REPORT
K.Berkling
Visit to ICOT
from Jan.20, 83 to Feh.18, E3

A visit to Icot was first mentioned by ODr. Uchida and
Dr. Onai, wvhom I met in Bristol, UK, at the Summer School on
VLSI Architectures. Later, a formal 1nvitation by Dr. Fuchi
was accepted by GMD.

I was asked to give three lLectures abhout the reduction
machine, dits larnguage, and its underlying concepts. Also I
gave 2 rublic lecture entitled "Functicnz!l Languzges™ fer =2
mixed audience of resezrchers from mznufacturers, research

institutions, and universities,

Compared to the almost total invelvement in the langusge
PROLOG, which 1 observed in ICOT 25 well as other institu-
tions, I was surprised that there is still interest in func-
tienal languages. On the othzr hand, however, the reduction
concept 1s of fundamental importence for FROLOG implenen-
tations.

During my visit to ICOT, I had the opportunity to meet
Prof. A. Robhinson and Dr. D. Warren. Meny interesting dis-
cussions involving ICOT researchers were conducted about
subjects concerning the processing technigues for PROLOG
programs, concepts of implementing them in hardware, and the
connections of functional programming (LISP)Y =and Llogic
programming (LOGLISP).

The first week at ICOT consisted mainly 1in attending

— 20 —

"Mini-Workshops"™ on subjects of ongoing research in ICOT.
The internal Lectures of Prof. Rebinson, of Dr. Warren, and
my own lectures were mixed 1into this series of mini-
vorkshops. A high rate of information turnover resulted. 1
was slightly disadvantaged in this turnover, since my
knowledge of PROLOG and logic programming was very new zand
not very deep. In time, however, with the help of mzny dis-

cussions I managsed to get on top.

The idea of these mini-workshops is a very good one to
acquaint visiting scientists with the current research. The
tight schedule puts, however, 2 lot of strain on the power
of compﬁehension of the participants, at least on mine.
Thus, 1in the following, comments and judaements vary very
much with respect to detzil, depth =and 2mount. These
variations are merely subiective, &nd no objective valuation

should be construed from these variations.

nference Machines: SIM and PIM

First, I will make some gernerel remerks on the problem.
Legic programming is about seit generation. The enumeration
of soluticns is eccomplished by an "sxhzustive treewslk"” of
2 tree which is generated and reiracted during this process.
Leaves encountered are labelled “"success" or "failure"
depending on being non-contradictory or not. In this context
the notions of depth-first and breadth-first denote algor-
ithms to wealk the tree. Generally, depth-first is easier to
imp lement, however, there is always the possibility of non-

termination, even before any "success" leaf is encountered.

Recent advances 1in hardware permit the introduction of

— 2] —

fparallel”™ enumeration algorithms. In this context, the word
"parallel" should be avoided and replaced by the word ™con-
current”™, since the "treewalk”™ 1is now performed by meny
agents, which interact rather substzntially., PROLOG imple-
nentations on a2 conventional von Neumann mzaching are sequen-
tial of necessitvy. Thus, single processor PROLOG machines
gre a2lso sequential. It is natural, thet the S3SiM~project
follows rather closely well-known software implementations,
that 1is, the general scheme of representation is retained,
while special 1instructions are provided to support unifi-
cation und resolution. This is very much the approzach taken
in the commerciestly availeble LISP-machines., They also do
not deviate from the basic list-representzticn aof functions
and data, their interpretation and compilation. Execution

takes place on & specialized von Neumann tvpe processor.

This approach 1s oquite reasonable for experimental
purposes, it might, hcwever, preclude the deveiopment of
more innovative architectues, whicn might bhe dicteted by the
use of VLSI technology. ©On the other hand, it is certainly
of utmost importance to have a complete systen available at
the end cof the initial 'stage ¢f the FGCS-project. From ny
insight into ongoing reasearch in ICOT I have doubts that an
operationait 5iif will oe ready at tne end of 1983. The sanre
might be true for a PIM at the end of 1984. The schedule is
just too tight. I uwould be worried that in the rush of de-
velopment not all poessible implementation wvarieties are ex-—
plored and too many concepts from softuare implementations
of PROLOG are simply "hardened", that is, they 2re tazken

from softwere to firmware.

