ICOT VISIT REPORT

Report of a2 visit to ICOT from January 21 to February 8, 1985
by

Fernando Pereiraz
Artificial Intelligence Center
SRI International

[## DRAFT ##)

8 February 1985

1. Background

I was first invited to visit ICOT back in 1983, but for various
reasons it was not possible to fulfill the invitation until
January of 1985. Having talked to previous visitors, I has very
much lookdng forward to the opportunity to learn about ICOT and
work with its researchers, some of whom I know personally but
many who I only knew from their papers.

In this -report, I will concentrate on my research activities
and on my impressions of ICOT and some of its projects. This
being my first wvisit to Japan, I have also many other kinds of
impressions, on the whole very positive. I will leave those for
another report or a later extension of this one.

2. Discussions and Demonstrations at ICOT

2.1 Natural Language

2.1.1 BUP

During the visit, I had extensive discussions with Mr,
H. Hirakawa and other ICOT members on the BUP grammar compiler,
as well as a demonstration of the BUP grammar debugging system on
the PSI machine and demonstrations of BUP applications at the
Tokyo Institute of Technology.

If once I was rather skeptical of the potential performance of

bottom=-up parsers for DCCs, the BUP effort has helped to convince
ne otherwise. Tne performance of BUP-compiled DCGs is now

- 177 -

comparzble to that of similar grammars parsed by the more usual
Prolog top-down method. Vhen 1linguistie considerations suggest
left recursive rules, BUP allows the grammar to be used directly.
This is not possible with the direct top-down method provided by
Prolog.

The BUP grammar debugger on the PSI, while still under
development, makes good use of the graphics facilities of the
host machine and I think it will make a very useful tool for
writers of large natural-language gragnars.

I was concerned with two main issues in evaluating the
performance of bottom-up methods for DCG parsing: the usefulness
of well-formed substring tables and the use of top-down
expectations.

On well-formed substring tables, Professor H. Tanaka of the
Tokyo Institute of Technology reported that for one large grammar
(around 400 rules), the well-formed substring table cuts parsing
times to 1/4 of the times without the table. If this is
substantive evidence, it still remains to be seen to what extent
it comes from the use of DCGs with relatively simple nonterminals
and from not using a subsumption check when adding phrases to the
table. Although in general necessary for termination, the
subsumption check may be avoided for grammars where it is known
that complex phrases are always described by ground nonterminals,

The investigation of top-down expectations in bottom-up parsing
was my main research topie during this visit., The BUP compiler
computes top-down expectations for nonterminal symbols, but it
ignores nonterminal arguments in computing and using the
expectations. Experience with bottom-up parsers at SRI suggests
that this limited kind of expectation leads to a proliferation of
useless partial analyses in grammars with left extraposition. In
general, the problem is that various syntactic categories, such
as noun phrase, may be rewritten to the empty string in the
context of a relative or interrogative clause. The bottom-up
parser, however, does not know enough of the higher left context
to determine whether a particular noun phrase is or not inside a
relative or interrogative clause, or indeed whether such a
rewriting of a noun phrase to the empty string has already
oceurred in the clause. Therefore, the parser will postulate the
existence of empty phrases at many points, even if the left
context does not warrant such phrases. A special purposs solution
for this problem is implemented in one of the BUP versions at the
Tokyo Institute of Technology.

To improve the top-down expectations available to BUP, I
developed 2 grammar compilation algorithm based on the Earley
deduction proof procedure which computes top-down expectation
tables that take into account some argument information. The
several issues raised by this method are the subject of a
separate report.

Given the close prelation between oy own research interests in
natural language parsing and the BUP work, these discussions were
most useful in acnieving the results mentioned above.

2.1.2 CIL

I had already heard indirectly about an effort at ICOT to apply
the theory of situation semanties to computational linguisties.
Situation semanties, developed by Barwise and Perry at Stanford,
iz attracting much interest as a theory of nmatural language
pmeaning with the potential to support effective computational
accounts of propositional attitudes and discourse structure
beyond what has been possible with earlier theories such as
MHontague grammar.

Although there have been some recent attempts (by Cooper,
Halverson and others) to build computational tools for situation
semanties, it turns out that none of these efforts is nearly as
extensive or complete =as the CIL language developed by HMr.
K. Mukai at ICOT.

