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1 Introduction

This report summarizes my two-week visit to ICOT, working primarily in the First Research
Laboratory under the direction of Dr. Taki. The visit was an extension of my participation in
the FGCS'92 conference and Advanced Architecture workshop of the previous week. The main
goal of this visit was to continue research with A. Imai on efficient parallel garbage collection
methods for concurrent logic programs. In this paper I will summarize our results of these two
weeks of collaboration. Furthermore, my visit allowed me to have fruitful discussions with K.
Ueda, M. Morita, T. Chikayama and K. Kahn (also visiting ICOT) on topics of mode analysis,
compilation techniques and code generation, and visualization.

2 Overview of Sche.dule

My schedule was rather tight, restricted further by a visit to Tsukuba University for two week-
days. My general schedule was as follows:

Mon Demonstrated the VISTA visualization tool to Imai-san and began discussions on our GC
research strategy.

Tues Demonstrated VISTA to M. Sato and other Oki members. Had extensive discussions about
Janus, moded FGHC, and visnalization with Ueda-san, Morita-san, and K. Kahn.

Wed Reviewed GC papers concerning concurrent logic programs, and wrote literature review
of Nakajima's “piling" GC, Ozawa's two-generation GC, and Koike’s distributed two-
generation global GC. Had discussion with Nakajima-san clarifying the “piling” method,

and our own ideas.

Thurs Gave PIM-WG lecture this afternoon on our Monaco system. Worried about poor Monaco

performance in evening.



Fri Discussed our mode analysis tool with Morita-san. Discussed KL1-into-C compiler with
Dr. Chikayama.

Mon Visit this afterncon to Dr. Koike at Tokyo University, where he demonstrated PIEG4, and
the various FLENG implementations. We had an extensive discussion about his distributed
GC scheme, and our ideas.

Tues Discussion with Aiba-san about “top-down technolbg:,r" vs. “bottom-up technology,” and
the future of constraint language technology and GDCC in particular. Wrote a second
draft of the “ICOT Evaluation Report.”

Wed Tsukuba University lecture series on “Concurrent Logic Programming.”
Thurs Tsukuba University lecture series. Returned to ICOT in evening to continue GC work.

Fri Wrote “ICOT Trip Report.” Continued planning GC work.

3 Garbage Collection Research

In this section I will summarize the direction of joint research with A, Imai in developing an
efficient parallel garbage collection algorithm. Previous work [3] concerned a parallel stop-and-
copy algorithm for operation on a shared-memory multiprocessor. Since the implementation of
that scheme on PIM, it was determined that certain objects, such as code modules, create a lot
of useless work because they are copied back and forth during successive garbage collections.
The standard method of solving this problem is the incorporation of generation scavenging [11].

Our main interest is to exploit generation-type garbage collection in conjunction with our
parallel semi-space algorithm that antomatically balances the load. In the context of generation-
type GC, two main problems are incurred by concurrent logic programs. Logical variables can
be bound to point from an old generation into the current work space. When garbage collecting
the current space, no root pointer will reach these live cells. A second problem is similar:
incremental garbage collection, such as MRB [2], allows cells to be reused. Thus a cell in an old
generation may be overwritten with a pointer into the current space. -

Qur solution to these problems is to disallow terms with unbound variables (au;rwhere within
the term) from being interned in an old generation. Furthermore, although terms with MRB-
off components may be interned, the MRB reuse mechanism will be modified to avoid reusing
such cells if they appear in an old generation. Another alternative is to intern only MRB-on
structures.

To ohviate costly checks for points from an old generation into the current generation, no
such pointer should ever be allowed to be created. Thus we cannot intern a non-fully-ground
term. With respect to MRB, however, we have some flexibility,. We could outlaw interning a
term with some MRB-off subcomponent, or we could allow it, but disallow reusing the individual
MRB-off cell. The latter solution is cheaper to implement, and causes no inefficiency if the cells
that are initially MRB-off evolve to MRB-on, in which case they cannot be reused anyway.



However, it requires some additional runtime overhead within the KL1-B “check” instructions
which decide to reuse a cell or not. Given a strategy of trading off as much runtime overhead
for GC overhead as possible, we choose the solution of restricting internment.