The attack of the whole programming environment rignt

from the beginning is to be applauded. Very often in the

past hardware and software were developed separately by peo-
ple without any mutual understanding, moreover, the whole
software problem became obvious only after the completion of
the hardware design. Many efferts to implement complicated
instructions were in vain, since these insiructions turned
out to be either unusazble or superfluous. In the Llight of
these thoughts, it might be more advaentagecous to sinulate
the whole system, that dis the inference machine, the
datazbase interface, and the progranmning envircnrent, on a2n
existing computer of sufficient performance. But I might un-
derestinate the capability of Japanese Manufacturers to turn
out experimental machines very fast.

Two nmulticreocessor inference (PRCLOG) machines are
developed in the first laboratory of ICOT. One is based ¢n
graph-reduction, the other is bhased on dataflow. The design
considerations for the latter one seem to be further ahead.
The one based on graph-reductian seems to employ to a Llarge
degree dataz flow concepts, too. 1 was asked to look more
deeply into the proposal for the graph-reduction inference
machine,

i received as material to work on the "Proposzl of
FROLOG lMzachine based on Reduction Mechanism®™ by R. Onai,
H. Shimizu, N. Ite, @and K. Masuda. The proposal considers
OR-parallel execution and AND-parallel execution. The deci-
sion to process the AND-connected literals in seguences is
most probably a good decision, since the communication
betueen processes processing AND-cennected literals might
very casily become unsurmountable in real applications (See
also my remarks on AND-perallelism below). I ceannot =agree
with the definition of reduction on Page 3 of the proposal
(At this moment, I cannot determine to what degree this dis-

agreement is also one with P. €. Treleaven.) To point (1) :
Data driven and demand driven exists always together, but
one or the other might be more implicit. Scanning an expres-
sion for a possible reduction is an implicit "demand” oner-
ation, returning results is 2n explicit driving by data.
This 1is the case for string and graph reduction. To point
(2): This statement is true, 2ll reducticon systems zctually

do subsume iteration under recursion. To point {(3): Yes,
this is no point c¢f discussion. To point (4): Graph menipu-
lation avoids copying. As stated on page 3 one could think

that cause and effect is reversed. T would define “recduc-
tion™ as selfrodifying code as opposad to reentrant cocde.
This covers string and graph recduction. The pezper proposes
several AND-reduction units (ARU) ard severzl OF-reduction
units (QRU) ., However, & clause body 1s processed in a2 single
AND~reduction wunit. Thus, c¢lause bodies 2re stored in the
ARU"s with pointers to clause heads (of other clauses to be
invoked later) in the ORU's. Along these pointers match ang
unification request migrate from one ARU to several ORU's in
sequence, since the AND-connected <clause is procassed in
sequence., There is a distribution network one to many from
ARU's to CRU's. As first presented to me, there was only 2
one to one connection back from every ORU to =an =2ssocieted
ARY. I pointed out, that itnis ~zstricts *the ilocacing of the
machine too much and suggested to provide in this direction

also a2 one-to-many netwerk.

It is a major proolem to distribute clause information
to the ARU's and ORU's tc achieve 2 good load distribution.

We proceed now to describe tha concurrent execution of a
PROLOG program in such an architecture. Concurrency is pos-
sible when several ARU's in an 1involved problem are

24

processing 2 clause body each in sequence and thus keeping
all ORU*s busy, provided that a reaquested clause head
process finds a free ORU tloaded with the corresponding
clause head information. There was a discussion abcut the
location of clause informaztion 1in the wunits. I do not
recommend 2 centrazl location since the resulting communi-
cation caused by all requests for processing night he
prohibitive. However, 2 dynamic loading scheme may be via-
ble. Given an idie ORU and 2 requesting ARU in & wait state,
because the ORU does not have the corresponding clause head
information, they might z2s well use the time to load it
dvnemically. The selfmodifying code, theit is the process
representation, is currently stored 1in the PM's of the
ARU's. PM nmeans packet memory. This seems tc me the weakest
point of the proposal. First of all, I would recommend %o
separate two issues, the representation of the process state
and packets modifying it. Secondly, I would recommend to
keep the process state representation in a central place,
sending and receiving messzges (packets). This introduces
some central control, but facilitates the coordinaticn.
Finally, =all clause and fact information will be stored
originally in a2 central place. Cre might as well rely com-
pletely on dynamic Loading, that is a unit requests that
vhat it needs wnen it needs it. 3ome rigid scneme Like boay
in ARU(k) and heads of clauses to be invoked later in
ORUCk+1), ORU(k+2) ... a.s.o. might work. Full concurrency
is only available with untimited resources. The solution of
a large problem with limited resources permits only Limited
concurrency. Thus, the depth-first method still has to be
used, but in terms qf larger subtrees. I regret that I could
not get involved 1in more detail Like working out all
formats, determining the control-information need, 2.5.0.