CIL allows the wuser to express problems directly in terms of
the situation theory concepts of type, role, indeterminate and
constraint. The first-order term unification of Horn clauses is
in CIL extended to indeterminates with slots and constraints, as
needed by situation theory. Furthermore, CIL uses the *freeze'!
control primitive to support delayed constraint sastisfaction.
This feature seems essential in building complex situation types
from constrained indeterminates.

As the first programming language for situstion semanties, CIL
opens the possibility of testing the theory with substantial
computational examples and zpplving it to problems in
computational linguisties. CIL promises thus to be of great
interest for computational linguists and semanticists.

I had extensive discussions with Mr, Mulkzai on the use and

implementation of CIL, leading to some space-saving modifications
in the implementation.

— 178 —

2.1.3 DUALS

I was given an extensive demonstration of the version of the
DUALS discourse understanding system shown at the ICOT open house
last MNovember. Although based on an earlier and less
comprehensive version of CIL, this version of the systenm
demonstrates the flewxibility of the situation semanties framework
for the chosen discourse understanding problems. The explicit
representation of utterance, resource and described situations,
and the ability to have situation types as components of other
types mekes it easier to deal with phenomena such as indirect
speech.

There seems to be much room for expansion of DUALS without
having to replace its theoretical framework. In fact some special
purpose mechanisms in the version demonstrated could with benefit
be replaced by the general purpose machinery of the current
version of CIL. Overall, the techniques used in DUALS seem
promising for larger-scale, nore comprehensive systens.

2.2 Sequential Inference llachine

2.2,1 PS35I hardware and performance

The. discussion on the PSI hardware and firmware with IMr.
M. Yokota and other P3I designers concentrated on some details of
the machine, =such as the garbage collector, and on performance
comparisons between the PSI and Prolog-20. This discussion turned
out to be very illuminating.

The main performance measurement used for Prolog-20, the speed
of ““naive reverse'!, shows a PSI performance of 65% of Prolog-20
on a DZC-20c0. Howover, many other measurements perforped at
ICOT suggest the reverse is true, with the P5I speed ranging
between the szme and twice that of Prolcog-20 for most tests. In a
few of the tests, the BS5I appears to be over T times faster than
Prolog-20, and in one case 17 times. Haturally, the discussion
of these performance discrepancies became the main topie of the
meeting.

It tuwns out that most of the discrepancies c¢an be
satisfactorily explained. Prolog-20 relies on a sophistieated
coapiler that recognizes many special cases to zachieve its
average performance. When some example program does not fit into
the special categories expected by the compiler, general-purpose
code with much lower performance in used. For instance, due to
the linited number of registers on the DEC-20, only a few of the
arguments are passed in registers; procedure calls with many

arguments pass some of the arguments in main memory, slowing down
the call considerably. As another instance, special compilation
of structures in the heads of clauses is only done to 2 certain
depth, deeper structures being treated by a general purpose
unifier.

In contrast, the PSI relies on mierocoded general operations
rather than on compilation of special cases. As a result, all
those operations that are done by general purpose mechanisms
(written in macrocode) in Prolog-20 are much faster on the PSI.
In particular, the execution of general purpose code in Prolog-20
requires at lezst one main memory reference (for the
macroinstruction) in each step; the execution of mnicrocode of
course has no such overhead.

It remains to explain the extreme cases, those where Prolog-20
outperforms the PSI and those where the PSI far outperforms
Frolog-20.

In the first case, an important factor is probably the relative
cost of handling structures in Prolog-20 and the PSI, Prolog-20
takes advantage of the peculiar memory organization of the DEC-20
to store two pointers per memory cell. As a result, it is
possible to represent structure-shared constructed terms in a
single memory location. In contrast, a PSI memory Jlocation can
only hold one pointer. Therefore, constructed terms, which are
represented by pairs of pointers, cannoti be stored in
one-location memory cells. Instead, the pairs are separately
scored on the globzl stack., This space overhead has a
corresponding time overhead, which should be particularly
noticesble when recursing down large input terms. Incidentally,
this observation suggests that the claimed =advantages of
structure-sharing over structure-copying might well be absent for
architectures that can only hold one pointer per variable cell.

