PROBLEM-SOILVING AND INFERENCE SOFTWARE

Ryuzo HASEGAWA and Researchers of the First Research Laboratory

Institute for New Generation Computer Technology
4.2, Mita l-chome, Minato-lu, Toliyo 108, Japan

ABSTRACT

Problem-selving and inference software iz basic soft.
ware which mediates between kernel software (parallel
015) for parallel inference machines and application soft-
ware, [f provides a wide variety of support functions to
congtruct application software.

The final goal of research on problem-solving and in-
foyence software is to realize cooperative problem-solving
systemns, With the main theme in the intermediate stage
being the establishment of basic techniques for eooper-
ative problem-solving systems, we proceeded with re-
aearch and development of parallel logic programming
languages, parallel programming techniques, an intelli-
gent programming support environment, and advanced
inference mechanisms and learning mechanisms.

Through this research, we developed programming
techniques such as mets-programming and constraint
programuming which give an effective framewaork for coop-
erative problem-solving systems and a program transfor-
mation technigue for the construction of efficient parallel
PIogIams,

This paper ouilines the ressarch and development of
problem-solving and inference seftware, focusing on the
work being done &t [QOT,

1 INTRODUCTION

The fiual goal of the Filth Generation Computer Sye-
tems (FOCE) project is to realize knowledge information
processing on parallel nference machines,

I order to construet various kinds of application soft-
ware for knowledge information processing using the
functions provided by kernel software {parallel O5) for
parallel inference machines, such as infevence control and
knowledge base management, we need basic software
which mediates between the kernel software and appli-
cabion software,

Problem-solving snd inference softwere, as well as
knowledge base management softwars and natural Jan-
guage interface software, form the basic software. This
software gives a wide variety of support functions neces-
sary for the construction of application software. I also
plays the role of a knowledge information processing pro-

totype.

{ine basic framework required for the problem-solving
and inference software is a framework for cooperative
problem-solving where several agenis with knowledge of
different areas cooperate to solve a problem by performe
ing their inference independently.

The frameworl for cooperative problem-solving s the
most important base when we construct parallel appli-
cation software. To establish the foundations of this
framework, we nesd to study & model and mechanism
for cooperative proeblem-salving and its theory. Their in-
vestigation i a yesearch themwe in problem-solving and
inference software.

In arder to realize this kind of framework for cooper-
ative problem-solving, research and development of the
following is required:

s A parallel computation model and parallel logie
programming language which should form the ba-
sis of cooperative problemesclving;

= Programming techoiques and & programming sup-
port envirenment for the construction of efficient
programs using & parallel inference machine and
the low-level function of its parallel OF;

s Advanced inference mechanizms and learning
mechanisms such as induction and anslogy neces-
sary for the achievement of high-fevel lnowledge
information processing.

Taking these into consideration, we eatablished the fol-
lowing thres themes as the principal arsss of research
inte problem-solving inferenee seftware in the intermedi-
ate stage:

(1) Kernel language and basic software for cooperative
prablem-solving

(2) Intelligent programming software

{3) Basic software for advanced inference and learning

The goal of the research on the kernel langunge and
basic seftware for cooperative problem-solving is to de-
sign and develop a parallel logic programming language
coordineted with problem-solving, then to establish sov-
eral paratlel programming technigues using it.

Through the research and development of the first

version of the kernel language (KL1) {Chikayams et al,
1983), which ia based on a parallel logic programming
language, GHC [Ueda 1936a, Usda 1986b], we obtained
some practical knowledge of parailel inference control
and rmplementation. Af the same time, we found that
some desivable functionality could not be provided in the
framework of KL, that iz, the meta-function, constraint
funcltion and knowledge representation function.

Chur final goal of the research on the kemel language is
to develop a stinple universal language with these func-
tionalities. To achieve this goal, howsver, we have to
delve into each function. Thug, we decided to conducl
research on ezch of them independently for the time be-
ing, &nd then put them tuEsthm' after we have mads
enough progress in each one of them.

At present, we azfe researching how to implement the
meta-fonction bagsed on & reflection concept and are also
resenrching & constraint logic programming lanpguage,
CAL.

Another important aree of rescarch is to develop o
progeam transformation technigue and & pertial evaloa-
tion technique, in order to implement user-level language
functions and apphication software efficiently on the KL1
base. In the intermediate stage, we first planned to deter-
raine the foundation of thess technigues based on Prolog,
since the theoretical foundation, for example its program
semantics, has already been established. We obtained
pidislving resulis in this plan. We are now researching
program transformation and partial evalustion systems
baeed on GHC, and the semantics of GHC.