We are considering two methods of determining the groundness criterion for internment. The
first alternative is to ensure fully-groundness at GC time only. This would entail traversing each
term before copying during GC. The traversal, being a sequence of reads, would be execution
overhead. However, cache performance will probably not suffer for average-size terms because
the initial traversal will pull the term into cache, and the subsequent writes during copying
will hit. Furthermore, MRB-on-ness can be checked during this traversal, for little additional
cost. Although this method has some overhead, it is exact in the sense that every fully-ground
- active term will be interned. This is in contrast to the tag scheme described next, wherein we
make conservative approximations to “fully ground” and thus we may miss some opportunity
for internment.

An alternative scheme requires the definition of two types of terms: fully ground terms
and not-known to be fully-ground terms. We are in general concerned with vectors (lists are
a degenerate type of vectors that we will discuss later). Vectors have two distinct tags in our
scheme: fully ground (FGV) or not known to be fully ground (NFGV). Initially, vector creation
by initialization to a fully ground vector is tagged as FGV. For example, X = {a,{b,c}}. At
runtime, whenever we update a vector element {with a builtin predicate for this purpose), the
vector tag, and groundness of the new element, are checked. In the case that the vector is FQV
and the new element is fully ground, the tag remains FGV. Otherwise the tag becomes NFGV.
Note that the groundness of the new element is frequently known at compile time, thereby
simplifying the check. However, the scheme does not allow a vector to move from NFGV to
FGV, which would require more complex management.

Lists are special terms with two arguments. We do not need to allocate two tags to lists
(FGL and NFGL) because of their simplicity. In most cases we can determine at compile time
the groundness of a list pair, and if not, then the runtime check is not costly. A disadvantage to
this scheme in general is that checking for MRB-on-ness would require a different mechanism.

All these schemes will have utility if the checking overhead is low, and the occurrence of
internable terms is high. We believe fully ground structures are common in certain applications.
In concurrent logic programs, logical variables are not “first-class citizens,” as in logic programs.
In other words, variables are overloaded to implement process synchronization. If a variable
is unbound at the point of a particular procedure invocation, it is not certain if the value will
be produced by concurrently executing processes, Thus the var(X) puard predicate loses its
credibility in such a language. Programmers avoid this problem by simulating logical variables
as in functional languages — with special atoms. These atoms are overwritten, representing
binding. Thus manipulation of structures in this manner will result in fully ground terms that
can be interned, avoiding extra copies during garbage collection.

Note that streams, through which most communication is performed in concurrent logic
programs, are incomplete data structures and are never fully ground. Thus streams (usually
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implemented with lists, but general terms can also be used) are never interned. Individual
messages on streams will be interned if they are fully ground. Thus incomplete messages will
not be interned. Our hypothesis is that streams have the shortest life of all terms, and incomplete
messages don’t live much longer. In general, communication infrastructure is built up simply to
transmit information, and then is reused. Thus our scheme properly keeps these terms in the
current generation.

Dr. Koike claimed that experience with FLENG garbage collection indicated that goal
records can be both properly and improperly interned in an old generation. In most applications,
suspended goals should not be interned because they will soon be resumed. However, fine-grain
object-oriented applications can create many suspended goals that rarely get resumed. These
deserve to be interned. Our current method, as stated, will automatically avoid internment
of suspended goals, which by definition are waiting on an unbound input variable (usually a
stream), and therefore are not fully ground.

Multiple generations can perhaps solve the long-life goal record problem. For example, a
special generation for goal records, from which a tuned internment threshold filters perpetual
tasks from standard tasks. However, any such scheme will necessitate runtime trail checking for
every binding made in the machine. -

3.1 Literature Review

We now briefly review the body of work in generation-type garbage collection with respect
to logic programs, specifically committed-choice programs. Committed-choice programs do not
backtrack as does Prolog, so that garbage collection is invoked more frequently. However, during
collection, the view is almost the same. All this work is based on seminal work by Baker [1],
Lieberman and Hewitt [5], and Unger [11].

Nakajima [8] first proposed a scheme for “piling” multiple generations on a shared-memory
multiprocessor. QOzawa ef al [9] designed and evaluated a parallel two-generation collector
on shared-memory multiprocessors. Koike and Tanaka [4] proposed a two-generation collector
for distributed-memory systems. In all the schemes, the fundamental goal is the same: avoid
collecting garbage within older generations, under the assumption that objects in these older

generations have Jong lives.