Simulation should start as soon as possible to expose some

loose ends which cannot be solved in the present state of
development.

Remarks on Parallelism

The following obsarvations have to be weighted by the
fact that the author is 2 novice with respect to use and im-
plemantation of PRCLOG. In handouts z2nd in presentations
three sources of potentially concurrent processing are
given: OR-parallelism, AND-paralielism, and parallelism of
arguments., According to my insights (gualified by the zbove
remzrk) these types of concurrency cannot be mentioned on
even terms. PROLOG pnrogramming is backwards in som= serse,
the result of 2 computation is specified first, =z2nd the ex-
ecution of a PROLOG pregrz2m produces all the data which
resolve the gozl. The so-cailed OR-parallelism, 1is cpera-
tional. It describes the possibilities to be investigated 1in

finding 2 solution.

The AND-connective involwves a certain kind of binding
structures which one might describe as the revasrse of the
lambda calculus binding structure. In the lambda calculus a
distribution structure from one Llocation in an expression to
many places is the key operation called beta-reduction. In @
clause the reverse is to be enforced, namely a collection
from many places in the clause body to one pltace in the
clause head. Obviously, concurrent processing of the clause
body cannot start before the reverse binding structure is

estzblished.

It is & technical problem to achieve the many-to-one

binding structure in a clause. It should not show up in the

tanguage. According to my understanding, "concurrent PRCLOG"
is doing just this. Concurrent unification of literals
entails 1intensive communication between corresponding
processes. To introduce the concept of channels <(read-only
annotation) to variables seems to me connterintuitive to the
concept of referential transperency and to the concept of

varizoles.

Functional Programming and Logic Programming

In many discussions one point came up over and over
again, namely the relation between functional and Llogic
programming. The shift of attentien from orocedurs! lan-
guages to functional languages, and Llater to logic tan-
guages, reflects the concern over the predominance of issues
which do not directly contribute to problem solving in the
production of application software. Generally, von Neumann
software 1is overloaded with solving the problems of the
von Neumann computer architecture. While procedural lan-
guages require to a large degree specifications "houw" to get
to 2 solution, functionzl languzges zllow the specifications
of one solution and emphasize the "why". Functional programs
are not sexecuted in the sense of program execution. Func-
tional programs really denote a solution, which 1is then
reduced, that is transformed or rewrittén in a form of
reduced complexity. As an example consider
((7 + 8) » (6 *x 9)) = true, This implies that a represen-
tation of the solution has to be known beforehand. All func-
tional program examples exhibit this “"denotation of the
sotution" property. One might ask, whether some sort of
problem solving takes place at all in in the rewriting

process. In contrast, this looks like procedural languages

..2?'

do really prescribe some work. This is true, but the work
done is mostly not concerned with problem-solving issues. In
contrast to functional programming, logic programming is not
concerned with specifying one solution, A logic progrzm is a
questicen, = gozl,. 2nd produces all data consistent with that
goal, This includes the case where no data exist which
resolve the goal.

Leogic programming represents currently the highest
degree of abstraction from procedural details. Since the
latter do not disappear, the requirements on automatic
transfeornations of goal specifications, fzcts, and rules
into procedural detail are large, and compromises between
abstract specificeations snd pracedural hints seem unavoide-
ble. Finding and producing the set of consistent solutions
is combinatorially explosive. At this point of the discus-
sion, I would like to draw the attention to what one might
call "the single Llanguage syndrom". In spite of people
getting enthused with some language, there is no single lan-
guage sufficient and practical for all applications. HNot
only are the problem oriented concepts of different appli-
cation areas toc different to have them all efficiently sup-
ported in cne language, but there is also a level structure
of Ltanguages existing of necessity. One neecs an orderly
descent from a very abstract language expressed in terms of
a Llower language level and so on until the Level of flip-
flops and cates is reached. This latter level is =2a2gain an
abstraction of even more primitive elements. Also, anv
progran in terms of one language is ohject of a higher level
language dealing with the logistics of bringing in programs
and getting cut data. Thus, procedural languages and func-
tional languages provide a more direct and straight forward
way to obtain a soLuti&n, where the algorithm is known or

the solution can be specified, respectively. There 1is no
need to search for something which is already known. A typi-~
cal example is the use of "cut®™, "not", and "fail"™ to steer
the evaluation process 1in PROLOG. Here, knowledge about
details of the implementaticon 1is necessary to zachieve
effects which are more directly accessible in other Lan-

guages.

