yer 1COT

VISITING
RESEARCHER’S
REPORT

Mark Grundy,

Center for Information Science
Research,

The Australian National University

4 May — 7 June
1992

Introduction

This report describes my visit to ICOT, which took place from 4th May
to 7th June inclusive, 1992. It was timed to coincide with the visit of Dr.
John Slaney, also of CISR, who visited ICOT for the first ten days of my
stay. My travel and living expenses for this stay were kindly funded by
ICOT, and I am very grateful to ICOT for their generous support and

warm hospitality during my visit.

Goals
There were several purposes for my visit to ICOT. They are listed below,

in no particular order of importance:

+ To become better acquainted with MGTP and related ICOT theorem-
proving software.

. To gain expertise in the KL/l programming language, the SIMPOS
development environment, and related new ICOT technology, in a
situation where close consultation was possible with the experts who

produced. it.

« To collaborate with Dr. Slaney and ICOT's Fifth Laboratory in work on
the development of a semantically constrained theorem prover, to be
adapted from ICOT’s ground and non-ground MGTP inference engines,
and based upon a model of the theorem prover SCOTT developed
under the ANU/Argonne National Laboratory (USA) collaboration

agreement.

« To develop demonstration software for the 1992 Conference on Fifth
Generation Computing Systems (FGCS-92), held in Tokyo from June 1

throngh to June 5.

« To present a demonstration at FGCS outlining ICOT's collaboration
with the Australian National University.

« To briefly visit the- Numazu laboratories of Fujitsu Ltd, with whom the
ANU has a collaboration, research and development agreement.

Report Structure

The remainder of this report deals with the details of my visit, and in
accordance with the agreement by which my visit was funded, offers
constructive criticisms based on my experiences at ICOT.

The rest of this report is arranged into the following major sections:

Schedule contains details of how my time was spent at ICOT.

Comments contains my opinions and suggestions, and is divided into the
following sub-sections: .

SC/IMGTP deals with the development of the semantically
constrained theorem prover SC/MGTP, and related software. It also
includes comments on the MGTP provers.

SIMPOS contains details of my experiences with the SIMPOS
operating system, the PSI-3 personal workstations and other
related experiences.

KL!1 addresses my experiences with this language and includes
comments and suggestions for future use and development of KL/1.

Conclusions contains my final comments.
Schedule

This table below outlines the schedule of my time at ICOT:

Week 1: Discussions were held with Drs. Hasegawa and Slaney, Mr.
Fujita and Mr. Koshimura regarding the design principles of a
semantic constraint theorem prover. During these discussions
Dr. Slaney described the semantic constraint prover SCOTT,
which was developed in as a joint collaboration of ANU and
Argonne National Laboratories. Dr. Hasegawa described the
operation of non-ground MGTP, and Mr. Fujita spoke about
the operation of ground MGTP.

At this time, a preliminary strategy was formulated for the
development of a semantic constraint® prover using both
ground and non-ground MGTP software. To this we would
add KL/! interface software designed and implemented by
myself, and we would study the system with a graphical
performance - analysis program which I was to design and
develop at ICOT under X11/Unix™.

We targeted the initial test problem domain of the semantic
constraint prover as the Lukesiewicz Pure Implication
calculus, with which SCOTT had already had notable success.

During this week Dr. Slaney and I became acquainted with
the PSI-3 workstations, and used Internet to import
development support software from ANU. Mr. Fujita
introduced me to SIMPOS, and I began writing initial KL/1
code for the semantic constraint interface. This entailed
considerable study of SIMPOS and KL/1 documentation,

Week 2:

Week 3:

including learning to use the powerful PEMACS editing
system.

On the weekend, Mr. Fujita kindly showed Dr. Slaney and
myself the sights of Kamakura and Yokohama, including
visits to the temple of Daibatsu Buddha, and to a Shinto
shrine where many beautiful Japanese art treasures were on

display.

In this week development with the semantic constraint
prover (SC/MGTP) continued. Regrettably, Dr. Slaney had to
return to Australia. to prepare for CADE-11, but we
maintained contact with him by electronic mail. More
discussions were held during which we discussed MGTP
operation in more detail, and refined our notions for the
development of SC/MGTP. We also discussed possibilities for
demonstration of this software at FGCS-92, and assigned
various development tasks to the researchers involved in the

collaboration,

During this week my development of the KL/l interface code
(CHECKER) continued, and at the same time I also began
working on the graphical performance software XSCGRAPH.
We wanted XSCGRAPH to provide a performance analysis tool
for future research, but also to offer an interesting,
informative display suitable for demonstration at FGCS-92.

