Parallel Constraint Logic Programming System
GDCC

ABSTRACT

GDCC i1s a parallel constraint logic programming language, where Con-
straint Logic Programming (CLP) is an amalgamation of logic programming
paradigms with constraint programming paradigms. It is a very high level,
flexible and efficient parallel programming language for problem solving.

We demonstrate the effectiveness of GDCC in various application fields by

showing several example systems.

DEMONSTRATIONS
1) GDCC
Showing the basic features of GDCC by using simple examples.
2) Handling Robot Design Support System
Showing the power and the flexibility of GDCC in the Design field.
3) Hierarchical Constraint Solving in Parallel
Showing the power and the efficiency of GDCC by writing a parallel
hierarchical constraint solving system.
4) Voronoi Diagram
Showing the high level and flexibility of GDCC in the field of Com-

putational Geometry.

+ Handling robot design support
+ Hierarchical constraint solving
» Voronoi diagram

Applications

DCC language processor

« for non-linear algebraic equations
« for linear equations/inequations
« for equations on truth values

v - vMul‘;llAVPSIW

GDCC System

— 101 —

Parallel Constraint Logic Programming System GDCC

1. GDCC LANGUAGE AND SYSTEM

Purposes of the system

1) To provide a Highly Declarative Language based on Constraint Logic Pro-
gramming Paradigms

2) To provide a Powerful and Flexible Problem Solving Framework

3) To provide an Efficient Problem Solving Framework by Employing Paral-
lelism

Problem Solving in Constraint Logic Programming

Constraints are relations that hold in a problem. Problem solving using
Constraint Logic Programming is different from that using conventional pro-
gramming languages:

+ Problem solving using a conventional programming language
1. Problem analysis
2. Finding relationships between objects
3. Finding a solution method
4. Programming as a procedure to solve the problem
+ Problem solving using a Constraint Logic Programming language
1. Problem analysis
2. Finding relationships between objects

3. Programming as a set of constraints that hold in the prob-

lem

How to solve = What to solve

Features of GDCC

1) Two levels of parallelism
To realize a flexible and efficient constraint logic programming language,
GDCC employs two levels of parallelism: one is the parallelization of the
language and the other is the parallelization of constraint solvers.

2) Multiple constraint solvers

1. Algebraic constraint solver
2. Rational /Integer linear constraint solver
3. Constraint solver for truth values

— 102 —

Parallel Constraint Logic Programming System GDCC

3) Block Mechanism

1. Multiple Environment

Since the function to approximate the real roots of uni-variate
equations is incorporated with the algebraic constraint solver; a
mechanism is needed to handle the situation in which a variable
may have multiple values.

2. Localize Failures

To realize search function in a committed-choice language, a

mechanism is needed to localize failures.

3. Specification of Synchoronization points between the inference engine
and the constraint solvers

To maximize or minimize a function with respect to a certain
set of constraints, a mechanism is needed to specify the set of
constraints, and to evaluate a goal with respect to the set of
constraints. For example,

0<X, X<1

mazimize(X +Y) under a set of constraints
0<Y, V<1

GDCC programming examples
Heron’s Formula

The following GDCC program deduces a property on a triangle, known
as “Heron’s formula” from three known properties: Pythagorean The-
orem of a right-angle triangles, the formula for calculating the surface
area of a triangle, and the fact that every triangle can be divided into
two right-angle triangles.

:~ module heron.

:~ public tri/4.

tri(A,B,C,S) :- true |
alloc(0,CA,CB,H),
alg#C=CA+CB,
algHCA**2+Hak2=A%*2,
algHCB**2+H**2=B**2,
alghH*C=S .

— 103 —

Farallel Gonstramnt Logic Frogramming System GLCC

2. HANDLING ROBOT DESIGN SUPPORT SYSTEM

Features

A Robot Design Support System that uses the Flexibility of Constraint
Logic Programming.

Handling Robot Design Process

[Requirment
Conventional method CLP-based method

—@ﬁcation

Constraints
representing
a structure

Constraints
representing
a structure

Programming
for a structure

Analysis
and
Evaluation

no

yes
[End

1) Any robot structure can be handled by only changing the specifi-
cation.

2) There is no need to write an individual program to analyze the

design.

Functions of the system

The Design Support System can:
- Create constraints by
- Solving Forward Kinematics.

— 104 —

Parallel Constraint Logic Programming System GDCC

- Analyze and evaluate the robot by
. Solving Inverse Kinematics,
. Calculating the Torque working on each Joint, and

. Calculating the Manipulability of Robot being designed.

