Evaluation of the FGCS Project

David H. D. Warren
Department of Computer Science
University of Bristol

General Impact

The FGCS project had a major political impact from the time it was first announced.
The originally described plan was rather broad and fuzzy, with some apparently grandiose
objectives, and its announcement generated a lot of hype. It was some time before Fuchi’s
clear and far-sighted vision of future computer systems, in which logic programming would
provide the central link between parallel architectures and knowledge processing applica-
tions, became widely understood. Many international developments were stimulated by
the perceived "threat” of the FGCS project, including Alvey in the U.K. and MCC in
the U.S.A. Other international developments were more directly inspired by the scientific
vision of the project, and included the setting up of institutes such as SICS in Sweden
and ECRC in Europe which were very much overseas counterparts of ICOT with very
similar research directions.

Overall, the project has had a major scientific impact, in furthering knowledge through-
out the world of how to build advanced computing systems. It certainly provided a
tremendous boost to research in logic programming. In a real sense, FGCS has become
an international rescarch effort. This clearly has enhanced Japan's international prestige.
The project has also led to Japanese researchers becoming far more "plugged in” to the
international research community than they were at the time of the project’s announce-
ment. A further general benefit of the project to Japan must surely be the transfer to
Japanese industry of research ethos and experience, provided by staff returning to their
home companies after their three-year assignments to ICOT.

Organisational Issues

The project appears to have been handicapped, in tackling its very ambitious research
goals, by being set in a framework more suited to an industrial development project.
Ten years of basic research cannot be tightly laid down in advance, as much of ICOT’s
programme seems to have been, with its fixed duration, phases, milestones and hardware
deliverables. The inflexibility of ICOT’s programme seems to have prevented the possi-
bility of changes of direction and reevaluation that are necessary in an advanced research
project.



The research leaders of ICOT are scientists of very high calibre much respected by their
international colleagues. Most of them have been with the project for its duration and
have provided continuity of direction. Most of the other ICOT staff have been working
on three-year assignments from the companies. The resulting lack of long-term continu-
ity of [COT staff, and the fact, as I understand it, that ICOT could not hand-pick the
majority of its staff, are additional handicaps to pursuing advanced research not shared
by comparable institutions such as ECRC, MCC and SICS.

Major Technical Achievements

The FGCS project has produced many significant technical achievements. Some of the
major accomplishments which are of particular interest to me and which I would person-
ally highlight are the following.

First, ICOT has achieved its foremost concrete objective of building a parallel infer-
ence machine with a performance exceeding 100 megalips. Given the state of the art at
the time the project was announced, when Prolog performance was at best 40,000 lips
and large-scale parallel machines hardly existed, this achievement is quite remarkable and
should not be underestimated. Although KL1 lips are not quite as powerful as Prolog
lips, ICOT’s achievement still represents a leap forward by more than three orders of
magnitude,

On the language side, I consider GHC to be a most significant contribution. It em-
bodies, in my opinion, the most elegant encapsulation of the committed-choice language
(CCL) concept, simplifying and clarifying what was introduced by Parlog and Concurrent
Prolog.

In its parallel implementations of KL1, ICOT has significantly advanced the imple-
mentation technology for CCLs. My own group has drawn on this work, and on the key
idea of GHC, in our implementation of Andorra-I.

Although I have some reservations about that ICOT has committed itself entirely to
CCLs and the concurrent logic paradigm, it cannot be denied that ICOT’s PIM machine
and operating system PIMOS are a powerful demonstration of what is possible in terms of
building a machine and operating system entirely based on a CCL. It strikes me as some-
thing of an heroic feat, akin to climbing Everest or putting a man on the Moon, which
opens our minds to future possibilities while perhaps not bringing immediate economic

benefit.

As part of its programme for producing demonstrations of KL1 and PIM, ICOT has
created a number of innovative parallel symbolic applications, notably in the areas of
VLSI CAD, molecular biology, natural language analysis, and theorem proving. For me,

— 04 —



they are particularly interesting in showing the potential for parallelism in algorithms
very different from the kind of regular and repetitive numeric computations which are
typical of parallel computing today.

Technical Issues

There are some specific technical issues on which I would criticise the approach taken by
ICOT. While I can appreciate some of the reasons why [COT took the path it did, I feel
the project might have achieved more, and remained closer to its original vision, if certain
key decisions had been made differently.