A formal specification for the interface program CHECKER
was written and distributed to the researchers involved in
development of SC/MGTP. An informal description of the
semantic constraint method, as applied to MGTP, was also
written and distributed. Mr. Koshimura began adapting non-
ground MGTP to use the interface specification, and Mr.
Fujita commenced similar adaptations to ground MGTP.

Work continued with both CHECKER and XSCGRAPH software,
and we produced the first alpha versions of the software in

this week.

In this week I was also able to visit the Fujitsu laboratories
at Numazu, where | presented a seminar entitled: Toward an
Effective Tableau Metaprover, which describes my design for

the system PYTHIA, a model generation metaprover system.
There I met with Mr. Minami and Mr. Sawamura, and we

discussed the rdle of automated reasoning in Japan, with
particular regard to its relationship with industry.

Week 4:

Week 5:

My wife had the opportunity to visit Japan briefly, and met
with Dr. Hasegawa, Mr. Koshimura and Mr. Fujita, She was
very impressed with both Tokyo and with Mr. Fujita's
tireless quest to show us many interesting Japanese

entertainments.

I met Dr. Chikayama in this week, and discussed details of
KL/1 implementation with him. Summaries of these and
subsequent discussions with Dr. Chikayama are included in
the section KL/L of this report.

Professor McRobbie also visited ICOT during this week, and
we spoke briefly about the design for SC/MGTP, and about
demonstration opportunities at FGCS-92,

Testing for the alpha versions of SC/MGTP and XSCGRAFH
took place during this week. As a result of insights produced
by the testing we subsequently revised the formal interface
description, and implemented the changes during this week.

Further testing continued, and final preparations were made
for demonstrations at FGCS-92,

During this week I had the opportunity to speak with Dr,
Furukawa about underlying semantics of KL/1, and about the
development of coding disciplines specifically suited to the
language.

This week was primarily focussed around FGCS-92. There,
we presented demonstrations of G/MGTP, N/MGTP, as well as
ANU’s work with SCOTT and our preliminary findings on
SC/MGTP.

At the same time, research into development and
improvement for SC/MGTF continued, although much slowed

by FGCS-92 commitments. In spite of very heavy work-loads

from FGCS-92, Dr. Hasegawa, Mr. Fujita and Mr. Koshimura
continued to be very active in the refinement and
development of SC/MGTP, with the result that regular
observers at the SC/MGTP demonstration were able to see
daily improvements in the developments of our research.

Comments

SC/MGTP

Status
At the time of writing this report, the SC/MGTP code is in place, is
debugged,.tq beta level, and is ready for extensive testing on a range of

preselected problems.

XSCGRAPH is written and fully debugged, and is ready for use with
SC/MGTP and SCOTT. Additionally, it is expected to prove useful for
analysing the performance of N/MGTP, G/MGTP, OTTER and other

PIovers.

Preliminary results with SCOTT demonstrate efficiency increases of 2—4
times with Lukesiewicz Pure Implication problems, and I feel that
similar results will be likely for SC/MGTP in the immediate future.

Impressions
It is clear from my experiences with ‘MGTP in both ground and non-

ground forms that this software is among the ‘most sophisticated and
impressive at ICOT. Great effort has been' made to produce automated
reasoning systems that are at once efficient, highly parallelisable and
with useful potential for both academic and industrial applications, and
I feel that these goals have certainly been achieved by the MGTP
systems. During my attendance at FGCS-92, I formed the .impression
that many other leading foreign researchers in automated reasoning feel

as I do.

Overall, I feel that to have entered the world arena of theorem proving
at such a high level in such a short time, and to have done so using an
experimental new programming language, and on prototype hardware,
is a tribute to the vision that inspired ICOT, and a credit to both the
management and to the researchers involved. 1 personally feel very
privileged to have collaborated with such a group, and look forward
eagerly to further opportunities to extend this collaboration.