To help test this hypothesis, I supplied =a heavy
structure-panipulation program to be run on the PSI (it already
runs on Prolog-20).

Of the aspects that might explain the other extreme, where the
P3I is ouch faster than Prolog-20, the relative slowness of
arithmetic calculations and of unifying deeply nested terms were
discussed.

I am most impressed with the PSI hardware and firmware effort,
both in terms of how quickly the machine was built and how nuch
was achieved, particularly with respect to performance. With the
final version of SIMPOS, the PSI will be a first-rate progran

— 181 -

development enviromment, fully capable of supporting the proposed
application development.

2.2.2 SIMPOS

T will start by giving my impressions of 2a hands-on session
with the PSI and the related points disecussed at my meeting with
some of the SIMPOS designers let by Mr. T. Kurokawa, I will
mention later the other matters touched on at the meeting.

I obtained my first impression of the features and current
state of SIMPOS when I had the opportunity to use a BPSI machine
soon af'ter my arrival. The machine was running under SIMPOS 0.7T0.
I was told later that I was the first foreigner to have hands-on
experience with the PSI, which was very flattering.

From my short experiment I got the impression that most of = the
basic skeleton of SIMPOS is in place if somewhat fragile. Some
important pieces were =still missing, such as the error and
exception handler, the librarian interface and native ESP
compiler; the editor was unfinished. (Some of the mnmissing
components are available in SIMPOS version 0.80, which has since
then been released,)

0f the svstem componenis thet I touched, the debugser felt the
most complete and functional. Instead of the Y4-port Byrd
debugging model wused in many current Prolog systems, the SIHPOS
debugger uses further ports to show the unifiecation of a goal
against individuzl clause heads. A mouse-based interface makes it
possible to select which ports are shown. This is very useful,
but I think an actual picture of boxes and control flow paths
with mouse sernsitive ports would be even more effective. The
debugger slso has a useful feature to keep track of the result
bindings from the top level gozl, and certainly many other good
features that I did not have the opportunity to try.

A mechanism for errors and exceptions seemed to be missing, a
point that was confirmed in my later discussion with the SIMPOS
group. I made the mistake of running an infinite loop program
without any trzecing and the system eventually stopped with 2
console halt for lack of memory.

Character output and echoing on the editor and elsewhere seemed
somewhat slow, certainly slower than on other bit-mapped display
workstations I have used, such as the Symbolies 3600 and the
SUN-2., The editor!s reprinting of =211 the blanks to the right of
a text line when the editor window was redisplayed was

— 182 —

particularly noticeable. Of course, this is the natural thing to
do in the *“infinite'! plane model of text editing used by this
editor but a slightly more sophisticated display algorithm could
maintain a table of the rightmost used position on each displaved
line., Alternatively, character display could be made so fast
that we would not notice the repainting of individual blanks.

I was told at the time that some of the slowness of character
output as due to the low level character painting being done in
software rather than in microcode. Glven that the SUN-2 also does
character repainting in software and seems much faster than the
PSI, I suspect that the main reason is the one discussed at the
SIMPOS meeting, the way input and output commands are executed in
SIMPOS.

According to the discussion at the meeting, input/output
translation in SIMPOS is costly because it is done completely
outside the device drivers, in a separate module called the
translator. M though this is good modular discipline, it leads to
constant context-switching between a user process, the translator
and the device drivers. It is known from other operating system
designs that context siitches &are the bane of terminal
input/output, and most opesrating systems g0 to some lengths to
make sure that as nmuech of the charzcter translation as possible
is done by deviee drivers. Unfortunately, translation in the
device drivers seems to be too inflexible: in Unix, for example,
the terminal device driver provides a few packaged translation
modes, but anything different nust be done in the user process by
setting the terminal stream in “‘raw'! mode, leading to exactly
the szme problem of context switches,

I suggested a different approach that avoids both context
switches and the inflexibility of Unix-style terminazl drivers.
The suggestion is not actually mine, but my reconstruction of
proposals that were mnade for Unix a few years ago. The idea is
simple. A terminal device driver must alresdy contain a table of
streams attached to the terminal. In the new scheme, one of the
entries, settable by the process owning the stream, will be a
translation method. The translation method is actually a piece of
code that runs in the context of the device driver, and probably
will be compiled from =2 specialized translator language. The
language I faveor would be based on some form of cascaded
finite-stzte transducers. The c¢lass system of ESP seems well
suited {o encapsulate the various kinds of transducsrs.

