A Parallel Legal Reasoning System : HELIC-II

ABSTRACT

Legal reasoning can be modeled as a mixed paradigm of rule-based reason-
ing and case-based reasoning. Based on this model, we have developed a legal
reasoning system, HELIC-II, on the parallel inference machine. HELIC-II
draws legal conclusions by referring to statutes and old cases.

KEY FEATURES

e A Mixed Paradigm
HELIC-II consists of a rule-based engine and a case-based engine. These
engines draw legal conclusions cooperatively.

¢ Parallel Rule Based Engine
The rule-based engine refers to legal rules and draws legal consequences
deductively. This engine is based on the parallel theorem prover MGTP
(Model Generation Theorem Prover) and has several new functions.

¢ Parallel Case Based Engine
The case-based engine generates legal concepts by referring to similar
old cases. This engine searches for similar cases and new arguments are
constructed by applying case rules to the new case. Case rules are applied
by matching semantic networks in parallel.

Old Cases —>| Situation+ Case Rules

Case-based Engine

input output
L3 Working Memory 5| Judgments and
Reasons

A

Rule-based Engine

Statute > Legal Rules

A Parallel Legal Reasoning System - HELIC-II

ABSTRACT

Legal knowledge consists of statutes and old cases. As a statute is a set of
legal rules, inference by a statute is realized as rule-based reasoning. However,
legal rules often contain legal predicates (legal concepts). Legal concepts are
ambiguous and their strict meanings are not fixed until the rules are applied
to actual facts. To apply legal rules to actual facts, we need rule interpretation
and matching between legal concepts and concrete facts. To realize this, old
cases are often referenced and their explanations are reused. Consequently,
legal reasoning can be modeled as a mixed paradigm of rule-based reasoning
and case-based reasoning. However, it takes this model a long time to search
for similar cases and to draw conclusions, and a complex mechanism is needed
to manage several inference engines. To solve these problems by parallel
inference, we developed a legal reasoning system, HELIC-II, on the parallel
inference machine.

Overview of HELIC-II

HELIC-II draws legal conclusions for a given case by referencing the rel-
evant statute and old cases and outputting them in the form of inference
trees. HELIC-II consists of a rule-based engine and a case-based engine. The
rule-based engine refers to legal rules and draws legal consequences logically.
Following is a legal rule for manslaughter caused by negligence. Every legal
rule can be represented with this kind of inference rule.

manslaughterCaused ByNegligence(“comment” | [article = 210],
[person(A, 1), person(B,), {{A\ = B}},
action(_action, [agent = A]),
negligence(_negligence, [agent = A, action = _action]),
causation(_causation, [cause = _action, result = _death?2]),
death(_death2,agent = B])]
N
[[manslaughterCausedByNegligence
(., lagent = A, action = _action])]]).

This rule contains the legal concept of “negligence”. Whether this “negli-
gence” has occurred or not is the key problem that must be judged for each

case that is like the following case of Mary.

A Parallel Legal Reasoning System - HELIC-II

Mary’s Case:
On a cold winter’s day, Mary abandoned her son Tom on the street

because she was very poor. Tom was just 4 months old. Bill found
Tom crying on the street and started to drive Tom by car to the police
station. However, Bill caused an accident on the way to the police
station and Tom was injured. Bill thought that Tom had died of the

accident and left Tom on the street. Tom froze to death.

In this case, judging negligence in mary’s action is not obtained by rule-
based reasoning. Such a judgement is derived from case-based inference in
HELIC-II. The case-based engine generates legal concepts (e.g. negligence)

from given facts by referring to similar old cases (Fig. 1).

wanted to|
kill Ken

Z i

strangled £

= ¢ \

intent to’ < - : *
murder ‘,‘ H took to
: ’ Tohod i lA/ seashore
t i unaccomplishe conceal
vy (Craccomaished) (e

»{ mistaken
for dead

20y

L)

crime of
attempted homicide

fine
) .

