Model Generation Theorem Prover, MGTP

ABSTRACT

The goal of our research is to build a parallel automated reasoning system
on a parallel inference machine(PIM/m), using KL1 and PIMOS technologies.
The MGTP prover, currently being developed, adopts the model generation
method. In the development of MGTP, we aim to achieve the following:

1. Combine logic programming and automated reasoning, and develop paral-
lelization techniques to implement an efficient first-order theorem prover.
2. Offer an advanced inference engine that can be applied to fields such
as intelligent database systems, hypothetical reasoning, natural language

processing, and automated programming.

KEY FEATURES

¢ Development of clause compiling techniques and meta-programming util-
ities to implement an efficient prover in KL1.

e Development of AND/OR parallelization techniques, thereby achieving
high scalability and linear speed up on PIM/m(256PEs).

¢ Development of a support environment to make it easy to use and develop
MGTP.

¢ Development of MGTP applications (specification description, abductive

reasoning, and automated programming).

Problem Solving Systems

Legal Reasoning

Natural Language
Processi

Automated Programming

%

Parallel Theorem Prover
{Advanced Inference Engine)

[Efficient Memory Mana‘gementl] Load Balancing | l KL1 Programming Technique]

I I
(Parallel OS (PIMOS) B
L Prototype Hardware (PIM/m,Multi-PSl))

MGTP Relative to FGCS

Model Generation Theorem Prover, MGTP

Model Generation Method:

- Tries to generate unit clauses (models) from a given set of clauses
by forward reasoning.

A set of clauses Model generation process
(" true)

I
pfa)

q(a)

Y false false)

- Generated unit clauses which include variables
s > Non-ground problems

- Ganerated unit clauses which include no variables
* Ground problems

Examples:

(a) Party problem
-Non-Horn and ground problem

We can always choose three persons who are
either familiar with each other or not familiar with
each other from six persons who meet at a party.

v

true-->person(1),person(2),person(3),person(4),
person(b),person(6).

person(X),person(Y),X>Y->f(X,Y);nf(X,Y).

1(X1,X2),1(X2,X3),{(X3,X1)->false.
nf(X1,X2),nf(X2,X3),nf(X3,X1)->false.

(b) Condense detachment problems

-Horn and non-ground problem
-Group theory,ring theory, and implicational logic

p(X),p(e(X,Y))->p(Y).
ple(e(e(a,e(b,c)),c).e(b.a)))->talse.
true->p(e(A,e(e(B,e(C,A)),e(C,B)))).

Model Generation Theorem Prover, MGTP

Two Versions of MGTP:

Ground MGTP

Non-Ground MGTP

(MGTP/G) (MGTP/N)
Problem Non-Horn and ground Horn and non-ground
Application E.g. Database problems E.g. Mathematical theorems

Programming
Techniques

-Direct use of KL1 variables

-Translation given clauses
to KL1 clauses
-Efficient coding

using head unification of
KL1

-Representing variables
with ground terms
-Interpreting a given set of
clauses
-Using"meta-library"
E.g. Unification with occur
check

Parallelization

AND/OR parallel

AND parallel

Key Technologies to improve Efficiency:

Problem

Technology

Redundancy in

Conjunctive Matching

RAMS(RamifiedStack)
MERC(Multi-Entry Repeated Combination)

Irrelevant Clauses

Patrtial falsify relevancy test

Over Generation

Lazy model generation

of Models

OR parallelization for non-Horn problems
Parallelism

AND parallelization{Model distributing /

sharing) for Horn problems
Unification/ Clause compiling technique
Subsumption Term indexing memory

Model Generation Theorem Prover, MGTP

MGTP Development Supporting Environment

User Interface (Control Panel)

System Manager {(Manager File) Data Management/
P g - Display
Option Display ” Problem Display
Proof Execution Support

Data Record

Performance Analyzer Problem File “
Inf Enai E Proof Tree Analyzer Problem Description
nierence tngine Real-time Proof Tree Viewer
(RAMS)

Language
Statistic Analyzer

Proof Execution Monitor Execution Data File

Metalibrary For Provers (Term Memory etc)

PIMOS Tuning Tools (Paragraph,Dynamic Load Balancer, etc)

System Configuration

execute
show logtile
show data
make graph_1
make graph_2
reset
text
exit

lLarge
Total Number of Warning : || A T T e — large
"me:: tr.tree_demot™ Updai] |.A T P T e small
p-window” Updnted A N AN N [N SN set
mgtp_prob” Updated A A A A A A AA A A AA AA KA A A
mgip_i” Updated 1A LA TA TA LA TALA TA LA BEATHTA LA I size
13 dtutl® Updated A HA HA A TA THIA 1 IA 1A 1A 1A magni fy
LA A A HA I'A 1A 1A 1A I A mag
EREXERITORERNERE MOTP wxxw It 1l 1] 11 1 1t i 1 1
engine @ demoi T
problem : "romsey 3-3 6-n. model
execution_time @ O0i-Hoy-{ N .
conclusson : unsat identical
time : 7731 msec rule
'R_thvlk Succeeded stat
exit

Control Panel and Proof Tree Analyzer

Model Generation Theorem Prover, MG TP

Parallelization of MGTP
"There are several resources for parallelization of MGTP:

e case splitting
e conjunctive matching in the antecedent part

e subsumption test

We focused on OR parallelization in case splitting and on AND parallelization
in conjunctive matching and subsumption test.