Other operating system issues discussed a2t the meeting included

error and exception handling, asynchronous input/output =and the
window system.

— 183 -

The error and exception handling system being designed for
SIMPOS relies on the ESP class system for the classification of
errors and has a fairly standard interface. My own impression,
from using the s=imilar error system in the Symbolies Lisp
machine, is that error classification wusing the the class
hierarchy is possibly too complicated. A simpler classification
based on structured terms might be somewhat less flexible (lack
of multiple inheritance) but simpler to use and explain.

We discussed at some length the facilities in SIMPOS for
handling multiple input/output streams in a single process.
SIMPOS uses merge-like commands to wait for input on a2 =set of
streams; this method has proven to be quite effective in other
operating systems such as Berkeley Unix 4.2. On the other hand,
SIMPOS lacks facilities to make a process run some procedure on
specified input/output events, that is, =all input/output event
handling must be done by poliing the relevant streams. Such
facilities, available on other operstinz systeas, are very
convenient in handiing asynchronous events, for example window
redraw requests from the screen manager to the window owners. On
the other hand, asynchronous event handling is difficult to
program correctly and might not fit well into 2 logic programming
environment, requiring asz it does extensive use of global data
structures for communication and synchronization. On balance, I
think that the a2dded complications of heving to poll streams for
events might be less of a problem than the difficulties of making
asynehronous soffware interrupts behave correctly.

We zlso discussed the window system of SINHPOS, in particular
improvezents over other existing window systems, such as the
ability to output to reselected windows. I noted that this could
be extended by adding the ability to input to any partially
exposed window, rather than only to fully exposed ones (the 3UH
window system allows this). I also mentioned the great
improvement in the ease of programming window system applications
which is provided by window system software interfaces based on
declarative specifications of constraints between windows. Such a
faecility is not currently available for the PSI, but I think that
ESP iz a good language to build the reguired constraint
satisfaction system, I suggested the presentation systen
developed by James Gosling and David Rosenthal at the Information
Technology Center of Carnegie-lMellon University as an useful
basis for comparison.

My overzll view of SIMPOS is that it is an impressive software
effort which is getting near to bearing fruit. Compared with
several other operating-system efforts of similar scale
elsewhere, the SIMPOS development seens remarkably quick. To what

— 184 —

extent this should be attributed to the excellence of the
development team, and to what extent to the wvirtues of 1logie
programming in ESP, I cannot tell.

2.3 Knowledge Representation

2.3.1 KAISER

Az the Jleader of = recently started project at SRI to build a
natural-language knowledge acquisition system (CAHDIDE), I was
keen to find out about the knowledge acquisition work at ICOT. I
was given an overview of KAISER by T. Miyachi, S. Kunifuji and
H. Kitakami, and Mr. Miyachi also demonstrated the KAISER version
used in lHovember's ICOT open house,

The system demonstrated makes extensive use of metalknowledge in
the two main aspects of knowledge acquisition it implements,
knowledge accommodation and knowledge assimilation, In
acconncdation, KAISER uses Shapiro's Model Inflerence System to
create new rules to account for some new fact proposed by the
user, In assimilation, the system tries to remove contradietions
between old 2nd new statements by tentatively removing assertions
labeled by the user as uncertain and checking whether the
resulting axiom set is consistent with the stated consistency
rules (themselves part of the metalknowledge base).

The generate-and-test method used by KAISER in assimilating new
information works for =mzll examples, but it is clearly too slow
for realistic cases. On the basis of my preliminary research for
the CAHNDIDE system, I suggested a conflict-detection mechanism
such as Shapiro's algorithmic debugger or one of its more recent
extensions by David Plaisted or Luis Pereira as a more practical
assimilation mechanism,

I think that nonmonotoniec inference steps is essential in
achieving a knowledge-acquisition that does not have to keep
asking the user for trivial default information, The use of
nonmonotonie inference leads naturally to 2 classifieation of
derived statements as certain (derived monotonieally) and
uncertain (derived nonmonotonically) for the purposes of belief
revision in the essimilation process.

