Report to ICOT concsrning my visit from
24 January 1983 to 1@ February 1983

J.A.Rabinson Syracuse University, New Yerk
U.5.A4.

1. .

in Ocrobesr 1932 [gcz=pted the inuvitation oF Kezukirg Fuacrk?,
Directer of +he ICOT Kesszarch C=ntar, tTo spend thres wseus visiiing
ICOT for the purpose of exchenge of ideas and study. My wisit be=gen
en Mondau, January 24, 1783 and will end on Thursdey, Fsbruary T8,
{1983, This report is written on Tussday, February &, 1%3J.

s
o
z

Fo

From my point of view, the visit has been very vealuable. I have
had the opportunity +to discuss many vressarch teopics with [COT
researchers, and in the course of these discussions [have coms to
know many of them gquite well., Yithout exception I have been meost
impressed by the celiber of the ICOT researchers and thkeir leaders -
they ars sxirem=ly intezlligent, well-informed, hard-working
individuals whose dedication to the ideas and goals of the ICOT
project is of ths highest erder. By comparison with that of the best
research orgenizations in the West, the ICOT spirit is more unified,
more sharply fbcu;s:d. more urgsnt, more sericids. I am comparing
ICOT here with, for example, not only the private industrial research
organizations such as Ign's Yerktown H=ights and San Jose
Laboratories, Beneral Electric's Schenectady Research Center, Texas
Instruments® Research Center in Dallas, and the Data Gensral Research

Center in Chapel Hill, " Horth Carolina, but also with government
ressarch goarganizations such as the Argonnes MNational Lakeoratory, the
U.&. Maval Research Laboratory, end the U.5. Air Force Rame Air
Development Centsar. l* have wvisited andsor worked at all of these
institutions over the past twenty Yyears., and have also worked at
seyerz] reszarch canters in Cfurgps, notably thr University of

Edinburgh and the Imperial College, London, in the U.K., and the
UPMAIL Laboratory in Uppsala, Swedsn. In my judgment, Tthe ressarch
atmosphere at ICOT is superior to that of any of these places.

3.

On addition to an extended interactien with ICOT itsel¥, I was
very pleased to b= able to wvisit several important other
organizations. These were : Kyote University, on Monday, 24 January,
1983 = Tokuo University, on Tuesday, 25 January, 198F : ths

Electrotechnical Laboratoru, on Monday, 7 February, 1983 : and the
Electrical Communication Labeoratefy of NTT, on 8 February, 1983. It
was also a pleasure to nmeet Professor Takayasu to of Tohoku

University wh=n hs visited ICGT on 2 February (583: we had mst
previously many years ago in Edinburgh and were able te renew our
mutual interssts. His pres=nt work to develop an in—-house L.S5.I.
fabrication facility is very interesting. The impressions I formed of
the research being conducted at these sevesral centers are very
favorable, and I shall be occupied for many weeks in reading and
digesting the large. number of articles and r=ports I cellected from
pver 28 resesarch projyects covering the fields of natural language
translation, spszsch understanding, program wvsrification, inductive
definition of data structures, parellel inference machines, pattern
recognition, superspesd computsr..d=sign, program transformation,
knowledge based game playing, LISP machine design, advanced PROLOEG
implemsntaticn, and n=w LIiSP-like programming languagss.

4.
I was surprised to discover a wvery sharp division betueen

research preojects in the universities, supported by the Hinistry of
Education, and governmsnt resedrch projects supportsd by the Ministry
of Intsrnational Trads and Indusitry. It is noti clzer to this Western
obserwver what purpese is served by such a rigid compartmentelizetion
of the geovsrnment's ressarch s=ffort = it is as though the twe
Ministries were separate couniries instedd of two departments of +he
governas=nval apparatus of cne counitry? MNight it not be & ¥fr
grectice to have coordinetsd ressarch sfforts betwesn universit
govarnment grouss? This is csrtainly *he practice in The U.S.A
U.K., Sweden, France and I[taly (to mention only the countries I have
had =zxpsrience ofl.