Comments to visits to universities and manufacturers.

Courtesy of ICOT the following visits wera arranged:
Kyoto University, University of Tokyo, ETL, NEC and ECL. ALl
visits were well organized, the presentations wall prepared,
and written material was always available. The latter ==
particularly important, since the impressions of a visit
have to be digested later agzin. I would like to summarize
my impressions 1n three points. 1) There seems to bgs a
policy to make the best and latest equipment aveailable to
researchers in sufficient amounts, with some differences, of
course, 2) There seems to be a general recognition of the
fact, that architectural concepts have to be tried by real
engineering or else significant deficiencies of the concept
will not be exposed &nd detected. Researchers obviously get
sufficient support by engineering departments 3) The discus-
sions arranged were very substantial due to the well-
informed participants. Under current conditions of expensive
travel, high postal rates combined with long delivery times
the particular effort nescessary is applandable.

Impressions and comments in ICOT

This was my first trip to Japan. Although I travelled =z
lot, this was a completely rew experience. My deepest im-
pression 1is the generally positive climate of working and
living together. I cannot believe that this is due to being
a guest and due to the language barrier which might conceszl
the truth.

All efforts were made to get settled in what seems at
first to be a very foreign environment. It takes, however,
only hours or a2 dazy to find eut that this environment is

quite Livable,

The four weeks went by rather quickly. Except far
preparing the lectures, I was more or less receptive since
the whole area of logic programming is new to me. Occasional
prior acquaintance to PROLOG by some lectures does not
count. Attempts to get inveolved in ongoing research were
duarved by the schedule of talks and visits. To produce
tangible results.it is necessary to sit at the desk for =2
couple of weeks without obligation to Llecture or to pay

visits.

The working climate in ICOT seems to be determined by
the synergetic effect of the "Fifth Generation Idea®™, com-
bining several current trends in information and computer
science., Originating from the severe language barrier, even
between Japanese znd conputers, the drive for logic program-
ming and PROLOG seem to be a must for natural Llanguage
processing and translation, speech input and output, while
relational database techniques seem to wait for inference
machines to be real useful. Natural language access to data

— 30 —

bases seem to make applications possible hitherto unheard
of. MNatural Language translation contributes to interna-
tional understanding and commerce. Although I saw simular
projects in many places in Japan, they all get their incen-
tive and drive by a visible confluence point like ICOT. Many
nations in the world will took at it with env? and admi-
ration. The iddez of cormbining current trends cannot be
repezted elsewhere, it will be unigue 2nd will determine

developments for decades.

Dr. Klaus Berkling

Eisenachstrasse 31
5205 St. Augustin, West-Germany
(02241) 332720

EDUCATION:

1951 - 1957 Studied Physics at the Free University in West-Berlin
and at the University of Bonn, West-Germany.

1957 - 1961 Ph.D. work at the University of Bonn, West-Germany.

DEGREES:

1957 M.A. in Physics: Design of a Partial-Pressure Gauge,
based on the three-dimensional massspectrometer of
Prof. Paul.

1961 Ph.D. in Physics: Scattering of Gallium Atoms in different
Zeemanstates on Atoms of Inert Gases.

EXPERIENCE:

1961 - 9164 IEM Laboratories in Boeblingen, West-Germany.

1064 - 1972 IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, USA.

1871 - 14972 Guestlecturer for Computerscience at the University of
Freiburg, West-Germany.

1972 - Gesellschaft fuer Mathematik und Datenverarbeitung,

Bonn-Birlinghoven, West-Germany.

18380 - 1881

WORKAREAS:

ADDITIONAL
INFORMATION:

Visiting Scholar, Stanford University, Stanford, CA 94305,
Center for Integrated Systems, study of very large scale
integration technigues.

Higher Level Language Computer Architecture.

Computer Architecture and -Engineering.

Microprogramming.

Functional Programming Languages, their Theory, Application
and Support by Hardware Architecture.

Glider Pilot,
Private Pilot.
Learned Machinist.