I hope to benefit from the experience with KAISER in the

development of the CANDIDE system, and I look forward to further
exchanges on this subject.

185

2.4 Parallelism and Concurrency

2.4.,1 KL.1, Concurrent Prolog implementation and Guarded Horn
Clauses

I had an extensive formal discussion on the KL1 design with lir.
A. Takeuchi, Mr. K. Ueda and other ICOT members, and several
informal discussions with Mr, PFurulkawa and Mr. Takeuehi.

The formal di=cussion covered at length difficulties in the
implementation of @multiple ©binding environments for the
OR-parallel aspects of Conecurrent Prolog. I argued that binding
schemes proposed by David S. Warren and David H, D. Warren had
the potential to zlleviate the problem, at least if OR fairness
is not reguired. A solution that ensures OR fairness, though,
requires many environment switches (shallow binding) or search
for .bindings (deep binding), either solution being therefore
unsatisfactory. Furthermore, even when OR fairness is not
required (only one OR process per processor), there is still the
mutual exelusion problem in returning guard bindings to the
parent envirorment on commit. This was thought to be feasible in
some architectures, but complicated and likely to introduce lock
bottlenecks.

Mr. Ueda presented the new language of Guarded Horn (Clauses,
which avoids the binding problem entirely by suspending OR
processes whenever they attempt in their guards to bind variables
from ancestor enviromments. The Guarded Horn Clause language has
the further advantage of being conceptually =simpler than
Concurrent Prolog. Whereas synchronization in Concurrent Prolog
is defined by read-only annotations that may be dynamically
inherited, the synchronization dependencies in Guarded Horn
Clauses are more static and thus more liltely to lead to
predictable behavior.

I feel somewhat uneasy about the use of Concurrent Prolog (and
te a2 somewhat lesser extent the use of guarded Horn Clauses) in
programming econecurrent computations. The main reason for this
apprehension is that 1in those languages synchronization is
defined only by the control annotations, not by the logiec part of
the programs. Synchronization by control annotaticns may be
acceptable in cases where concurrency is used only to =speed up
the execution of correct logic statements. However, in many
other cases, such as in operating systems, the main product of
the computation is not some final result but rather the
synchronization behavior itself, If synchronization is only
reflected in the control annotations, then the wmain design task

for the program will not benefit frem the advantages of logic
programming, and we will be no better off (and possibly worse
off) than with imperative languages such as CSP explicitly
designed for concurrency.

Thus, I see the main use of languages such as Guarded Horn
Clauses to ©be the expression of parallel algorithms with many
interdependent subproblems. For problems with independent or
almost independent subproblems, I see OR-parzllel pure Prolog as
a simpler and more generally u=eful language. #And for problems
where concurrent behavior is of the essence (operating systenms,
robot controllers, and the like), we need logic languages where
synchronization is part of the logic.

3. External Discussions .

. Besides a visit to the Tokyo Institute of Technology discussed
elsewhere in this report, I was 2also invited by Professor
H. Malajima to give a talk at the Research Institute for the
Mathematical Sciences of Kyoto University. My talk was followed
by a presentation of Temporal Prolog by Mr. T. Sakuragawa.

The work on Temporal Prolog turned out be be particularly
r&levantltc my current interest in the synthesis of temporal
robot control programs from specifications. Furthermore, Temporal
Prolog addresses the problem I noted above of the expression of
concurrent benavior in a logic programming language. It is
clearly possible to compile at least some Temporal Prolog
programs into efficient finite-state transducers with registers,
but the implementability of the language in the generzl case is
still an open problem. Also, as has been noted in some of the
concurrency literature, reliance on "“next'' operator depends on
a very strong notion of a2tomiec action and requires the laborious
coding of simple notions such as that of waiting until a set of
events has occurred. Even with those reservations, I found this
work very promising.