3.2 Quantitative Garbology

“Garbology” is the environmental study of the composition and characteristics of garbage. We
extended VPIM, a parallel KL1 emulator, for measuring a large set of medium-sized benchmark
programs. The preliminary measurements presented here were collected on a Sequent Symmetry
with 16 processors. We previously used VPIM to develop our parallel copying garbage collection
algorithm [3]. Here we extended VPIM to simulate generation scavenging, first to confirm results
by Ogawa et al. and to further distinguish the characteristics of memory objects, e.g., what is
the correlation between lifetime and groundness?



Figure 1 shows the lifetimes of objects in some typical benchmark programs. These graphs
are modeled after the data presented by Ozawa, for ease of comparison. A slight difference
is that we force GCs every k*® reduction, and plot the active cells remaining in a generation
as o percentage of the active cells surviving the first GC. Each plot the figures corresponds
to a particular generation. Thus we see that objects within successive generations die off in
distinctive patterns: rapid decrease followed by steady tails. As Ozawa pointed out, this data
indicates that two-generation GG, will work well for committed-choice programs. More complex
analysis is necessary to determine the optimal internment threshold, which strikes a balance
between reduced copying and increased old generation compaction.

We simulated “virtual” two-generation GC by accounting for how many active cells we would
avoid copying with respect to single-generation GC. This was implemented on VPIM tfo give
us quick confirmation of Ozawa’s results. Figure 2 shows the percentage savings (of copying)
achieved by interning in the old generation space, for some typical benchmarks. Copying GC is
the baseline of 100% for all heap sizes. As the heap grows, the savings decreases, as expected.
Furthermore, as the threshold increases (the number of current generation GUs survived before
internment), savings decreases.

Figure 3 shows two views of the garbage collection work per object in the Mastermind
benchmark. Both graphs are distributions of words copied vs. object size. The first graph
shows the reduction in words copied afforded by the two-generation scheme. The second graph
shows the actual words copied with the two-generation scheme. In other words, referring to
Figure 2, these two distributions correspond to 80% and 20% of the work normally entailed in
copying GC, respectively. The most important characteristic of the distribution is the peak at
ohjects of size 1000 words. This increases the mean, increasing the utility of the scheme.

3.3 Future Work
I will now summarize the work that remains to be done in this project.
# Show correlation between fully-groundness and long life of terms.

¢ Analyze characteristics of MRB-on/off in the cld generation, to determine the opportunity
cost of avoiding trailing.

« If previous two results are promising, the next step is to fully specify and implement the
hybrid algorithm on VPIM.

o Confirm that two-generation scheme removes our current problem with code object copy-
ing. Measure total reduction in work afforded by the scheme.

s Experiment with thresholds to determine an optimal strategy.

« Compare the tag vs. naive scheme for determining fully-ground terms. If previous mea-
surements show that fully-ground constraint is too restricting, then we should implement

a trail.



4 Compilation Research

Discussions with Chikayama-san, Ueda-san, Hirata-san and others, concerning compilation tech-
niques for committed-choice languages, educated me about several compilation issues [ previ-
ously did not understand. The relationship between FGHC, moded FGHC, kernel Jaous, and
Jamus was clarified. The main distinction, as I see it now, is that moded FGHC allows multi-
ple consumers of a stream, and also requires the compiler to determine stream producers and
consumers. Kernel Janus allows streams with only single producer/consumers pairs, called the
“teller” and “asker” of a stream, respectively. The programmer is required to specify this.
However, Janus, built on top of kernel Janus, can allow multiple consumers. There are two
methods for implementing this. Separate copies can be made of the stream to be broadcast,
thereby retaining the single producer/single consumer constraint, and allowing memory reuse
optimizations. Otherwise, without copying, memory reuse optimizations must be bypassed.

Similarly, moded FGHC implementations have the option of implementing multiple con-
sumers by copying. This would always allow memory reuse optimizations on channels, with the
system being responsible for determining the channels.