OR Parallelization

For non-Horn and ground problems, it is sufficient to exploit OR paral-
lelization induced by case splitting. We implemented an OR parallel version
of MGTP based on the MERC method.

The processor allocation methods we have adopted achieve ‘bounded-OR’
parallelization in the sense that OR parallel forking in the proving process is
suppressed so as to meet restricted resource circumstances. To do this, we
adopted a scheme, called level restricted allocation.

We expanded model candidates, starting with an empty model, using a sin-
gle master processor until the number of candidates exceeded the number of
available processors. We, then, distributed the remaining tasks to slave pro-
cessors. Each slave processor explored the branches assigned without further
distributing tasks to any other processors.

This allocation scheme for task distribution works fairly well, since the

communication cost can be minimized.

O Level =0 ¢ Master Processor

O o e @ O o e @ Level =i

......................... - S 1 1
l"*'_] m m Slave Processors
1 N-1

Level restricted allocation

Model Generation Theorem Prover, MG TP

Pigeon hole problem
true — pigeon(1), pigeon(2), pigeon(3), pigeon(4), pigeon(5),
pigeon(6), pigeon(7), pigeon(8), pigeon(9), pigeon(10), pigeon(11).
pigeon(M) — hole(M, 1); hole(M,2); hole(M, 3); hole(M, 4); hole(M, 5);
hole(M, 6); hole(M,7); hole(M,8); hole(M, 9); hole(M, 10).
hole(M1,N), hole(M2,N), M1 # M2 — false.
Bennett’s quasigroups
true — dom(1), dom(2),dom(3),dom(4),dom(5),
dom(6),dom(7), dom(8),dom(9),dom(10),dom(11).
dom(M),dom(N) —
p(M, N,1);p(M,N,2); p(M, N,3); p(M, N,4); p(M, N, 5); p(M, N, 6);
p(M,N,7);p(M,N,8);p(M,N,9); p(M, N,10); p(M, N, 11).
p(X,11,Y),Y +1 < X — false.
p(B,X,Y),p(Y,E, Z),p(Z,E,U), X # U — false.
p(X,X,U),X #U — false.
p(X,Y,U),p(X,Y1,U),Y #Y1 — false.
p(X,Y,U),p(X1,Y,U), X # X1 — false.

Speed up
256

Lol o

128

88— |deal
wmadeas - Pigeon hole

~ Bennett

64

wy g
16 =

(€ s S s N S S B BN B B SRR BAIS S S e ma |

0 16 32 64 128 256
Number of PEs

MGTP/G on PIM/m

Model Generation Theorem Prover, MGTP

AND Parallelization

AND parallelization for Horn problems is achieved by exploiting paral-
lelisms inherent in conjunctive matchings and subsumption tests. We im-
plemented an AND parallel version of MGTP based on lazy model genera-
tion. The system adopts the following schemas: the proof unchanging schema
according to the number of PEs, the model sharing schema (copying in a
distributed memory architecture), and the master-slave schema.

Proof Unchanging: Our policy in developing parallel theorem provers is
to distinguish between the speedup effect caused by parallelization and
the search-pruning effect caused by strategies. A proof-changing prover
may achieve super-linear speedup whereas it may cause the strategy to
be changed. On the other hand, a proof-unchanging prover allows us to
obtain greater speedup as the number of PEs increases, without changing
the strategy.

Model Sharing: The merit of model sharing is that time-consuming sub-
sumption testing and conjunctive matching can be performed at each PE
independently, with minimal inter-PE communication.

Master-Slave: The master-slave configuration makes it easy to build a par-
allel theorem prover by simply connecting a sequential version of MGTP
on a slave PE to the master PE. Since slave processes spontaneously ob-
tain tasks from the master, and the size of each task is equalized, good
load balancing is achieved.

In this system, generator and subsumption processes run in a demand-
driven mode, while tester processes run in a data-driven mode.

The main factor in the degradation of system performance is sequentiality in
subsumption testing. This can be minimized by utilizing the synchronization
mechanism supported by KL1. Demand-driven control can also be easily and
efficiently implemented by utilizing the KL1 stream.

By using demand-driven control, we can not only suppress unnecessary
model extensions and subsumption tests but also maintain the high running
rate which is the key to achieving linear speedup.

NModel Generation

Lheorem Frover, MGtV

G: generator

T: tester

M: modet! candidate
D: newly created

Master ‘ X
I eA T
. ND
@ 1A @ 1A
g request
A ¥ —- new element (A) Aix @

.