4, Research Activities

Ag explained in the previocus section, I had many discussions on
my research dinterests at ICOT. I became particularly interested
in going back to some earlier ideas of mine on appliecations and
implementation of Earley deduction. During the stay, I
implemented yet another version of Earley deduction following a
program layering organization which I hope will malke the code
easier to understand and modify. I then used this implementation

— 187 —

for a task I had long had in mind, the computation of properties
of definite-clause grammars useful in parsing. I concentrated 1in
particular on the “link'' property which is used to cut down
sezrch in the BUP parser in use at ICOT. Preliminary experiments
by Hr. Hirakawa and Wr. Yasukawa at ICOT suggest that the
improved ‘‘link'' table generated by the new method can improve
parsing times considerably.

To describe this research I am writing an article entitled
“‘Using Earley Deduction to Compute Properties of Logic
Grammars'' which I hope will appear as an ICOT technical report.

5. Presentations

During my stay at ICOT I gave three presentations on my current
research, ' Situated Automata'' and ''Parsing as Deduction'' at
TCOT's offiees and ‘A Structure-Sharing Representation for
Unification-Based Grammar Formalisms'! at the Tokyo Institute of
Technology (with several ICOT members present). I repeated the
*“8ituated Automata'! presentation to members of the Research
Institute for Mathematical Seciences of Kyoto University.

I give below the abstracts of the presentations.

5.1 Situated Automata

Current AI approaches to knowledge representation, perception
and planning usually follow a ““denotational'' strategy in
assigning representational significance to a machine's
computational state. That is, the machine's state is viewed as
being composed of symbolic or descriptivé data structures, the
information content of which depends on stipulated
truth-conditional interpretations. I will present is this talk an
alternative, *‘correlational'! approach in which the information
content of machine states is defined in terms of the objective
conditions that must obtain in the machine's enviromment given
the state of the machine =and the constraints governing the
couplinz of the machine to the environment. This ecorrelztional
theory combines elements of automata theory and the logiec of
programs and suggests new directions in Al design methodology,
partievnlarly a shift 1in emphasis away from runtime machine
inference and towards design-time logical analysis of dynanic
informational properties of the machine in its environment.

This work is being carried out by Stan Rosenschein and myself,

as part of the foundational research at the Center for the Study
of Language and Information, Stanford University.

— 188 —

5.2 Parsing as Deduction

By exploring the relationship between parsing and deduction, a
new and more general view of chart parsing is obtzined, embodied
in the FEarley deduction proof procedure for definite clauses. I
will discuss applications of Earley deduction not only to parsing
but also to the computation of grammar properties. Finaslly, I
will discuss efficiency 4issues in the implementation of Earley
deduction.

5.3 A& Structure-Sharing Representation for Unification-Based
Graemmar Formalisms

This talk describes a method, structure sharing, for the
representation of complex phrase types in a parser for PATR-II, =
unification-based grammar formalism.

In parsers for unification-based grammar formalisms, complex
phrase types are derived by incremental refinement of the phrase
types defined in grammar rules and lexical entries. In a naive
implementation, a new phrase type is built by copying an older
one and updatinz the copy according to the constraints stated in
a2 grammar rule, The structure-sharing method was designed to
avoid mnost of this copying and practical tests indicate that the
use of structure-sharing may reduce parsing times by as much as
60%.

This work is dinspired by the structure-sharing method for
theorem proving introduced by Boyer and Moore and on its
variation used in Prolog implementations.

6. Tae ICOT Environment

During ny stay, I worked at a desk in a large room on the 21st
floor of the Mita FKokusai building. The desks of most ICOT
researchers and some of the administrators are on this room, A
terminal connected to ICOT's DEC-20 throuszsh a data switeh was
made available frem the first dzy of the visit.

The accommodation feels apartan even in comparison with the
relatively modest Engineering building at SRI. Mevertheless, I
found it swrprisingly easy to work and concentrazte in this
crowded room, which has the added bonus of a stupendous view of
Tokyo, including its HMount Fuji backdrop in clear days (there
weren't many of these, though...).

ICOT is located in an arez with excellent faecilities, inecluding

restaurants of all styles and prices, hotels and transportation.
This allowed me to stay longer at work without having to worry

about commuting or having to search for dinner.