Fa

The formal exchange of ideas at ICOT took tweo forams: a s=ries
of “mini- worksheps" on 24, 27V and 28 January, 1983 in which ICOT
researchers explained their work in several ereas, and a series of
lzctures given by me on various topics, which [cover in more detail
below. The mini-werkshops were thorough., detailed accounts of work in
progress and ideas for future vork. It was.during these presentations
that I came to realise the depth and strength of [COT's research
staff. The content of the presentations will take m= gquite some time
to analyze properly after my return to Syracuse, but [can say
immediately that ths general view they gave me was entirely in accord
with the picture I had formed over the past year and a half, by
careful study of the Fifth Genaration Report and its accompanying
position papers. It was good to see the actual work progressing well
along the path laid down in the cvsrall plan.

d.

I also had numerous informal exchanges with individual
researchers, notably with Kuniaki Mukai, whose beautiful unification
algorithm I studi=d hard. with a view te helping simplify (if possible)
its dintricate proof of termination, and to developing {(if possiblel} a
suitable analysis of its computational complexity. I hope to continue
studying this work after I return to Syracuse: and Mukai and I plan
to stay in touch about it. [was also delighted to find that our
Syracuse LOGLISP System was up and running at ICOT on the DEC-2868. [
was helped frequently and generously by VYasukawa-San of the Third
Ressarch Leaboratory, whoss expert knewledgs of the DEC-28 cpsrating
system compensated for my own DEC-{@-based strangeness. [hope that
ICOT resesarchers will experiment with the different kind ef logic
programming environment provided by LOGLISP. I also had good
discussion with Rikie Onai about reduction machines for logic
programming.

f.

I gave four private ICOT lectures, on 25, 27 February 1983 and
3,4 Febrvuary J1983. I will gave a public ICOT lecture on 18 February
1983, and another lecture at ECL this afternoon (8 February 19830,
Twoe of my private ICOT lectures concerned the ideas which I and my
student Kevin Greene have been thinking about concerning parallelism
in legic programming. The trangparsnciss from thess lectures ars
attached as Appendix A te this report. The general idea is to exploit
both OR-paralleslism and AND-paraiielism, bul ts confipe Tha latisr
entirely to the internal archtechture and functioning of the several
parallel unifiers in the system. Each parell=l unifier computes the
environment:’

E’Efunify o f £

which extends @ given enwwircnment £ in the most general pessible
manner so as tc maks the expressions a and § become identical. [In

general ¥ and f can be lists

N:f"—'ﬂ ﬁz -.-MHJ
@ =C6 Pa -+ Bm)

of exoressions, and n cam be guits lerge. The parallel unifier
regerds suck lists in the LISP menner s peirs

O o¢of , (% .. %))
B =8 - (fy -vv Bn??

and upon encounterring tkem, credtss two new processes,

tunify % &)
(enify € & ... Hpl(f, "'F“JJ

to be pursued in (AND-) perallel, and so on. The enviranment £ s
built up by & process which is in concurrent communication with ail of
the unifuing subprocesses. The details are given on the
transcarencies. Such a parallel unifier is activeted (in OR-parallel)
by =ach inference step by which one goal-statement:

7.6
¢¥ a list of goals: T=¢¥ ... T35, and an environment of bindings)
is stucce=ded by angthsr, ', e, In ordinary {serial,

mono-processing) logic programming, (y/,¢’) comes from (T,£) by a
single-LUSH respolution step involving some clause

oA -6

from the knowledge base
Qﬂ(-?;
F <=6y

Thus, if

(Frgd=CC gy -+ T 2,6
the "single-LUSH" successors of (},g? have the form:
CF¥cTy ... Tpd.Cunify o 1 £),

using a single clause Xi(-fi; while the
"multi-LUSH" successors of ([,) have the form:

¢ ‘c?,c,:..-x[:?,;ﬁ. Cuni fu ¢ ...r::cj;ﬁ}c?:....‘r‘*ﬁ £33
for some k clauses
th-ﬁq . eee Q%k{-fhk .
It is clear that a mult-LUSH deduction tree consists of fewer, but

“larger” nodss than a single-LUSH deduction tree. All multi-LUSH
successors of a given goal-statement {r.g2 can be ohtained

simultancouslu in OR-parallel. Each one inveolves the activation of an
indspendsnt unifier whichk cpesratss with internal AND-perallelism. The
"combinatorial explosion” involved in detecting all k-tuples
{4 sov-yhpd of indices for which {unify Xy one &g 208 oo Ty 2 €0
is not “ippossible® is not as bad as it may seem ar first glancs. I¥
we define

I = {p; Cunify u} §~EJ="5mpnssibI='}

uing!

then it suffic=s to consider only those (4 ,...,43) satis
€Ay puunr, g in Iix Ix ---xly=1

The Is can be compouted in OR-parallel, given (f,§2, before attacking
the full cemputation of the s=t:

(T, €95 Cipeniiig) €I and I'=P4 %, %P4,
and gf = {unify {ﬂﬂ...%ifn--.rk,'l £3
and ¢'#£ impossible”}

of all multi-LUSH successors (7', ¢') of «J,€).