(crime of] wit'out Y
death by negligence iﬁ::i Ken and

¥ ¥ .
*, p— L
ﬁausation between)

action and death
left at
seashore

A »
Fig.1 Arguments of Jane’s Case

death by
uffocatiop

Fig.2 is one of outputs from Mary’s case by HELIC-II.
— 89 —

A Parallel Legal Reasoning System - HELIC-1I

abandoned Tom fer-rerereeesereesnacserscneece 3o |fOUNA ToOM

— A
crime of picked up
P death by negllgence Tom
causatlon between
action and death negllgence Y
drove Tom

':4 "., by car
actlon %, Y

A Wi ou: v

intention traffic accident
/ injury by ., V
accident /<€~ mistaken
E for dead

death by freezing Y

left Tom

@ and fled
-

Fig.2 Arguments of Mary’s Case

Conclusions are given to the user as natural language sentences, as in the
following example.

Ken’s state [faint_1] and Tom’s state [injuryl] are similar. Jane de-
serted Ken, and Bill deserted Tom. Jane did not verify Ken’s state
[faint_1] . Similary, Bill did not verify Tom’s state [injuryl]. Jane
deserted Ken without intending Ken’s death, and Bill deserted Tom
without intending Tom’s death. It was insisted that Jane deserted
Ken by negligence in this case. Therefore, it should be judged that
Bill deserted Tom by negligence.

A Parallel Legal Reasoning System - HELIC-II

Rule-based inference

The rule-based engine draws legal consequences by applying forward rea-
soning to legal rules. As there are many legal rules, a fast rule-based engine
is needed. Moreover, legal rules sometimes have exceptional rules, the rule-
based engine has to include some mechanism to handle nonmonotonic reason-
ing. The rule-based engine is based on the parallel theorem prover MGTP
(Model Generation Theorem Prover). Given a set of non-Horn clauses, MGTP
generates models which satisfy all input clauses by parallel inference. To use
MGTP as a rule-based engine for legal rules, and to obtain high performance
by the pipeline effect, we added the following extended functions to the orig-
inal MGTP.

1. Realization of “negation as failure”: Legal rules contain two types
of negations (logical negation and negation as failure). As the original
MGTP could treat only logical negation, we enabled the new MGTP to

treat negation as failure.

2. Realization of the multiple context:

The rule-based engine uses both original facts (a new case) and results
from the case-based engine as its initial model. The case-based engine
may generate data which conflicts with each other, such as the opinions
of plaintiffs and defendants. Therefore, we developed a function to split
the model when such predicates reach the rule-based engine so that models
don’t contain conflict.

Case-based inference

A judicial precedent (old case) consists of the arguments of both sides, the
opinion of the judges and a final conclusion. We represent an old case as a
situation and some case rules. A situation contains information on the occur-
rences of the case and represents a set of events/objects and their temporal
relations. Arguments by both sides are represented as a set of case rules.

The case-based engine generates legal concepts by referring to similar old
cases. In the first stage, the engine searches for similar cases from the case
base. In the second stage, new arguments are constructed by applying the
case rules of selected cases to the new case. Each case rule is fired by similarity

based matching.

A Parallel Legal Reasoning System - HELIC-1I

Performance by Parallel Inference

Fig.3 shows the speedup of two inference engines. We obtained more than

50-fold speedup using the 64PEs of the Multi-PSI.

Speedt

o ’ —o— Time(sec.)

~%- Speedup

60

S0

[40

r30

Time(sec.) Speedup Time(sec.)
1000 12 1200
I"...
A
800 e 10 1000
_,/,.-"/ 8 800
600 ’,»"'
—o— Time(sec.) 6 600
-~ Speedup
400
4 4007
200
2 200
0 0 0 o
0 10 20 o

Number of processors

30 40 50

Number of processors

60

Fig.3 Performance of the rule-based engine and the case-based engine

Outline of demonstration

We demonstrate how the parallel legal reasoning system HELIC-II solves

Mary’s case. First, representation of Mary’s case is explained. Second, the

consequences drawn by HELIC-II are shown. Third, an inference tree of a

consequences is explained. Fourth, more detail is explained using natural

language style output.