Future Developments
Clearly, the applications that are already being made of MGTP show that
it is already very sensitive to real-world problem solving issues, and I
think that this is a great virtue. Although research into MGTP is still
continuing, [feel that now is an opportune time to consolidate the work
that has been done to date, and to make it more readily available to the
theorem proving community outside Japan. This is consistent with the
philosophy of ensuring that MGTP remains a real-world prover as well

as a tool for future research investigations, and is in keeping with ICOT's
stated goal of providing free software to the international community.

To put my comments into proper context, it may prove useful to make a
comparison with another well-known prover, Argonne's OTTER. OTTER is
an internationally recognised standard against which other provers are
measured. I feel that this is because it is fast, can be run on a variety of
computing systems, and is well documented at every- level from the
theory down to the fine details of implementation. I think that these
features make it very attractive for researchers outside of Argonne to
experiment with OTTER’s algorithms, and such external interest is also
very useful to OTTER’s development.

Because of its speed and generality, I think that MGTP is also a
candidate for becoming a standard against which other provers are
compared. But I believe that in. order to achieve, this aim, two further

goals should be set:”

Firstly, I feel that MGTP needs to become available for execution on
general computing architectures, and in particular, on a variety of
common parallel computers. Such execution can only be pessible if KL/1
is written for a broader group of target. architectures than just PIM
computers. I deal with this matter in greater detail in the KL/l section.

Secondly but more immediately, other researchers can become familiar
with MGTP through collaboration at ICOT. Already there is sufficient
documentation for visiting researchers to investigate the basic
algorithms of MGTP software. All that remains is to make the
implementation itself easier to understand by documenting it
thoroughly. To document and clarify MGTP implementation is relatively
short work, and I believe that it will be well worth the effort in terms of
the benefits it brings to future collaborations.

With regard to future collaborations with ANU, I feel that the
opportunities in this area are very rich. Although the performance of
SC/MGTP is not yet quantified, I feel that there is plenty of scope for
improving its performance in the short term. For the medium and
longer terms, discussions have already taken place with a view to
making the semantic models of SC/MGTP more concise and also more
powerful. It may be that research along these lines will prove very
rewarding. Professor McRobbie has already expressed interest in this
research, and I am personally very attracted -to the idea of pursuing

research along these lines.

SIMPOS

Impressions

— 12_

I am not a specialist in operating systems development, and so I offer
these comments as a naive, casual user of SIMPOS. In particular, I don’t
know how easily some of my suggested improvements could be
implemented, or at what cost to system performance, but I offer them

here anyway.

I feel that SIMPOS offers a potent environment for developing KL/I
applications. I am particularly impressed by the support libraries of
KL/1 graphics output routines. that are available under SIMFOS.
Although I haven’t used these libraries myself, I saw their use at many
FGCS demonstrations, and I felt that they were of high quality in terms

of both performance and flexibility.

During my visit to ICOT I was surprised to learn that on a PSI-3, SIMPOS
executes within a single X11 window, so that each SIMPOS window is
maintained directly by SIMPOS software rather than by XI11 software.
This fact caused me some confusion, since I expected that SIMPOS
applications would either write directly to the PSI screen (and hence be
incompatible with X11), or else would interface with X11 on a window—
for—window basis. I don’t fully understand the reasons for the present
design, but I imagine that one reason might have been the enormous
amount of work needed to provide a full KLI/X11 interface on a

function—for—function basis.

In any case, there seems to be some difficulty with the present
approach. I noticed there was some bad timing for cursor motions and
mouse clicks, and that SIMPOS would sometimes freeze when I typed
ahead quickly during a window refresh. At such times, the only solution
I could find was to reset SIMPOS completely. I feel that the most likely
reason for this is just the enormous amount of interfacing required to

translate a SIMPOS event into the final screen update.

I don’t know whether making each SIMPOS window an X11 window
would provide a solution to this problem, or whether such a change is
even feasible. However, I believe that such a change would be useful for
many other reasons, and I invite the SIMPOS designers to please

consider 1it.