Comparing our Monaco compiler with the KL1-into-C compiler underway by Chikayama, I
realized that several beneficial optimizations techniques are needed to achieve high performance:

» Static type analysis, groundness analysis, and hook analysis are essential. This was fur-
ther emphasized by discussions with Koike, concerning GFA, the Global Fleng Analyzer.
Although we have an analysis algorithm for Monaco mapped out, developed by a student
at the University of Oregon, it has not yet implemented.

 Register allocation afforded by compilation into C is also essential. Most of Monaco's per-
formance problems stem from extremely poor register allocation due o the final assembly
stage from intermediate code into 80386 code. In fact, neither Chikayama or Koike even

have register allocators in their compilers!

e For that matter, they don’t have data flow analysis, such as common subexpression elim-
ination and dead code elimination. This is not necessary because the final compilation
from C does this.

 Unification should have at least one special case that is generated in-line: the case of one
unbound variable term. Both Chikayama and Koike have this inline, with all other cases
dropping off into function calls. Currently, Monaco does not have any inline check.

e Related to the previous point, Ueda suggested a method of renaming an assigned variable
within a recursive procedure, so that it could be guaranteed that the variable is not hooked
at the time of assignment. The renamed variable can later be unified to the original passed
variable after the recursion has terminated (how this order is guaranteed is not clear). The
advantage is removal of hook checks during assignment. Koike removes such checks by
static analysis. Note that Chikayama has no such optimizations in his compiler.



¢ Koike shows in the Luna implementation of XFleng that compilation inte C can still be
made fo execute in parallel. We need to study the structure of his system more carefully.

All these considerations has made me quite eager to start work on a moded FGHC into O
compiler based on our Monaco type analyzer, our mode analyzer linked to a thread sequentializer
[7, 6], and exploiting decision graph code generation as we currently do in Monaco. I believe
this will give us a structural edge over the current Fleng and KL1 compilers, which to my
knowledge do not use sophisticated indexing code generation or sequentialization. My initial
goal in such an endeavor would be to show the utility of sequentializing threads. However, the
general framework is good for a high-performance compiler. I am still worried about memaory
reuse, wondering if our current method [10] is powerful enough.

5 Thanks

I sincerely thank Director Fuchi, Dr. Uchida, and Dr. Taki for supporting my visit to ICOT.
This was an especially busy time for ICOT researchers considering the effort that went into
executing FGCS5'92, and I appreciate the welcome they offered me.

I believe my work with A. Imai has progressed nicely. We began thinking about generation
scavenging in December 1991 during Imai-san’s visit to the University of Oregon. These initial
discussions have now progressed into preliminary research results that are encouraging. The
VPIM simulator was a key factor in allowing us to complete as much as we did in the past two
weeks — we essentially confirmed all of the Fujitsu GO results [9] in one week! We hope that
we can quickly check the utility of restricting internment, leading to our third research phase of
building a fully parallel prototype by the end of August.

I would also like to thank Kumon-san (and all the ICOT researchers involved in various
research discussions) for the valuable help and instruction they provided during my visit.

A good friend, Iwata-san, organized my visit, and generously invited me to dinner at his
home. Thanks also go to Iwata-san’s wife, for an excellent meal (as always), and providing the
opportunity for a relaxed discussion with Y. T. Chien that night. During the FGCS conference
and afterwards, Ms. Karakawa and Ms. Higuchi helped me in many matters, and I genuinely
thank them for their friendship. A final word of thanks goes to the First Laboratory’s Monthly
Party Group, ablely led by Hirata-san. Even for a veteran like me, thaf night was memorable.
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Figure 1: Lifetime Characteristics of KL1 Objects (continued)



copy avoidance ratio of 'mastermind’

100 T 1 T
threshold=1 <<—
20 threshold=2 —+t— _
9 threshold=3 &—
604 -
percentage
40 >
a0 -
D ! ) = 2=] ::
128 192 256 320 384

heap size (K words)

copy avoidance ratio of 'pascal’

100 i
threshold=1 ©—
80 threshold=2 -+— _
threshold=3 €—
60 .
percentage
40 - o
WPpr—— il
. —'——-en.________q
T———
n[% & — &
128 192 256

heap size (K words)

copy avoidance ratio of "puzzle’

100 T T i T
threshold=1 ©—
80 threshold=2 ~+— _|
threshold=3 =—
60
percentage
40 s
20
0 L 1 = iy &5
128 192 258 320 384 448

heap size (K words)
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