Demonstration

The handling robot in the following “handling robot design support system”
demonstrations is a robot with 3 joints and 3 arms.
1) Forward Kinematics
Deducing the position of the end-effector (P, P, P,) in terms of
the length of each arm (13,13, 13) and the rotation angle of each joint
(01,05,03).
Py = Py(01,09,03,11,15,13)
Specification = { P, = Py(61,09,03,11,1,13)
P, = P,(01,0,,03,11,15,13)

2) Inverse I{inematics
Calculating the desired joint rotation angles (6,,0:,63) to move the
end-effector to a given position (P, P, P.). Since this problem
have more than two solutions, filtering to reduce the number of
solutions is demonstrated by restricting the rotation angle of a
certain joint.
0y = 01(Py, Py, Py, 1y, 13,13)
Specification = { Oy = 09(Py, Py, P, 11,15, 13)
03 = 03(Py, Py, P, 1y, 12, 13)

3) Calculation of Torque and Evaluation of Manipulability
By using the forward kinematics results (P, P, ;) and giving the
force working on the end effector (Fy, Fy, F}), equations to calcu-
late the torque working on each joint (77,75, T3) and the manipu-
lability (D) are deduced. Then, by placing constraints on moving
the end-effector, the equations for torques and manipulability are

simplified.
P, = Py(0,,02,03,11,1,13) Ty =T\(01,0o,05, Iy, Fy, FY)
Py = Py(01,0:,05,11,15,13) N Ty = T5(0,,04,05, Fy, F, ;)
P, = P.(01,09,03,11,15,13) Ty = T3(0,,04,05, F,, F, F.)
F., Fy, F. D = D(0,0,,03)

— 105 —

Parallel Constraint Logic Programming System GDCC

3. HIERARCHICAL CONSTRAINT SOLVING IN PARALLEL

Constraint Hierarchy

1. Introduces various strengths of constraints
2. Important in synthesis problems

Features

Solving Constraint Hierarchy in Parallel by GDCC using the Block Mech-

anism

1. We show how to solve constraint hierarchy by the block mechanism.
2. We show speed-up by parallel execution on Multi-PSI.

System Architecture

User-Defined
Constraint Hierarchy
(expressed in lists)

Constraint Hierarchy Solver
(written in GDCC)

GDCC System

Demonstration: Gear-Box Design
g1
92

Avisl = g G

3 1
Axis2- } -
gr g8 D)

Azis3- b

Four-Speed Three-Axis Gearbox

We specify the sum of the two intervals between axes and output the speed
ratios, each of which is produced by combining two meshing pairs. We assume
that there are standard radiuses of gears which take discrete values. We decide
each gear radius so that standard gears can hopefully be used as many as

possible.

— 106 —

Parallel Constraint Logic Programming System GDCC

Example of Design Problem

Hard Constraints (speed ratio and distance):

mtio(<917 93> 3
ratio((9s, ga),
ratio((g1, g3)

ratio((gs, g4)
T+ Ty = 10

9
)

(g5, 1)
(955 97)
(96, 98)
(965, 98)

) =1
)=2
)=4
96, 98)) = 8

Soft Constraints (use of standard gear):

The radius should preferably be 1, 2, 3, or 4.

Result
Ratio Speed-up Ratio
10
9 — Hdsec
g 60sec(8.9) (9.8)
7 76sec(7.0)
6
5 101sec(5.3)
4
31 # 195sec(2.8)
2
1 537sec(1.0)
0
14 8 16 32 64

Number of PEs

— 107 —

e TN

N~
o

&

e N N N S

rrarauner vonstraint Logic rrogramming sSysterm oo

4. VORONOI DIAGRAM

Voronoi Diagram

The Voronoi Diagram of a finite set S of points in the plane is a partition
of the plane so that each region of the partition is a set of points which are
closer to one point in S in the region than to any other point in S.

Point
Voronoi edges
Voronoi Polygon
Voronoi Vertices

Features
The Voronoi Diagram Program uses the High-level and Flexibility of Con-

straint Logic Programming.
1) The algorithm is relatively straightforward.
2) The algorithm is O(The number of points N).

3) The definition of the distance can be changed easily.
Demonstration
1) Constructing the Voronoi diagram for given points

2) Changing the definition of the Voronoi diagram

Result

Speed Up

10 12 14 16

023 ¢ 3
Number of PEs

— 108 —

