not be placed in the ready queue until another process binds the variable.

Since I am also currently working on an abstract machine (in my case, it
will be for the AND/OR. Process Model), I found this work very interesting. I
was able to offer some detailed suggestions to limura-san, which I hope will be
constructive:

e The code size of compiled programs might be reduced if the clause indexing
is fully implemented. If it is, the Label field of the wait and built-in
predicate instructions can probably be eliminated.

¢ An example in the paper shows a goal that is “hooked” on two variables.
Currently, such a goal is rescheduled when just one of the variables is
bound, only to immediately suspend again when it is restarted. Some
data presented in a paper by Kishimoto et al at Fujitsu shows a large
number of goals suspend immediately like this. Perhaps the overhead
of scheduling and then suspending these goals can be eliminated by not
scheduling a goal until all of the variables it is waiting on are bound.

¢ When a goal is resumed, processing starts over again with the code for the
first clause. I think this could be made more efficient, as well, so that only
clauses that could possibly succeed are retried when the goal is resumed.
As things are described now, even clause heads that fail to unify are tried
.again when the goal is rescheduled, since there is no way to separate the
claunses within a procedure.

SIMPOS and PIMOS

SIMPOS and PIMOS are, respectively, the operating systems for the sequential
inference machine and parallel inference machine. I was given a presentation
on SIMPOS by Hiroyoshi Ishibashi. He also gave me a demonstration of the
current version of the system on the PSI.

SIMPOS is written in ESP, a sequential logic programming language that
includes object oriented programming constructs. Version 2.5, released last
summer, has over 1400 class definitions, 18,000 procedures, and 230,000 lines of
code. Version 3.0, which will be larger yet, will be released later this summer.
The major goals for SIMPOS were to provide a rich programming environment
of logic programmers. A great deal of work has gone into the user interface
(window system and other graphics), editors, debuggers, and so on. Little or
no work seems to have been done on memory management (paging) or task
scheduling, the “performance” issues that are the concerns of more traditional
operating systems.

I had hoped to get a chance to experiment with pemacs, the editor for SIM-
POS, but I didn’t have enough time. [was intereseted in seeing how edit macros
were written in ESP, instead of the LISP used in various emacs implementations.
I also wanted to get a chance to evaluate the user interface. One comment I
have, based only on the short demonstration I saw, is that it would be a good
idea to give more feedback to the user about what is happening in the system.
Whenever the mouse maoves, the cursor position should be updated; whenever
a time consuming operation is taking place, a message telling the user what is
happening should be displayed on the screen.

The PIMOS presentation was by Hiroyuki Sato. PIMOS will be one of the
major parallel software projects that will be developed with Multi-PSL. It will
be written in KL1.? Two goals for PIMOS that I agree with are, one, to give
the user a single system image, hiding the fact that the underlying machine is
a multiprocessor; and, two, to try to write the system in a “more logical style”
than was used for SIMPOS, which relied heavily on the metalogical extensions
of ESP.

KAPPA

The final presentation, by Kazumasa Yokota, was on KAPPA, a knowledge rep-
resentation and database query system based on an extension to the relational
model. This project is also aimed at solving large applications efficiently. In this
case, there are two existing applications that KAPPA is being designed to sup-
port efficiently. Although there is clearly a danger in designing what is intended
to be a new, general purpose, language based on the requirements presented by
just two applications, Yokota-san and his group feel that the two applications
are large enough and sufficiently general that this approach is warranted. In
addition, one of the applications (a massive dictionary, for both Japanese and
English, with over a million words and nearly a million semantic relationships)
will be the heart of many other knowledge-based applications, so it is worthwhile
in itself to optimige this part of the system.

The formal model underlying KAPPA is the nested relational model, in

which values in domains may be structures as well as atomic items. An example
used by Yokota-san is:

parent”{jack,betty} * child"{john,mary,cathy}

This is a tuple from a relation with two domains, named parent and child.
The values in these domains are sets; the intended meaning is that jack and
betty are the parents of the people named in the c¢hild domain. Representing
this information in Prolog or a flat relational database would require six tuples

2KL1 has four components: KL1-u is the “user” language, which will be used for appli-
cations like PIMOS. KL1-u will be compiled into I{L1-b, the instruction set of the abstract
machine.
instead of one, and rules based on this information (such as sibling) would be
correspondingly more complex.

The KAPPA. group has developed a computational model based on nested
relations, as a means for expressing queries. Unfortunately, I am not very
familiar with this area of research, so I cannot offer any constructive criticisms
of the project. Yokota-san and the group are familiar with other projects, in
the U.S. and Europe, that have computational formalisms for extensions to the
relational model. I found the examples of the queries to be quite clear and easy
to understand, and my guess is that the extra information provided by grouping
items in a set could lead to more efficient processing. For example, the rule for
sibling in a Prolog database shows, at the source level, two accesses to the
parent relation, but in the nested relational model all the information is present
in just one access.