Load allocation for MGTP /N

Theorem 5
true — p(i(i(i(X,Y), 2),1(1(Z, X),4(U, X)))).
P(X)v ((X7Y>> ->p(Y)
p(i(i(a,b),i(i(b, c), i(a,c)))) — false.

Theorem 7
true — p(i(X,i(Y, X))). true — p(i(i(X,Y
true = pli(i(n(X), n(Y)),i(Y, X))). true — plili(i(X

);
p(X),p(i(X,Y)) = p(Y).
p(i(i(a,b),i(n(b),b(a)))) — false.

Speedup
256

YT T

T
0 16 32 256
Number of PEs

MGTP/N on PIM/m

Model Generation Theorem Prover, MGTP

MGTP Applications (1)
Abductive Reasoning System

Abstract

We have developed several parallel abductive reasoning systems using the
MGTP. We will describe two implementations of the abductive reasoning
system shown in Figure 1: one is the MGTP+MGTP method, and the other
is the Skip method. In each method, the given input formulas are translated
into MGTP rules in a different way. We demonstrated them by applying them

to a logic circuit design problem.

Model GW—“OWPW

(Hypotheses) (Beliefs)

{ Consistency Check)

Figure 1: Abductive Reasoning System based on the MGTP

Abduction

We considered the first-order abductive framework (X,T"), where ¥ is a
set of Horn clauses and T is a set of atoms (abducibles). A set E of ground

instances of elements of I" is an ezplanation of a closed formula G from (X,T)
if: (1) XUFE |G, and (2) YU E is consistent. Given ¥, I' and G, the task
of abduction is to find the explanations of G from (2, T").

MGTP+MGTP

Each ground hypothesis H from I' is represented by fact(H,{H}), and each
Horn clause in ¥ of the form:

AA...ANA,DC,
is translated into the MGTP rule of the form:
fact(Ay, Ey), ..., fact(A,, E,) — fact(C, c<(| E;)),
i=1
— 71 —

Model Generation 'I'heorem Frover, MG 1F

where Ej is a set of ground hypotheses from I' on which A; depends, and the
function cc is defined as:

E if ¥ U E is consistent;
nil otherwise.

ce(E) = {

Each time MGTP-1 derives a new ground atom, the consistency of the com-
bined hypotheses is checked by MGTP-2 (see Figure 2). The parallelism comes
from calling multiple MGTP-2s at once.

Hypotheses

MGTP-1
MGTP-2

M Sat / Unsat
cc

Model Generation Consistency Checks
Figure 2: MGTP+MGTP

Skip Method

When a clause in ¥ contains the negative occurrences of abducibles Hy, . .., H,,
(H; €', m > 0) and is in the form:

AN NAAN HAN...NH,DC,
Nt o

abducibles

we translate it into the following MGTP rule:
Al, veey A]-—>H1,...,Hm, C'I—‘KHl ' IﬂKHm.

In this translation, each hypothesis in the premise part is skipped instead
of being resolved, and is moved to the right-hand side. A model candidate
containing both H and —=KH is rejected by the schema:

-KH, H — for every hypothesis H .

This method utilizes the extension and rejection of model candidates supplied
by the MGTP. An OR-parallelism can be obtained in the way that multiple
model candidates are kept in distributed memories. In order to avoid possible
combinatorial explosion in constructing model candidates for the skip method,
we also showed a way to “cut” model candidates that cannot contribute to

providing solutions.

Model Generation Theorem Prover, MGTP

MGTP Applications (2)
Protocol Specification Description System

Abstract

In order to describe a complex protocol specification easily, we proposed
a protocol specification description language, Ack. We developed a process-
ing system for this language using the parallel theorem proving technique,
and applied it to the description of several services for a telephone switching
system.

Ack Notation

e Atomic Formulas

P SO : The state of process P is S.

P A The state of process P transits from S1
1C —{)S2|:
S S to S2 by action A.

Pa Pb At the same time, the states of processes
SaO OSb " Pa and Pb are Sa and Sb, respectively.

e Clause (AjA---ANA,, — BiA---ANBy)
DT T : Antecedent (Ay, -+, Ap)
O —» —— : Consequent (By, -+, By,)

Axioms for Ack

¢ Synchronization

Pa| .-\ ~~ |Pb Pa| .- Pb
LU ok et L A | L
L N/ AR LS
T T RS
A! YA At /‘\..»,
Kl Kl s L
oo \..t, '\-¢r

where A ¢ Action(Pb)

Model Generation 'I'heorem Prover, MGIF

Synthesis of the State Transitions

Ack Specification Horn Clauses

MGTP

Ground
State Transitions AND parallel

oG

Example of Description and Synthesis

idle
offhook(a)

on
offhook(a)

onhook(a)
off

dial(a,b)

pbx
idle
offhook(a) onhook(a)

offhook(b)

pbx

(- off dial(a,b) nhook(a)

onhook(a)
idle

offhook(b) onhook(a)