I noticed another difficulty that emerged as a result of my heavy use of
virtual tiys (i.e, the Unix devices “/dev/ttyp0[0-8]”). Due to my need to
access five or six different computers during my software development,
I often used every virtual tty device for Internet connections and local
windows. When I did this with SIMPOS running, the system would
sometimes freeze, and would only respond to pairs of keystroke+mouse
motion events. My solution in this case was to close one or more

windows to free up some virtual ttys, and then the system immediately
became fast again. I don’t know whether the response problem came

from the fact that all the virtual ttys were used, or whether it was
because foo many virtual ttys were used. In the first case, increasing
the number of virtual ttys may provide a simple solution; in the second
case, the problem might be correctable through system fine-tuning,

During my visit to ICOT I had opportunity to read several volumes of
SIMPOS documentation. Although some sections of the documentation
are still in draft form, I would like to say that I found the English
versions to be ‘very clear and well written. The two manuals that 1 used
most often were the PIMOS Programming and Operations Manuals
(Version 6.0.), . although these documents were supplemented with
several paper preprints and technical reports. Using these manuals, I
was quickly able to learn to use the SIMPOS file manipulation
application, the compilation and debugging software and a variety of
other useful SIMPOS tools. I am particularly grateful for my painless
introduction to SIMPOS emacs — an_editor that I have hidden from for
many years! I found Pemacs very powerful and easy to use, and the
documentation was of great help in learning to use the program.

My only regrets in this area are .two: I was unable to obtain English
documentation for KL1/SIMPOS system calls, which I would have liked
to read out of interest and for future use, and from time to time I
regretted the absence of an Index in the PIMOS manuals. .-However, I am
very pleased to have learned emacs so painlessly; I hope to take a copy
of the pemacs commands summary back to Australia with me, so that I

do not forget!

KL/1

I cannot adequately express my delight with this programming
language. To me it suggests many possibilities for new approaches in my
own field, and I consider its development to be potentially as significant
for knowledge processing as the development of Prolog was to logic

programming one decade ago.

My main reason for making such a strong statement is very simple:
there are many searching problems applications for which I believe that
no effective depth-first strategy exists. Often in my own field, I have
noticed that while the best search path may be short, the search-space
is so broad that the short path is difficult to find using depth-first
heuristics. This is because we can seldom know ahead of time which
depth-first search path is best to begin with, and because there are
many such paths. Later, while we are exploring a single search path, it is
difficult to discover if we are making effective progress toward a
solution because we have no way of gauging how difficult other search

paths may be.

I feel that using an effective breadth-first language, we may find a
solution to this problem. By developing many partial solutions in a
breadth-first fashion, we may be able to develop comparison
procedures to determine which paths are proceeding the best. If
effective, such a comparison would permit us to concentrate our
resources on a few of the best paths. Although we cannot effectively
identify a good approach by considering just a single path, I believe that
by considering many paths we may attain some insight into the sclution
process by using the context of many solution attempts to guide us.

I do not claim that KL/1 is perfect for this application, but I am very
excited by the potential that it offers. It seems that many other
researchers at ICOT feel the same way. Often, I have seen researchers at
ICOT telling Dr. Chikayama what they think should or should not go into
the next revision of KL/l1, and [myself have already taken several
opportunities to “bend his ear” with my own views. So, in my report, I
would like to bend the ear again...

I think that KL/l offers a very broad base for a variety of applications.
At present it is ‘a relatively pure language and the semantics are still
very clean. Experience with other pure, clean languages such as LISP
and Prolog shows that they rarely remain pure and clean once people
‘begin to use them. But with KL/1 I feel that there is great potential to
write a series of “front-end” syntactic translators that would provide
many different language facilities for essentially the same semantic
base. Using this scheme, it may be that KL/l can remain pure for a little
longer, while at the same time pleasing a diverse community of

potential users...

Of the suggestions I outline below, several can be implemented as
syntactic variations of current KL/l, and require no change to the
compiler itself. Such alterations always maintain upwards compatibility
with existing KL/l programs. Others may require more extensive
changes and hence need more detail than this document can offer.

Data Typing :
I feel that as a software engineering languvage, KL/1 is somewhat too
generous in its freedom of data access. For instance, although different
data types exist, most type-checking is done at run-time, using special
KL/1 predicates inserted into the guard. I feel that some type-checking
would be more effectively performed at compile time, and so I would
like to see more explicit type declarations in the KL/l language. A

sample syntax might look like this:

goal(A: atom, Vi vector(Size), L: list, D) :— ...

where V and L have explicit types, while D can have any data type. For
such an extension, no real change to the language semantics 1is
necessary, and hence no change to the compiler is required. - The
language extension can be made entirely through a syntactic
preprocessor. I feel that this syntax produces code that is freer from
bugs, and easier to understand.

