Parallel Logic Simulator

ABSTRACT

Logic simulation, one of the most time-consuming stages in LSI design, is
used to verify the logical and timing specifications of designed circuits. We
built a high-performance parallel logic simulator capable of deriving a lot of
parallelism from the target circuits so as to exploit the entire potential of
large-scale MIMD machines, such as the PIM machine.

KEY FEATURES

Time Warp mechanism (TW)
TW asynchronously controls the order in which messages should be eval-
uated. It tries to exploit complete parallelism with speculative computa-
tion, while the rollback process cancels speculation errors.

Reduction of rollback overhead
The antimessage reduction mechanism, adequate message scheduling, and
the Adaptively Moving Time-Ceiling are used to reduce the cost and fre-
quency of rollback.

Cascading-Oriented Partitioning (COP)
COP provides high-quality solutions for circuit partitioning, achieving low
inter-PE communication, high parallelism extraction and load balancing.

Target |
circuits
Partitioning Input
COP) Vectors

Simulation
{Time Warp)
ik

Process Flow Parallel Logic Simulation

1 Time15
Val Hi —

Time17
D d—t-

g
B

— 51 —

Parallel Logic Simulator
Background

Logic simulators are used in order to verify the logical and timing speci-
fication of designed circuits. Since logic simulation is one of the most time-
consuming stages in LSI design, faster simulators are required. In addition,
flexibility is also needed.

A parallel logic simulator is one likely way of producing quick and flexible
simulation. We built a parallel logic simulator on the PIM machine, as a first
but significant step to the realization of super high performance simulators
on future hyper-parallel machines.

Specification of the Simulator

The simulator simulates combinatorial circuits and sequential circuits that
have feedback loops. It handles three values: Hi, Lo, and X (unknown). A
different delay time can be assigned to each gate (non-unit delay model).
Since this simulator treats gates only, flip-flops and other functional blocks
should be completely decomposed into gates.

Parallel Discrete Event Simulation and Time Warp

Parallel logic simulation is treated as a typical application of parallel dis-
crete event simulation (PDES). PDES can be modeled so that several ob-
jects (corresponding to gates) change their states by communicating with
each other. A message has information of an event whose occurrence time is
stamped on the message (time-stamp). Since messages should be received and
evaluated in the time-stamp order by their destination objects, a time-keeping
mechanism is needed.

We adopted the Time Warp mechanism (TW) as the time-keeping mech-
anism. In TW, each object usually acts according to received messages and
also records the history of messages and states, optimistically assuming that
messages arrive chronologically. When a message arrives at an object out
of time-stamp order, however, the object rewinds its history (this process is
called rollback), and makes adjustments as if the message had arrived in cor-
rect time-stamp order. If there are messages which should not have been sent,
the object also sends antimessages in order to cancel those messages.

The rollback process has been suspected to contain large overheads which
might affect performance adversely. So, we added several devices to reduce
the overheads so that the simulator can run efficiently on the PIM machine.

Parallel Logic Simulator

Rollback Process

Antimessage
Tlme G Tlm T|m
ate Object
T,me m’] 121 111
110
Time
120
Whenumessage:h Tt

time-stamp of 100 arrives
after a message with a
time-stamp of 120 is received.

Tlme
111

Time YTime
Histor
L 111 Y)

Figure 1: Time Warp mechanism

Message Scheduling

During simulation, there are usually several messages to be evaluated in
a PI, and therefore some scheduling strategy is needed. In our strategy,
the message with the smallest time-stamp is evaluated first. This strategy is
considered to be adequate for TW because the bigger time-stamp a message
has, the more likely the message is to be rolled back.

Antimessage Reduction

As long as messages are sent through the KL1 stream, the messages arrive
at the receiver in the same order as they were transmitted. In this environ-
ment, subsequent antimessages can be reduced. We adopted this optimization
technique, expecting that it would reduce the rollback cost.

Without Antimessage Reduction With Antimessage Reduction

Anti ‘
Sender '.) Receiver . . /i Receiver
Object @ 0b| . .\ Object

:‘»>

to be canceled to be canceled

Figure 2: Antimessage Reduction

53 —

Parallel Logic Simulator
Adaptively Moving Time-Ceiling

In a naively implemented TW, a message is evaluated as soon as it arrives at
its destination gate, even if its time-stamp is extremely large. Such a message,
however, will probably be rolled back later and thus the evaluation may cause
other side-effects.

Moving Time-Ceiling (MTC) gives the upper limit of time for suppressing
both the evaluation and generation of messages with extremely large time-
stamps. MTC contributes to reducing the frequency of rollback.

MTC is sometimes updated into the future. However, it is quite difficult to
statically determine the optimal interval between the old MTC position and
the new. If the interval is too short, many processors might idle although the
rollback frequency would be greatly reduced. Conversely, if MTC jumps to
the distant future, the rollback frequency will hardly be reduced at all.

In our simulator, the MTC interval is adaptively determined according to
the rollback frequency and the effect of the previous intervals on performance
(Adaptively Moving Time-Ceiling). AMTC can exploit the entire potential

of parallel machines without depending on target circuits or simulation con-

ditions.
MTC Scheduling Queue
Before MTC updating| To be evaluated

: (mer)
To the destination gat;

New MTC
(adaptively determined)

)

After MTC updating | To be evaluated Not to be evaluated yet

H]
o (Time110) (rime130)

To the destination gate
4

Figure 3: Adaptively Moving Time-Ceiling

Parallel Logic Simulator
Circuit Partitioning

In our simulator, the “Cascading-Oriented Partitioning” strategy is used
for circuit partitioning to attain high-quality load distribution.

Firstly, COP makes several clusters by grouping gates that are connected
to each other into a cascade-form. Then, the clusters are cut or merged to
adjust their sizes. Finally, the clusters are assigned to processors at random.

This scheme provides adequate partitioning solutions that satisfy these
three requirements: load balancing, keeping inter-PE communication fre-

quency low and extracting a lot of parallelism.

S
~—
\-

Figure 4: Cascading-Oriented Partitioning

Performance Measurement

We simulated five sequential circuits on the PIM/m machine. These were
benchmark data for ISCAS’89. Table 1 shows the size (# of gates) of the
target circuits. Figure 5 indicates the performance of the simulator.

Circuits | 38584 | $38417 [35932 | 515850 | 513207
of gates | 27,965 | 31,995 | 26,433 | 13,354 | 11,965

Table 1: Size of the circuits

In the best case, 537K events/sec performance and 166-fold speedup were

attained using 256 processors.

Farallel Logic Simulator

Performance (K ev/sec)

5001 —*— 338584
—®— 338417
—o— s35932
400 — O 515850
s13207

3001

2007

1001

0 64 128 192 256 # of PEs
Figure 5: Performance vs. # of Processors
Outline of Demonstration

In the demonstration, two sequential circuits, s15850 and s38584, will be

simulated.
The demonstration will focus on these three points.

e The utilization of processors.
e The adequacy of the intervals in AMTC.

e Total performance and rollback frequency.