My Presentations

I gave two talks while I was at ICOT. The first was to an audience of ICOT
members, many of whom work in other labs. This talk was mostly on my re-
search on binding environments for the AND/OR Process Model (the paper
this talk was based on will be presented at the 1987 Symposium on Logic Pro-
gramming). Most of the questions from the audience were on the subject of OR
parallelism. The emphasis at ICOT has been, so far, on committed choice AND
parallelism, so I gave some of my views on why OR parallelism was important.

The second talk was presented to the PIM working group. This group con-
sists of researchers in the Fourth Lab who are working on the PIM and associated
projects, plus researchers from industry and universities. This talk was more
general. I talked a little bit about Oregon and the University, gave a brief his-
tory of my research, and finally talked about some of the projects I want to
work on in the future.

One of the things I intend to work on is a system that combines logic pro-
gramming and object oriented programming. Before I left Oregon, I had written
a Prolog meta-interpreter that implemented my ideas for classes and objects,
and in my second week at ICOT I wrote a version for DEC-10 Prolog. For lack
of a better name, the sysiem is called OOPS (for object oriented prolog system).

The system is based on the notion of an object clause, which is a non-Horn
clause. Future work will have to define a semantics for programs written with

these clauses, and a formal definition of the inference rule used when calling
an object clause (the rule is similar to, but not identical to, Monteiro’s rule
for distributed clauses). I wrote a brief paper describing object clauses and
distributed it to various people around ICOT who are interested in object-
oriented programming.

I also wrote a program that illustrates the sl;yle of programming that is
possible. This program is (yet another) implementation of the eight queens
problem, where each queen is an object. When a queen is placed in a square, it
sends messages to other queens telling them to stay out of certain squares. This
style of solution will lead to fewer backtracking choices than a Prolog solution.

Visit to Fujitsu Labs

On June 10 I went to Fujitsu Labs in I{awasaki with Yasunori Kimura. I gave
a short presentation on my work, listened to a presentation by Mitsuhiro Kishi-
moto on a paper he will present at the Symposium on Logic Programming, and
took a tour of the labs. The work by Kishimoto-san and his colleagues is an
evaluation of large application programs written in FGHC, and executed by the
KL1-b virtual machine. The data they collected was very interesting, and they
made some insightful comments on the nature of the programming language
and strategies for implementing it.

General Comments on ICOT

The working environment at ICOT seemed to me to be very conducive to re-
search. Each person seems to have a large chunk of a project to take respon-
sibility for, and at the same time there are many people working on projects
that are cln&e]}' enough related that meaningful discussions can take place. As I
mentioned above, I think the large number of peaple working on similar projects
is 2 major strength of the lab.

ICOT is a unique combination of different styles of organizations. It has
elements of an advanced product development department of a corporation, an
applied research lab, and a university research department. Somehow, these
components work together quite well. One can find projects with varying de-
grees of immediate “real world” application. Examples at the two extremes
taken only from the projects I have described here are the PSI-I1 project and
the development of GHC. PSI-II will be a commercial product of the Mitsubishi
corporation, and the goals for the development of PSI-II were basically to im-
prove (and lower the cost of) the PSI-I. The development of GHC as a base
language for future languages, and techniques for compiling future higher level
languages into GHC, is a very long range project, and the kind of thing one
could find in a university research lab.

It was interesting to observe the interactions between people. Even though
I don’t understand Japanese, so I couldn’t tell exactly what was being said,
the small groups that would gather to discuss things were just what I would
expect to find at any lab in the U.5. At any time, there will be some people
hunched in front of terminals, a group having a serious (and maybe animated)

technical discussion, and another group having a far less serious talk. The
physical environment is also conducive to work. I did not find the open room
to be distracting at all when I was trying to get work done.

.1 knew before I got here that even though my research and the projects at
ICOT had the common theme of parallel execution of logic programs, we had
very different ideas about how this should be done. In spite of the differences,
it was very good for me to come here. In explaining my views, listening to
the presentations, and asking questions, I gained a new perspective on my own
projects. If the researchers at ICOT benefitied in a similar fashion, even a
fraction as much as I did, I will be pleased.

Thank You

I would like to thank Dr. Kazuhiro Fuchi, the director of research at ICOT,
and Dr. Shun-ichi Uchida, head of the Fourth Lab, for inviting me to visit
ICOT. This was a tremendous eppertunity for me, not only to learn about the
current status of research at ICOT, but also to have a forum to discuss my own
projects. The members of the Fourth Lab went out of their way to make me
feel at home. In particular, I{azuaki Rokusawa, who was assigned to be my
host, went to great lengths to make sure I had everything I needed, from the
necessary computer accounts to plans for lunch. For the sake of future visitors
to ICOT, I hope Rokusawa-san misses a few more research meetings!