Aggregate Data Definitions
A possible extension on the extension above is to offer optional special

types for vectors, with named elements, eg:
record(Myrecord, {Name: atom, Address: string, Family: List}).

identical(V1: Myrecord, V2: Myrecord, Value) :(—
Vi.Name = V2Name —= Value = true;

otherwise;
true —= Value = false.

Here, record is a special pre-defined goal. Since vectors are used as
both homogeneous and heterogeneous data aggregates, we can use
record to create heterogencous data structures.. Such code could
translate syntactically to something like the following:

identical(V1, V2) — .
V1 = {MNamel, Addressl, Familyl},
V2 = {Name2, Address2, Family2} |

Namel = Name2 — Value = true;
otherwise;
true —= Value = false,

I feel that such a simple change offers a very structured language with
great potential for software engineering — and it uses no more
preprocessing functionality than is already provided for in oldnew

implicit arguments.

Optional Term Matching
Another observation I offer is that KL/l data flow is always achieved
by unification, which by definition is always bidirectional. However,
very commonly the KL/I programmer only requires one direction of
data-flow, and so only term matching is needed, as in the following

example:

List—Tail = Stream % Break down a stream.

To me it seems worthwhile to use the knowledge that data-flow is
intended in only one direction so that the compiler can generate code
for matching, rather than full unification code. Such code is likely to be

10
— 16 —

more efficient in execution, but perhaps more importantly, [feel that
the program will be easier to read, and is less likely to contain bugs
arising from unintended unifications of aggregate data. I envisage two
possible implementations of this extension: '

1} All variables may be declared as read-only, write-only or
read-write, for the scope of each goal. Thus, the question of
unification or term matching can be decided by considering the
variables in each unification expression. Eg:

goal{f:e:?:-}: Vector, >>L<< List, D) :—...

where “<<X>>" is used to denote input (i.e. a read-only
argument), while *“>>X<<“ is used to denote output (ie. a write-
only argument); absence of a data-flow Qquotation . indicates
both input and output (read/write), and this maintains
upwards compatibility . with current programs.

2) All unifications may be written as either one-directional (i.e.
term-matches), or as bidirectional (full unification), so that the
use of each variable depends on the set of statements in which

it occurs. Eg:
L <<= [V | Tail],

Using this approach, each variable is read/write, but the data
assignments themselves determine variable usage. Again, this
extension is upwards compatible with existing KL/l -code.

Both of these suggested extensions require a revision to the compiler
and to the language semantics, but I think that the benefits here are
strong ones, and well worth the effort of revision. More efficient code
translation opportunities are likely, but far more importantly, it is much
easier to understand the intended sense of the code.

Test-and-Set Goal
With regard to parallel data access, it seems that the only possible data
protection mechanism at present is by master/slave communication. I
feel that a greater variety of options for parallel data access might be
available through the introduction of an atomic fest-and-set reduction.
Such a system-defined reduction would take a variable argument, and
try to unify it with some function of the current processor index and the
calling goal's execution index. At the end of the unification attempt, the
test-and-set goal would return the value of the variable, and the caller
could check whether the value was its own value, or the value of
another process. This mechanism would permit many sibling processes
to access data safely without the need for requests to a master process.

Such a mechanism brings many new strategies to breadth-first
searching, and I warmly encourage KL/I development in this area.

KL/1 for Other Architectures

Finally, 1 earnestly suggest to the researchers at ICOT that a non—PIM
KL/1 implementation is of the greatest importance to the international
acceptance and usage of most of ICOT's free software. History shows us
that such an implementation need not be efficient initially in order to
gain acceptance. Early experiences with Prolog and Lisp, and more
recently with powerful new meta languages_sugh as SML, show that
people are first. drawn to such languages for their axpress:vr, power,
rather than for their efficiency in execution. Commonly it is only later,
as many researchers begin to accept the new Ianguage, that the
language becomes efficient to execute as well as to write. By that stage,
the popular adherence is already strong.

For many institutions, code development time is the most expensive
resource of all. I have little doubt that a language which offers a
radically new paradigm will find many adherents very quickly,
provided that thc}r can use the Ianguagm on their - own workstations
rather than just reading about it in a scientific journal. Again, the
question of high-quality documentation seems central to the use of new
technology. Therefore, 1 warmly recommend that as a matter of priority,
either ICOT produce a KL/1 implementation for a non PIM architecture
and support it with thorough documentation, or else that ICOT publishes
a set of KL/l semantics broad enough to interest implementors from

outside ICOT.