8.

A further ICOT lecture [geve concerned the "sequent® treatment
of resoluticon in Chapter & of my book Logic: Form and Functien”. As
I tru to explain in that boeok, the sequent concept (due originally to
Gerhard Gentz=n) perpits & far b=tter development of the resolution
concept tham the usual approach.)

7.
1 also gave an introductory lecture to the LOGLISP sustem.

18.
A short version of the parallelism lecture is to be given to ECL

during my visit thers on 8 February 1983.

11.

Finally, my public lecture on 18 Februaru 1983 is entitled "Logic
Programming, past, pres=nt and future". Copiss of the transparenciss
for this lecture are attached to this report as Appendix B. The

lectures covers the histary of the various ideas invelvsd in logic
programming, starting with the invention of the predicate calculus by
Gottloh Fregs in 1879. It concludes with somes attempts to glimpse the
future, two or three decades from now, which the logic oprogramming

idea will help to bring about.

12.

In concluding this report [would like to express my thanks to
Dirsctor Fuchi for inviting me to make this visit, and to him and all
other ICOT members for the warmth of their hospitalitu, the openness
of their friendship, and the stimulus of their intellectual example.

JOHN ALAN ROBINSON

Curriculum Vitae as of 1 January 1983

PRESENT POSITION

Distinquished University Professor of
Llogic and Computer Science

Loglic Programming Besearch Groap

School of Computer and Information Science
Syracuse University

Syracuse, Hew York 13210

Telephone (315)-823-3159

PERSONRAL DATA

Bora 9 March 1930, Halifax, Enqland.
British citizen.

¥.5. resident since 1952,

EDOGCATION

Rishwvorth School, Halifax, England, 19471 - 1943,

Cambridge Oniversity, Cambridqe, Englamd, 1989 - 1952. B.R.
{with Honours) in Classics, 1952.

Cambridge University, Bangqland. HM.k., 1957.

University of Oreqon, 1952 - 1953. HN.A. (with Honors) in
Philosophy, 1953.

Princeton University, 1953 - 1956. HN.A. in Philosophy, 1955.

Ph.D. in Philosophy, 1956. Dissertation: Caumsality,
Probability and Testimony. . Thesis advisor: Hilary Putnanm.

EXPERIENCE

Operations Besearch Engineer, E.I. -du Pont de Hemours and CoC.,
Wilmington, Delaware. 1956 - 1960.

Postdoctoral Research ?alloﬁ. OUniversity of Pittsburgh, 1960-61.

JOAN ALAN ROBINSON
Reszarch Associate, Applied Mathematics Division, Argonne
Fational Laboratory. Summers of 1961 to 1964,

Consaltant, 1hplieﬂ Mathematics Division, Argonne Fatiomal
Laboratory, 1961 - 1969,

Member, Computation Group, Stanford Linear Acceleration
Center. Summers of 1965 and 1966.

Lecturer, University of Michigan Enqineefinq Summer
Conference. , 1964 and 1966,

Member, Paculty of Rice University, 1961 - 1967, in Philosophy
and Computer Science. Full Professor 1968 - 1967.

Member, Faculty of Syracuse University, 1967 - present.
Distinguished University Professor of Logic and Computer Science,
1967 - present. :
Guggenheia Foundation Pellow, 1967 - 1968.

Honarary Research PFellow, University of Edinburgh, 1267 - 1968,

Visiting Research Fellow, University of BEdimburgh, 1968 -
present.

Consultant, Stanford Linear Accelerator Center, 1966-197d.
Consultant, Young and Rubicam, 1969.

Consultant, General Electric Company, 1970.

Consultant, I.B.N., Research Center, Yorktown Heights, 1977.

Consultant, I.B.M. Systems Research Institute, New York,
1981, 1982..

Cn-?rincipai Investigqator, Rice University Computer Project,
0.S. Atomic Emnergy Coamission Comtract AT- (40-1)-2572,
1966-1967.