During my three weeks at ICOT, nearly everybody, at one time or another,
helped me in some way. In addition to those who took time out from their
schedules to make presentations on their ressarch, I would especially like to
thank the following people:

Dr. Kazuhide Iwata, of the research planning department, reserved our hotel
and made other financial arrangements. Tokyo, in June of 1987, was a pretty
intimidating place for people whose salaries were paid in American dollars. The
arrangements made by Iwata-san set our minds at ease, -and we were able to
enjoy our three weeks in Japan without worry.

Noboyuki Ichiyoshi, when he returned from Australia half-way through my
visit, was also assigned to be my host. Together, he and Rokusawa-san made
sure I kept all my appointments, and in general made sure I had everything I
needed during my visit. Thank you also for the introduction to shochu.

Yasunori Kimura, whose parent company is Fujitsu, arranged my visit to
Fujitsu Labs in Kawasaki. In the past few years, many people from Fujitsu have
visited me in the United States, and 1 was glad to be able to renew acquaintances
with them and get updates on their projects.

Akira Matsumoto, whose desk was next to mine, and Shigeyuki Takagi,
researcher and local Unix wizard, were most helpful in setting up my working
environment on the DEC-20 and Balance 21000 machines, and showing me the
ins and outs of running programs at ICOT.

References

Goto, A. and Uchida, 5. Toward a High Performance Parallel Inference
Machine - The Intermediate Stage Plan of PIM. ICOT TR-201, Sept.
1986.

Kimura, Y. and Chikayama, T. An abstract I{L1 machine and its instruc-
tion set. To appear in Proceedings of SLP 87, Palo Alto, Sept. 1987.

Kishimoto, M., Hosoi, A., Kumon, K., and Hattori, A. An evaluation of
the FGHC via practical application programs. To appear in Proceedings
of SLP '87, Palo Alto, Sept. 1987.

Nakashima, H. and Nakajima, K. Hardware architecture of the Sequential
Inference Machine: PSI-II. To appear in Proceedings of SLP ‘87, Palo
Alto, Sept. 1987.

Sato, M., Shimizu, H., Matsumoto, A., Rokusawa, K., and Gote, A. KL1
execution model for PIM cluster with shared memory. Proceedings of the
Fourth International Conference on Logic Programming, Melbourne, May
1987.

Taki, K. The parallel software research and development tool: Multi-PSI
System. France-Japan Artificial Intelligence and Computer Science Sym-
posium 86,

Uchida, S. Toward the Parallel Inference Machine. ICOT TR-196, Aug.
1986.

Ueda, K. Guarded Horn Clauses: A Parallel Logic Programming Language
with the Concept of a Guard. ICOT TR-208, Oct. 1986.

Ueda, K. Making exhaustive search programs deterministic: Part II. Pro-
ceedings of the Fourth International Conference on Logic Programming,
Melbourne, May 1987.

Research Resume

John 5. Conery

Departmant of Computer and Information Science
University of Oregom

Eugene, Oregon, USA

Ph.D. in Computer Sciance,

from University of California at Irvime, 19283.
M.5. in Computer Science,

from University of California at Irvime, 1979,
B.5. in Psychology,

from University of California at San Diego, L5776,

Current FResearch Interasis:

Logie programuing, perallel computer architecture,
implementing paralliel logic programming languages.

Selected Publications:

J. 8. Copery and D. F. Kibler., "Parallel Interpretation of Logic Programs",
in Proceedings of the Conference on Functleopal Programmipg Languages
and Computer Architecture, Wenthworth-by-the-Sea, NMH, 1581.
{iptroduced AND and OR parallelism, and an abstract model for
executing OH—parallel programs)

J. 5. Conery. "The AHDJDR Process Model for Parallel Execution of
Logic Programs.®” FPh.D. Thesis, UC Irvime, 1983,
{extended the model of the Wentworth paper, and descxribed a
method for AMD parallelism in nondetermimistic systems)

J. 5. Copery anod D. F. Kibler. "AND Parallelism and Nondeterminism®,
Hew Generation Computing, 1985.

J. 5. Comery. “Parallel Execution of Logic Programs.” EKluwer Academic
Publishers, Bosten, MA. 1987. (A book containing most of
the work from my FPh.D. thesis; plis an updated surw_y of
recent work and implementation technigques.)

J. §. Comery. "Binding Enviromments for Parallel Logle Programs
on Non—Shared Memory Multiprocessors™, to appear in the
Froceedings of thé 1987 IEEE Symposium on Logle Programming,
San Franciseo, Ch, 1987.

Professicnal Activities:

Chairman of the Technical Committee, 1985 IEEE Symposium on Logic
Programning, Boston, MA.

Technieal Committes, 1986 IEEE Symposium on Logic Programming,
Salt Lake City, UT

