MENDELS ZONE

A Concurrent Program Development System

ABSTRACT

MENDELS ZONE is a software development system for concurrent pro-
grams. The system takes as input several kinds of specifications for MENDEL
objects, verifies their correctness using automated theorem proving techniques,

and generates correct KL1 programs semi-automatically.

KEY FEATURES

® object generation: Specifications, based on equational logic, for MENDEL,
objects are verified in parallel using term rewriting techniques and trans-
formed into MENDEL objects automatically.

® object composition: MENDEL objects are represented by a high-level
Petri net (MENDEL net). Users compose these objects with the aid of a
graphical MENDEL net editor.

@® object adjustment: Composed objects are automatically adjusted to
satisfy supplied temporal logic specifications, which specify only timing con-
straints of composed objects. The object adjustment is carried out by parallel
automated reasoning techniques with Petri nets and temporal logic.

Object Specification [Input
(Equational Logic) |

bject Generation

Interobject Structure
(High Level Petri Net)

Object Composition) MENDEL |

Programs |

Timing Constraints |Input

(Temporal Logic)

bject Adjustmen

SYSTEM CONFIGURATION
— 97 —

MENDELS ZONE

ABSTRACT

In the future, an increasing number of application programs will be dis-
tributed systems or concurrent systems. Debugging and testing of concurrent
systems are very difficult, hence it is necessary to establish a methodology for
the development of reliable programs. MENDELS ZONE is a system whose
aim is the realization of such a methodology, and supports the development
of correct concurrent programs through the combined use of several formal

methods.

APPROACH

MENDEL is a concurrent programming language based on Petri net seman-
tics, which can be compiled into KL1 and executed. A MENDEL program is
composed of several objects which behave concurrently. MENDELS ZONE is
a concurrent program development system for MENDEL, that adopts formal
methods based on mathematics.

Formal methods are recognized as useful in developing reliable programs,
but the following problems need to be solved before putting them into practical

use:

1. It is difficult to describe a whole system with only one formal method.
2. Specifications become less comprehensible as their sizes grow larger.
3. Formal methods are not suitable for large scale systems.

4. The verification of specifications and the generation of programs are com-
putationally costly.

In MENDELS ZONE, the above problems are dealt with as follows. Objects
behaviors are described by an algebraic specification based on equational logic,
and timing constraints among objects are described using temporal logic. Vi-
sual specifications such as Petri nets are used to make formal specifications
more understandable and lessen the burden of describing the specifications.
Objects can be regarded as reusable parts because of their increased com-
prehensibility and modularity, which makes it possible to develop large scale
systems. Theorem proving methods for both the equational logic and the tem-
poral logic are used in order to verify specifications and transform them into
programs. Parallel implementations of these methods contribute in shortening

the time necessary for verification and transformation.

MENDELS ZONE

MENDELS ZONE has put formal methods into practical use as described
above, and 1t becomes possible to verify the correctness of specifications and
transform them into programs. As a result, reliable programs can be gener-

ated.

OUTLINE OF SYSTEM

The development of programs using MENDELS ZONE has two phases,
namely, the “Algebraic Specification Phase” in which objects are generated
and the “Petri Net Phase” in which objects are composed.

Figure 1 is a snapshot taken during the “Algebraic Specification Phase”.

MEVIS/MPST verd.0 (20,8ug.1901), Insditule for Wew Geuerwtiow Computer lee
GRasH VROCESS —

o3sage.liat (=<C(A.B).g.cons (n_dat (data (a(an
----- 6.ix1) 40} 1g.nil) vg.nil) .get_nessage_trom ti
r_table (D)) -> g_deleta(a(ani®l6.ix1).get_nes?
sage_from_timer_table (D))
New r87: g_dalate(a{ani®16.ixd) ,9 append(it.nl
s3sage.list {=<<(A.B) ,g_cons (n_dat (datm(a{anidl}
6,ix1) 4C)) 19.nil) eg_nil) .get.message. from tinal
r.table(D))) -> g_append(if_nessags_list (=<<(Al
+B) cg.cons (n.dat (data (a (ani®16.ix1).0}) cgnildt
+g-nil) g delate (a(ani®16.ix0) .gat_message_ trol
m_tier_table D}))
Now r38: g_delete(a(ani®16.ix1).g_append(if_n!
o33age_list (=C<(A.B) .g.cons(n_dat (data(a(anidll
6.ix®).C)) sg.nil) vg.nil) .gat_nessage_trom_ timel
r.table 0))) -> g.append(if.nessage.list (=<C(A!
+B) vg_cons (n_dat (data(a(ani®l6.ix®) .C)) .g.nil) t
8 19.nil).g_delote(a(anidl6,ix1) get_nessage_trol
g n-tiner_table(D)))

timer 1
object timer has

HENIRNS CORSTSTENE #unnure
118 CPs are found (29 are asserted).