.Administrative matters were treated with great speed and
efficiency. In partiecular Mr, Kusama arranged all the details of
my visit and made sure it proceeded without any complications,

The computing facilities of ICOT include & DEC-20, VAXes,
several PSI machines, the Delta database machine and a host of
word processors. The main service machine is the DEC-20, which
is heavily but not unbearably loaded during the day. The PSI
machines seem to be still mostly in the hands of the system
sof tware developers, although some applications are starting to
be moved, particularly for performance comparisons.

The main programning language in use is, unswprisingly,
Prolog, or its object-oriented extension ESP on the PSI machines.
Being one of the authors of 'DEC-20 Prolog, I did not escape = few
embarrassing moments seeing so many people heavily using the
system and having to suffer from its faults. On the other hand,
there is the rewarding feeling of having one's work used in so
many excellent projects.

Besides the lack of the text preparation tools I am used to at
SRI, and the adaptation to an wnfamiliar terminal, the main
difficulty in the computing enviromment was the overloaded and
somewhat unreliable data switches between terminals and the
various computers. Having the experience of the data switches at
SRI, this was not tetally ney to ne., Eowever, it is distinetly

nsettling to have one's editing session with 1/2 hour of unsavec
typing being taken from one's terminal at the whim of the data
switeh and offered to another user's terminzl. Fortunatsly, with
the help of the local system wizzrds I was always z2ble to recover
ny work without loss.

These are mninor difficulties, though, and overall I found the
ICOT environment very conducive to productive work. Of course it
will be even better when every researcher has good accaess to a
P31 machine.,.

T. Ccnclusions

From the reports of earlier visitors to ICOT, I expected to
find a dynamic and innovative research group. Vhat I actually
found far exceeds my expectations.

Tne mein reason for my visit was to work with the ICOT
researchers in natural language processing. These researchers are

—~ 180

conduecting first class work in parsing and semantic
interpretation, in particular with the BUP parser and &the CIL
programming -language. But alse outside natural language
processing, I found researchers ready to discuss their work and
to listen to my {(very possibly uninformed) opinions. In those
areas outside natural language, Y am particularly impressed by
the PSI machine and by the KL1 research.

I have noticed that often ocutsiders ssze ICOT az just another
academiec research department and judge it in thet light. I think
this attitude reflects a deep misunderstanding and ignores what I
feel to be most original and valuable in the institution. I will
present my overall view of ICOT in a few words, hoping that I
Will not be judged presumptuous in doing so.

I think the main difference between ICOT =and an academic
department is that at ICOT the overall goals of the project are
always present and focus the research work in a way that is
unlnown in academic research. In academic research, if practical
implementation seems too difficult, one may replace it by more
theory, possibly intellectually very rewarding theory. At a place
like ICOT, though, the avoidance of practical considerations with
more theory seems to have a small place. Idea= have to
contribute in the end to the prazctical purposes of the project.
However, this does not mean that important theory is ignored. On
the contrary, the real worth of thecretical results can only be
shown and extended through practical appliecation. It is this
possibility of combining theory with practice to achieve concrets
engineering results that makes ICOT such an exeiting and
worthwhile institution.

I would like to finish this report by noting the enlightened
policies of ICOT and its sponsoring organizations in the Japanese
Government that make possible visits such as mine. My research
benefitted in many ways from the visit, some tangible like actual
resezrch results and papers, some less tangible. I only hope
that my worl here might be of some use to ICOT researchers.

Aclmoyledgments

First, I would 1like to thank Dr. Kazuhiro Fuchi, Director of
ICOT's Research Center, for inviting me to wvisit ICOT and
creating a wunique reszearch environment, and Mr. T. Yokoi, Chief
of ICOT*s Third Research Laboratory for the opportunity to work
with the researchers in his laberatory.

Mr. Hiroyukd Kusama, Managing Researcher at ICOT, made

— 191 —

excellent arrangements for the wvisit, anticipated and solved
problems I didn't know of and coped din good humor with my
bureaucratic absent-mindedness, malking sure I actuzlly arrived at
the right time to the right place.

Hideld Hirakawa was my '~ technical'' host, helping prepare a
very rewarding schedule of meetings and discussions, besides
contributing extensively in technical discussions and making sure
I felt as much at hore as humanely possible.