Perhaps the most important issue is the decision (or assumption?) that parallelism
has to be to be expressed explicitly in user programs, rather than designing systems to
exploit parallelism automatically (taking advantage of the fact that logic programming,
as a declarative formalism, allows parallelism to be expressed implicitly). Requiring the
user to take direct responsibility for expressing parallel algorithms adds greatly to the pro-
gramming burden, especially for the kind of complex knowledge processing applications
which are the main target of FGCS. This route is only appropriate for problems which
are computationally very intensive and where adequate performance cannot be achieved
by other means. But for such problems, the first priority before tackling parallelism is
probably to ensure that the sequential algorithm is as fast as it possibly can be, using
as low-level a language as is necessary. This tends to argue against using a high-level
approach such as logic programming.

On the other hand, there are many problems which may be potentially speeded up by
exploiting implicit parallelism automatically, and where logic programming may provide
reasonable performance (perhaps via the parallelism) in relation to software development
cost. If parallel computers become the norm, as seems technologically inevitable in the
near future, software systems which can exploit parallelism automatically will have a ma-
jor role to play. It is a pity ICOT didn’t take the opportunity to pursue this direction,
which is being actively explored by other research groups (including my own).

The decision to go for explicit parallelism was linked with the decision to adopt the
concurrent logic programming paradigm as central to all aspects of the project. In par-
ticular, all user programs in practice have to be expressed in, or implemented via, the
concurrent LP paradigm, by means of the kernel language KLI. While the concurrent LP
paradigm is of considerable interest in its potential for formalising interactive systems,
and may be appropriate for many purposes including implementing operating systerns, it
is not, in my opinion, suitable for most user programs.

For most user programs, a much more high-level approach is needed, and ideally one
would like to use declarative logic programming, i.e. logic programming as it was origi-



nally conceived. In declarative logic programming, the program expresses a declarative
view of the problem as well as providing an operational solution to the problem. By
contrast, the concurrent LP paradigm provides no declarative view of the problem. At
best, it can be said to consist of a declarative description of a concurrent algorithm for
solving the problem. In practice, users of the paradigm take an exclusively operational
view. Without the declarative underpinning, there is no particular reason to maintain
the original connection with logic, and every reason to modify the formalism to make it
better fit its operational purpose. For these reasons, it is arguable whether concurrent
LP is indeed logic programming in its original sense.

Be that as it may, the present situation with ICOT systems is that the main user
language, KL1, is considerably lower level than traditional logic programming languages
such as Prolog. Other, more high-level, user languages have been provided, but have had
to be implemented on top of KL1. Although ICOT believes the use of KL as an inter-
mediate language does not entail any unacceptable overhead, there seems good reason to
believe that higher level languages and inference systems (including Prolog for example)
could be implemented much more efficiently if a lower level implementation language than
KL1 were used. In my view, KL1 is too low-level as a user language for most purposes,
but too high-level to serve as the lowest level implementation language.

For a kernel language based on logic programming to be acceptable as a general user
language it must, in my view, provide at least the basic capabilities of Prolog. This
certainly seemed to be the view in the original FGCS proposal and in the early stages
of ICOT’s work. KL1, however, is considerably weaker than Prolog in that it does not
provide a builtin search mechanism for finding at least one (and possibly all) solutions to
a problem, although it is more powerful than Prolog in that it provides builtin coroutining
(necessary, amongst other things, to support the concurrent LP paradigm).

It should be noted that it would be possible to have a kernel language providing all
the capabilities of Prolog together with all the essential features of KL1 {(including at least
all of flat GHC which is the heart of KL1). Such a language would be quite acceptable as
a user language, while providing the necessary basis to implement an operating system
according to the ICOT approach. Such a language is provided by the Andorra-I system
implemented by my group at Bristol. This language is viewed primarily as a high-level
extension of Prolog. However, since it includes flat GHC as a subset, it is capable of
supporting the concurrent LP paradigm.

Another most important issue, of a completely different nature, is the question of
whether ICOT was wise to concentrate so much effort on building specialised hardware
for logic programming, as opposed to building, or using off the shelf, more general purpose
hardware not targeted at any particular language or programming paradigm. The prob-
lem with designing specialised experimental hardware is that any performance advantage
that can be gained is likely to be rapidly overtaken by the ever continuing rapid advance
of commercially available machines, both sequential and parallel. ICOT's PSI machines



are now equalled if not bettered for Prolog and CCL performance by advanced RISC
processors. And it seems very possible that commercial multiprocessors such as Sequent
Symmetry, the new Butterfly, and other recent machines could come close to equaling the
PIM performance if ICOT’s software technology were ported to those machines.