Principal -Investigator, National Science Foundation Grant
GP 2466, for research on theorem proving by computer.
1964 - 1964,

Principal Investiqator, Advanced Research Projects Agency

Cont ract -DAHCO4~72~C~0003, for research or compatational
logic, 1972 - 1974 .

..-33

JOHN ALAN ROBINSON

Principal Investigator, FNational Science Foundation Grant
mCeS77-20780, for research on logqical computation, 1978 -198(

Principal Tnvestigator, under RADC Contract F30602-77-C-023!
of LOGLISP developmrent project, 1977 - 1980.

Principal -Investigator, GREATER LOGLISP development proiject,
RADC Contract F3I0602-81-C-0024, 1981 - 1983.

External Examiner, University of Bdinburgh, 1967, 1969,
1973, 1972, 1973.

Extarnal Examiner, Oniversity of Londomn, 1980.

Trustea, The - A.M.Turing Trust, Bdinburgh, Scotland. 1969 -
present.

Scientific Advisor, Swedish Board for Technical Development
1982 - .

RESEARCH IRTERESTS

logic Programming: theory and applicatioas
Mechanical theorem proving

Mathematical logic ard non-namerical computation
Abstract programnming theory

Artificial intelligence

Poumdations of mathematics

Philosophy of mathematics

LISTED IN

WHO'*S WHO IN ANERICA

WHO'S WHO IN THE WORLD

AMERICAN MEN OF SCIENCE
CHRONOLOGICAL LIST OF PUBLICATIORS

GANMA I, a general theorem-proving program for the IBM 704,
Argonne National Laboratory Report 6447, 1961.

Aume's two definitions of cause., Philoseophical-Quarterly
1962 (pp. . 162=-17T1).

above article, reprinted in Hume,-a-Selectian-of-Critical

TOWARDS & HIGH PERFORMAWCE FROLDE PROCESSOR

Pavid Warren, February 19283

‘ABSTRACT

In this note we consider how ons2 might design a high
performence Prolcg processor, by exploiting low-level
parallelism in Prolog sxecuticn. Ue focus chisfly on
potential parallelism in the implementation of unification.

H.B. The ideas expressed here are very tontative, and this
account of them is very sketchy.

INTRODUCTION

Many tasks ¥for which Prclog seems highly suited are not
ra*!ly practical on current mechines because they can be
‘;ﬁ;emunted smere eff ciently in leszr-level lawguages:
cxamples include text editors, document faormatters, and key
parts of operating sustems. This limitation of Proleg would
completely disappear, however, if one logical infers=nce
fi.e. resplntion) toock the same gropv of Tike @5 a
corventional machin=s instruacticn. I's it possible to design
speciel Proleg hardware that can perform resclutions as fast
as a conventional processor execvies instructions, and that
hes @ Ccogt complrablie with o convesnblonal grocossoer? Te

put it more concretely, can we build & one megalips (i.e.
one million logical inferences per second) Proleg machine
for the same kind of cost as a ane mips UAX, for example?
This note presents sohe initial idezs towards Lhis goai.

We wish to wvxploit certain lowu~level parasllielism in Preleg,
by analogy with the way a conventional ALY expicits
parallelism in arithmetic operations. By "low=level"
parallelism, we mean parallelism that is invisible to the
2gnicg programmer. OFf course lagic programs seem to offer
: t potential for large-scale parallelism, but this kind
of paralleliem cannot be exploited without the programmer
being concerned. It will require a fundamentally new
approach te logic programming. FProleg’'s control mechanisms
{including cut) and use of side effects will have to be
replaced by something new. Since expiciting large-scale
parallelism requires major advances in both programming
mothodulogy and computer architectures, it {8 clearly &
subject for langer term research. Whet we propose hsre is
less radical, and hopefully can be reslised sooner.

Qur goal is to take a conventienal Prolog sustem an a wven
Heumann machine, and speed up its innermost mechanisms.
Briefly, this means replecing the central processor, but
leaving the organisation of main memory essentially
unchanged.

If we look at a typical resclution, such as the
‘concatenate® loop, we see that it reguires of the order aof
188 basic operations. On the DEC-18, far instance, the
fcencatenate’ loop compiles into 5@ machine instructions
(eee Appendix II), and runs at around 38,008 lips on a KL-18
processor. For the Psi machine being designed at ICOT, the
performance is expected to be similar, in the region of

