Parallel Database Management System: Kappa-P

ABSTRACT

Kappa-P (KnowledgeApplication-Oriented Advanced Database Management
System) is a parallel database management system running on PIM machines.
Kappa-P provides efficient database management facilities for knowledge in-
formation processing systems and knowledge base management systems.

KEY FEATURES
Nested Relational Model

In order to treat complex structured data efficiently, a nested relational
model is adopted. With its set constructor and hierarchical attributes,
we can represent complex data naturally, and can avoid the unnecessary
division of relations.

Parallel Processing Depending on Data Placement

As Kappa-P has a query processing capability at each cluster, the distri-
bution of relations and the horizontal partition of relations give us inter-
cluster parallelism. Replication of a relation decentralizes access to the
relation. A quast main memory relation is provided as a replicated rela-
tion by using intra-cluster parallelism.

Interaction between Kappa-P and Applications

Kappa-P provides functions which reduce communication overhead be-
tween Kappa-P and various applications. Parts of the applications are
executed at clusters at which a query is processed.

’—~— Server DBMS
Interf:
User | —t—| Thrertece " itk Data |

Local DBMS
o | [
partitioned
J PIR
PDB
(X — ProSite

Figure: Configuration of Kappa-P
— 75 —

Parallel Database Management System: Kappa-P

Objective of Kappa-P

The objective of Kappa-P is to provide database management facilities for
many KIPSs, for instance natural language processing systems with electronic
dictionaries, proof checking systems with mathematical knowledge, and ge-
netic information processing systems with molecular biological data. Kappa-
P has been developed to manage large amount of complex structured data
efliciently.

Nested Relational Model

In order to treat complex structured data efficiently, the conventional re-
lational model must be extended. In Kappa-P, a nested relational model
with a set constructor and hierarchical attributes can represent complex
data naturally, and can avoid the unnecessary division of relations. More-
over, the semantics of the model matches the knowledge representation
language QuzxoTe, which is the upper layer of the KBMS of the FGCS
project. Kappa-P has charge of the database engine of this system.

Term is added as a data type in order to store various types of knowledge.
The character code of the PIM machine is based on 2-byte code, but the
code wastes secondary memory space. In order to store a huge amount of
data, data compression and index facilities have been improved.

Configuration

The configuration of Kappa-P corresponds to the architecture of the PIM
machine, and distinguishes inter-cluster parallelism from intra-cluster par-
allelism. Kappa-P consists of a collection of element DBMSs located in
clusters. These element DBMSs cooperate in processing a query.

The global map of relations is managed by element DBMSs called server
DBMSs. Server DBMSs manage not only the global map but also ordi-
nary relations. Element DBMSs, except server DBMSs, are called local
DBMSs. Interface processes are created to mediate between application
programs and Kappa-P, and to receive and send messages such as queries
and answers.

Data Placement

The placement of relations also corresponds to parallelism: inter-element
DBMS placement and intra-element DBMS placement.

In order to use inter-cluster parallelism, relations can be located in sev-
eral element DBMSs. A simple case is the distribution of relations like

Parallel Database Management System: Kappa-P

distributed DBMSs. When a relation needs a lot of processing power and
a higher disk access bandwidth | the relation can be declustered as a hor-
izontally partitioned relation and located in element DBMSs. When a
relation is frequently accessed, some replicas of the relation can be made
and located in element DBMSs. However, in the current implementation,
the replicated relation can be used only for the global map, that is, for
server DBMSs.

Relations can be located in main memory and/or secondary memory in
an element DBMS. Relations which are located only in main memory are
temporary relations. Quasi main memory relations both in secondary
memory and in main memory provide guarantees that the modifications
are reflected in the secondary memory.

Query Processing

There are two types of command for query processing: primitive com-
mands and KQL, a query language based on extended relational algebra.
Primitive commands are the lowest operations for relations, and can treat
relations efficiently. KQL is syntactically like KL1. New operations can
be defined temporarily in a query.

A query in KQL is translated into sub-queries in intermediate operations
for extended relational algebra, and is submitted to the relevant element
DBMSs. A query in primitive commands is submitted to the relevant
element DBMSs. The query is processed as a distributed transaction
among the relevant element DBMSs, and is finished under the control of
a two-phase commitment protocol.