A subsidiary issue is whether it was necessary to target KL1 so much at distributed
memory hardware, with all the attendant problems of achieving good locality of communi-
cation and good load-balancing, rather than adopting a virtual shared memory approach,
for which scalable solutions are becoming increasingly well developed, including ones sup-
porting a quasi-UMA (uniform memory access) model (c.f. KSR-1 and the closely similar
work on DDM that I have been involved in). In general, T feel that [COT perhaps devoted
too great a proportion of its effort to developing hardware and operating systems, and
could perhaps have focussed its efforts more on the knowledge processing software and
applications which were central to the original conception of the project.

This section of my report is rather long! Its length should be interpreted not so much
as a measure of criticism of ICOT’s approach, which given the many constraints they
were operating under has been highly commendable I believe, but rather as a measure of
the complexity of the issues that I felt needed to be mentioned.

Overall Evaluation

The nature of the original FGCS announcement raised a lot of expectations that the
project could never have been satisfied and certainly have not been satisfied. Unfortu-
nately, this makes it difficult for the project to be judged a success by the world at large,
which includes most of the media. However, I strongly believe that overall the project
has been a considerable success, and I think most fair-minded and properly informed ob-
servers will share my view.

The project was a major success in galvanising worldwide activity and more impor-
tantly for its scientific impact in stimulating worldwide research in new directions inspired
directly by the FGCS vision and ICOT’s work. The project has also succeeded in achiev-
ing its main concrete target of 100 megalips plus, an outstanding accomplishment that
shouldn’t be diminished with the benefit of hindsight.

But above all, any research project such as FGCS should be judged in comparison with
comparable efforts by comparable institutions elsewhere. I believe the specific research
and development achievements of ICOT are certainly on a par with the three institutions,
MCC, ECRC and SICS, which are most comparable with ICOT and which are represen-
tative of the very highest level of computing research in the world. Moreover it should
not be forgotten that those three institutions came into being largely following in the
footsteps of ICOT and the FGCS project.



Recommended Future Steps

I strongly recommend that ICOT’s work should be continued in some form beyond the
1993 official end date of the FGCS project. The nucleus of highly gifted people and ex-
pertise built up at ICOT should not be allowed to evaporate, but should be continued
within a smaller and more flexible framework. The KL1 software should be made available
on widely available standard hardware, including Unix uniprocessors and multiprocessors
such as Sequent Symmetry and perhaps BBN Butierfly. The PIM hardware should be
examined to see whether it might potentially form the basis for commercial products if
standard languages and operating system were supported. More effort should be put into
evaluating the FGCS results, and especially in comparing the performance and usability
with the best conventional alternatives. Speedups and good load balancing are not enough
by themselves; one needs to show that applications perform better than they would by
other approaches with comparable implementation effort. There should also be contin-
uing research, especially in the areas of knowledge processing and applications. I would
suggest that all this would best be done within a much smaller research institute, with
selected long-term staff, and a focussed but flexible ongoing research programme (c.f. for
example SICS).

It is understood that MITI is anxious to have official overseas collaboration in any
extension of the FGCS work. My own group would be interested in collaborating with
ICOT (or its successor) in evaluating ICOT’s parallel applications developed in KL1, to see
to what extent the same problems can be solved through more directly declarative logic
programs, and whether comparable performance and parallelism can be obtained from
logic programming implementations supporting implicit parallelism (such as Andorra-I).
Unfortunately, DT (the UK counterpart of MITI) requires 50% funding from UK industry
for any research it supports. So long as the ICOT work is only available on custom
hardware, it is unlikely that UK industry would be interested. And even if the ICOT
software were ported to standard hardware, the likely payoff from such research is too
long-term for most UK industry (with its rather short-term horizons). Therefore, I an
afraid the chances of official UK involvement, through DTI, in continuations of the FGCS
work seem poor, for the near term at least.

— 98 —



David H.D. Warren
Department of Computer Science Phone: +44 272 303322
University of Bristol, Bristol B38 1TR Fax: +44 272 251154

o i e i 5 . S e

David H.D. Warren is a Professor of Computer Science at the University of
Bristol. His current research interests are in parallel logic programming
systems and parallel computer architecture. He is well known for his work
on Prolog (including the original DEC-10 compiler, the Edinburgh syntax,
the Warren Abstract Machine, and Quintus Prolog). More recently, his
research has centered on the development of the parallel Prolog systems,
furora and Andorra-I, and the scalable multiprocessor architecture, the
Data Diffusion Machine. He has a BA in Mathematics from the University of
Cambridge, and a PhD in Artificial Intelligence from the University of

Edinburgh.