From the expertise that I have seen in my stay at ICOT, I have no doubt
that if such an aim is attempted, it will swiftly meet with great success.
I know too that I am not alone in offering ICOT the warmest of wishes
for its future endeavours.

Conclusions

In the Introduction to this document I outlined the goals for my visit to
ICOT, and now I would like to present a summary of my experiences
here in the context of those goals:

+ In my attempt to become better acquainted with MGTP and related
software, I have been exposed to what I believe is some of the most
promising research in automated reasoning today. I now feel that [
have an understanding of the basic principles of MGTP software.
have studied it in operation and have been able to use it successfully
in collaborative research. I know also that my knowledge of MGTP
implementation is incomplete, and I welcome the opportunity to read
any documentation that ICOT produces on the MGTP implementations.

— 18 —

« In my aim to gain expertise of the KL/1 programming language, I
have discovered a language that I feel could become a.basic paradigm
for many areas of knowledge processing. I understand too though,
that in such a new field, the opinions about what constitutes a good
knowledge processing paradigm are many and diverse. I feel that in
this field it is impossible to please everybody, and yet from the basic
semantics of KL/1 I am encouraged to believe that there is a broad
enough semantic base to allow many knowledge processing
researchers to configure their own language extensions. It may be
that in this difficult and often controversial field, such an approach is

the best possible one.

« I am very pleased with my collaboration with Dr. Slaney and ICOT’s
Fifth Laboratory. Research is seldom conducted so quickly and
decisively as it was conducted during my stay at ICOT, I attribute
such rapid research progress to two main factors: the strong
development environment which ICOT offered me, and the tireless
work and aid of my Japanese colleagues — Dr. Hasegawa, Mr. Fujita
and Mr.. Koshimura are all -deserving of praise. Of course, while
semantically constrained MGTP is still being tested, no definitive
statement can be made about the success of the research. However,
whether such success comes now or later, this collaboration is still
young, and I am sure that many more successes will also come if this
collaboration is nurtured.

- In the production and presentation of demonstration software for
FGCS-92, 1 feel that I am not qualified to judge the success of the
attempt. Such a judgement is best made by those who attended the
demonstration, not by those who presented it. However, I am
personally satisfied with the audience responses I received during
the demonstrations, and I am particularly satisfied at having helped
produce two new research tools in the space of only one month. If my
demonstration was successful, I believe that it stood in the good
company of many other successful ICOT demonstrations. If it was not
successful, then I feel that the quality of the collaboration alone has
made my visit well worthwhile.

« In my visit to Fujitsu's laboratories I had the opportunity to witness
research in a purely industrial environment, and to exchange ideas
with rtesearchers there. Our discussions often brought to my mind the
obligation of researchers in knowledge processing technologies to
recall the increasing demands of industry for useful and effective
knowledge processing tools. It is clear to me that rapid progress in
this difficult field can only be achieved through international
focussing of our research goals, and through global communication of
our insights and techniques.

I feel that the importance of such international and
academic/industrial collaborations as the ANU/ICOT and ANU/Fujitsu
collaborations cannot be overstated. Only through the exchange of
ideas and opinions from both applied and theoretical spheres can we
gain enough expertise to understand the depth of the questions at
hand; only through frank comparison and consolidation of our many
diverse approaches can we hope to achieve significant progress
toward their solution.

It is clear to me that ICOT’s policy of open collaboration can only be
described as a’ great success, and I am in no doubt that I shall always
remember my first visit to ICOT as one of the most formative
influences of my professional life.

Curriculum Vita

Persanal
Name Mark Denis Grundy
Address 5/7? Canberra Ave, Griffith, ACT 2503, Australia
Phaone +51 6 249 0158
Home +61 6 200 9543

Date of Birth 22/05/63
Marital Status Married
National ity Australian

Occupation Postdoctoral Research Fellow, Center for Information Science
Research, AN

Education and Awards
BSc. (Hons I) awarded at University of Sydney, 1985.
Fh.D. awarded at University of Sydney, 1932,
ARC Postdoctoral Research Fellowship

awarded at ANU, 1830.

Active Projects

The design and realisation’ of a language for programming
cameo--based prover systems.

The incorperation of medel--based reasoning into symtactic proof
procedures.