Parallel Processing

Kappa-P parallel processing takes the form of inter-cluster parallelism
among element DBMSs and intra-cluster parallelism in an element DBMS.
Inter-cluster parallelism provides more processing power, but also in-
creases communication overhead. The trade-off is between processing
power and communication overhead.

Intra-cluster parallelism is suitable for a DBMS manipulating large amounts
of data. Kappa-P uses the parallelism for internal processing of an ele-
ment DBMS, for instance parallel processing by tuple stream, operations
for set, and index operations of temporary relations.

Parallel Database Management System: Kappa-P

Integrated Environment for Protein Databases

We developed an integrated protein database system on Kappa-P, and a
graphic user interface (GUI) for using various protein databases at once.
Purposes

e DBMS suitable for molecular biology

¢ Visualized and integrated protein database system

e One of the applications for evaluating Kappa-P

Configuration

Publicly distributed protein sequence (PIR), structure (PDB), and feature
(ProSite) databases are stored in Kappa-P. A GUI providing an integrated
environment for feature representation is employed to permit interactive query
and answer through the remote procedure call (RPC) between Xwindows and
Kappa-P. The motif search program is invoked from the GUI and runs in
parallel as a filter in each local DBMS of Kappa-P.

(Motif Search Program> Motif Search

Comma.ndl O TRGSPOIISG Program l T Answer

Y T

C Kappa > (Interface Process)
1 ! !

T
@ (Program)} (Program)
clotr clotr ¢|lotr
D D

R
local local local
DBMS BMS BMS

Sequential DBMS Kappa-P : Parallel DBMS

Query Processing of Kappa-P

Parallel Database Management System: Kappa-P

Evaluation

e Suitable Data Model for Existing Public Databases

The hierarchical data structure of features, for example, is naturally rep-
resented in the nested relational model. Stable data such as protein names
or taxonomy, and variable data such as feature descriptions which are of-
ten added or corrected by biologists, are stored in separate relations. This
is expected to improve processing efficiency.

e Integrated Environment for Protein Databases

Since existing public protein databases are managed in different institutes,
there are various difficulties in using plural databases. For example, fea-
ture descriptions of functions are stored in PIR, structural features are in
PDB, and relations between amino acid patterns and features are stored
in ProSite. The GUI, which is implemented in Xwindows, communicates
with Kappa-P via RPC and provides an integrated environment for feature
descriptions by showing their positions graphically. It displays functional
features in PIR and structural features in PDB, both of which are stored
in Kappa-P nested relations.

e Speed-up of Exhaustive Search (Motif Search)

The most popular use of protein sequence databases is to predict the
functions of a function-unknown protein through the homology between
its amino acid sequence and those of function-known proteins. Motif
search is another homology-based search which searches for amino acid
patterns within a sequence database. Both require exhaustive searching,
and parallel processing is expected to speed up the search process.

Kappa-P has a feature which passes user-defined programs from the in-
terface process to each local DBMS and executes them. The results are
collected by the interface process and returned to the user. Using this
mechanism is expected to reduce communication costs considerably, com-
pared to using a mechanism in which whole data are once collected by the
interface process and re-distributed to each PE with the user’s program.

rarallel Database Management dystem: Kappa-F

Demonstration Outline

We performed two kinds of demonstration:

¢ Kappa-P
It focuses on the performance and functions of Kappa-P, that is, the

effects of horizontally partitioned relations and the introduction of Kappa-
P query processing.

¢ An integrated protein database system on Kappa-P

It focuses on an application system using protein databases, that is, a
GUI for protein features implemented on Xwindows and a protein motif
search.

Both demonstrations used protein databases: PIR, PDB, and ProSite.
Their specifications (contents, amount [version], and the number of relations
in Kappa-P with their names) are as follows:

PIR : Amino acid sequences and characteristic domains of proteins,
60 Mbytes [Sep 1991], 3 relations of sequences, features, and references.

PDB : 3D structure and secondary structures of proteins,
150 Mbytes [Nov 1991], 4 relations of sequences, features, structures, and
coordinate matrix.

ProSite : Amino acid sequence patterns (motifs), 508 patterns, 1 Mbytes
[May 1991], 1 relation.