I had many rewarding discussions with Kuniaki Mukai, who also
did nuch to make me feel welcome, to the extent of sacrificing
one Sunday to give a sightseeing tour in company of Yuichi Tanaka
and his wife (tolerating my exotic shopping practices in the
process). '

I would also like to thank Koichi Furukawa, A. Takeuchi, Hideld
Yasukawa, Minoru Yolkota, T. Kurokawa, Shunichi Uchida and Taizo
Mivachi for many useful discussions. S. Takagi sorted out oy
system problems promptly. HMiss Y. Okada helped with z2ll kinds of
details and suzgestions, besides welcoming me with a dinner and a
party that helped me feel somewhat less " ‘alien''.

In nentioning specifically some of the people of ICOT, I hope I
will not =slight the many others who 2also welcomed me and
contributed to the scientific or personal quality of my stay. I
feel very honored by their attention and T hepe to be in a
position to help them in the future.

I would also like thank Professor H., Tanaka of Tokyo Institute
of Technology for the opportunity to wvisit his group, and
Professor Reiji Makajima, Talashi Salurakawa and other members of
the Research Institute for the Mathnematiecal Sciences of Eyoto
University for some very useful and lively discussions and for
their hospitality which included an excellent guided four of
Kvoto.,

Finally, I would =alsc 1like to thank Stan Rosenschein, Ray
Perrault and Barbara Grosz of BSRI's Artifieial Intelligence
Center for their encouragement of this visit, and acknowledge the
partial support for the visit by a gift to SRI from the Systen
Development Foundation.

FERNANDO C. N. PEREIRA

Senior Computer Scientist
Artificial Intelligence Center
Computer Science and Technology Division

CURRENT RESEARCH INTERESTS
Computational linguistics; theories of robot knowledge and action;
logic programming.

SPECIALIZED PROFESSIONAL COMPETENCE
Computational linguisties; logie programming, implementation and
applications; computer-aided design.

PROFESSIONAL EXPERIENCE
Research Associate, Department of Architecture, University of
Edinburgh: research on logic databases for design, graphies.
Lecturer in Mathematical Analysis, University of Lisben.
Systems Programmer, National Laboratory for Civil Engineering,
Lisbon: language implementation, system software maintenance.

ACADEMIC BACKGROUND
M.Sc. (1975), Mathematies, University of Lisbon.
Ph.D. (1982), Artificial Intelligence, University of Edinburgh.

MAJOR PUBLICATIONS

Coauthor, ‘‘The Semanties of Grammar Formalisms Seen as Computer
Languages'', Proe. of Coling84, Stanford, 1984.

Coauthor, ‘‘Parsing as Deduection,'’ Proc. of the 21st Annual Meeting
of the Association for Computational Linguistics, 1083,

Coauthor, ‘‘Transportability and Generality in a Natural-Language
Interface System,'' Proc. of IJCAI-83, 1983.

‘*A New Characterization of Attachment Preferences,'' in

Natural Language Processing. Psycholinguistic, Computational, and
Theoretical Perspectives, D, Dowty, L. Karttunen and A. Zwicky
eds., Cambridge University Press (1983).

Coauthor, “'An Efficient Easily Adaptable System for Interpreting
Natural Language Queries,'' American Journal of Computatiomnal
Linguistics 8(3), pp. 110-128, 1882.

Logie for Natural Language Analysis, Ph.D. thesis, University of
Edinburgh (1082).

‘‘Extraposition Grammars,'' American Journal of Conputational
Linguisties 7(4), pp. 243-258, 198]1.

Coauthor, ‘‘Definite clause grammars for language analysis--a survey
of the formalism and a comparison with augmented transition
networks,'' Artificial Intelligence 13, pp. 231-278 (1980)

Coauthor, ‘‘Prolog=-the language and its implementation compared with
LISP,'' Proc. of the ACM Symposium on AI and Prograoming
Languages, Rochester, New York (August 1977)

PROFESSIONAL ASSOCTATIONS AND HONORS
Association for Computational Linguistics.
Britishk Council Fellowship (1977-80).
Member of the Editorial Board, The Journal of Logic Programming.
Member of the Editorial Board, Computational Lingusitiecs.

— 193 —