use: tim.list: msg.list: req.list: 88 rulss are genorated (88 remain).
cancel_list: { time used 158.868 sac. for “INDUCTION" mode 1
functions:
count (tim list) --> tim.list; CMETIS/MPSI] ~> ©

get_mag(tin.list) ~—> msg_list;
delmsg(tim_list) —-> tim.list;
set_mag(tin.list.req_list)
==> tim_ list;
can.msg(tin_list.cancel list)
) -=> timlist:
axioms:

set_msg (TTABLE,s.nil) ==TTABLE;
set_nsg (TTABLE.s_cons (Req.RoqTail))
==sot_msg (t_cons (set_tin(Req),

TTABLE) (ReqTail) ;

FIGURE 1

Users denote algebraic specifications for behavior (Method) of objects[1]. In
order to describe specifications correctly, MENDELS ZONE provides several
support functions: syntactical check, direct execution as a term rewriting
system and verification with inductionless induction. When equations that the
specifications should satisfy are given in [2], the system verifies automatically
whether they are true or not. Progress of the verification procedure can be
observed in [3]. After verification, the specifications are transformed into
MENDEL objects automatically.

Figure 2 is a snapshot taken during the “Petri Net Phase”. Objects gener-
ated by automated transformation are registered in a Parts-Library[4] Com-
position of objects is represented in terms of a high-level Petri net (MENDEL
net), and is created using only mouse operations in the graphical MENDEL

net editor [5]. In general, there are some timing constraints among methods in

MENDELS ZONE

a object or among objects . In such a case, users denote the timing constraints
using temporal logic[6] MENDELS ZONE adjusts Petri nets automatically in
order to satisfy the constraints. This program adjustment means synthesizing
an arbiter that is attached to the original programs. A completed MENDEL
program is compiled into a KL1 program, whose execution can be monitored
within the environment provided by MENDELS ZONE.

D 0 e Co e Progra ¢ e er. 4.0
EXTERN attribute exit | Top Menu: tal data exacute utility oxit

‘ 1 BIND clear create 11ash garnet uhh(s oxit
rem_sct
rem comt Sexp2>actil] refrash nornal KOIN part GEGDd]

from mmi}) .
frem_timf

te_ect?

te_com?

L IBRARY big search edit

O4~Ap v« —— -

tim

¢
mmi e 06-Apr-w
act ¢ 06-Apr-9
sim ¢ 06-Apr-9
exp82 ¢ 06-Apr-9
Tab_exem ¢ Exampie

TSL clear save doit exit

domain ([init_act, sppe
nd_datss, find_ cha
nges, renew DB, tri
gper_kigs, eval_ ki
£31)

|
B a8 a8 8 &

Diges92:: act”™ Updated

O CGppond_daetss» O (—nnow-m!ullnd.@

hanges)) *: expand, ..

O (sppend_datas= O (~trigger_klgsUrse *: expand end,
new_DB)) *: expand,..

x: expand snd,

~sppend_datasUinit_act

FIGURE 2
RESULT

We have developed an control system of a power station in order to exam-
ine the effectiveness of MENDELS ZONE for the development of a concurrent
system. This control system was originally implemented directly in KL1, and
we developed an almost identical system using MENDELS ZONE. Based on
this experience, we feel confident in saying that a real system can be developed
using MENDELS ZONE. A comparison between two development efforts re-
veals that MENDELS ZONE reduces debugging time although more time is
needed for specifying and coding. This fact is an indication of effectiveness of
verification based on formal methods.

OUTLINE OF DEMONSTRATION

We demonstrate the capabilities of MENDELS ZONE using the develop-

ment example of the control system, and show the result of this development.

— 100 —