The research goal of intelligent programming software
i# to construct an intelligent programming support en-
virnnment which supports the whole process all the way
through, from development te maintenance of the fifth
generation computer softwars,

Here, we aim to research software engineering based
on logic programming languages. The main subject of
software engineering s not coding but how to design
software efficiently around moding, maintenance, and im-
provement,

From this point of view, we started ressarch on a proof
support system which supports mathematical proef as
the research cove, together with research on a protetyp-
ing support system, & Prolog programming {verification,
transformation, analysis, and modification) support sys-
tem, and a design visvalization system giving a picture
of the structure and the behavier of & program,

The main purpose of the research on the proof sup-
port system is to investigate the applicability of thesrem
proving technigues to programeming support by research-
ing support techniques necessary for mathematical proof.
Subjects in this research are studies on & tenm rewrit-
ing system gemerator which supports inference, especially
concerning equalities, and o proof compiler which gener-
ates programs from given proofs,

The research goal of the basic software for advanced in-
ferencs and learning is to realize advanced inference func-
tioms wsed In the same way es humaen problem-solving
and to apply them to the development of application
softwars for knowledge information processing,

Logical deductive inference is not enough to provide
compubers with commonsense judgment and to make
them acguire knowledge and learn in the same way as hu-
mans, We therefore need to realize inductive inference ov
advanced inforence such as analogy, Thers ave also many
areas of human knowledge information processing which
logie cannot handle. We need snother appreach from
cognilive science which s different from logie. Thers
fore, we approached this theme from the angles of both
logic and cognitive science,

In arder to handle advanced inference in the frame-
warle of logic, we need mathemeatically clear formaliza-
tion. From this peint of view, in the approsch from
logie, we first tried to formalize commensense inference
uging non-monotanic inference, and studied a framework
te handie induction and anslogy uwniformly. Based on it,
we are now ressarching the acquisition and revizsion of
commmonsense knowledge, We also vesearching how to
make an automated generator which derives Prolog pro-
grams from examples by using a predicate generator and
how to make the grammar inference algavithm efficient.

In the approach from cognitive science, we think that
there are two parts of human knowledge information pro-
cessing, conscious and unconscious. We are studying a
cognitive model which makes inference and learning effi-
cient based on this characterization.

The following ssctions desciibe these three themes of
probilem-solving and inference software in more detail,
focusing on the research and development in ICOT in
the intermediate stage.

2 KERNEL LANGUAGE AND BASIC
SOFTWARE FOR COOPERATIVE
PROBLEM-S0LVING

Research and developroent of the kernel lapgusge and
hasic software for conperative problem-solving software
ia being conducted based on a parallel logic programming
lengnage, GHG. There ave three goals:

(1) Toinvestigale the provision of language functional-
ity such as the meta-function and constraint func
tion necessary for the construction of & high-level
preblem-selving system, and o clarify how ta re
alize them, then applying these resulis 1o research
the expansion of the langusge function of KL1 in
the final stage,

{2) To establich parallel programming paradigms and
parallel programming technigues, through the ax-
perimental descripbion in GHOC of typical algo-
rithms wsed in varicus application domaing.

(3] To establish program transformation techniques for
constructing eficient programs and to give a formal
semantics of GHC,

This section cuilines ressarch on reflection in GHG,
layered-streamn programming, partial evaluation, pro-
gram transformation, formal semanties of GHO, and on
a constraint logie programmming langunage (CAL).

2.1 Parallel Logic Language and Reflection

Assume that we are describing an operating aystem
for parallel compubers, that is, a parallel programming
gyvslem, in GHOC. Such & programming system needs to
input user goals, execule them as GHO processes snd
outpul the execution results. Tt also uneeds to handle
meta-level coneepts, such as suceess o failure of gool
execution,

However, the current GHO does not distinguish meta-
level phenomena clearly from object-level ones. This
mkes it difficult to describe an operating system cone
cisely. Therefore, it iz important to consider how to
handle meta-level concepts which cannot fit into the cur-
vent language framewerk of GHO, If we implement these
concepts as system-defined predicates or realine them ss
side effects, the language may become inconsistent and
the code size of the implenmnht{qn may incrowse enor-
mously. Therefore, we have started to study reflection
as a way of handling the meta-level notion consistently.

Reflection can he considered as a funciion to sense
the system itself and modify it dynamically, H a system
or a programming langusge has this reflective ability, it

is possible to describe a powerful operating system or
problem-solving system which can fexibly perform tashs
corresponding to the remaining resources and the current

An example of & reflective computation system is
shown in Figure 1. MWormally, 2 computation system
consists of a program, data, and an executor. A compu-
tation system computes semething in a certain problem
domain, whereas a meta-compulation system takes “an-
other computation system” as its problem domain. A re
flective system can be considered as & meta-computation
system which takes itsell as its problem domain and is
cansally connscted to its data

The concept of reflection has been proposed in
FOL [Weyhrauch 1980] and 3-Lisp [Smith 1984]. In 3-
Lisp, o reflective system has been vealized by providing
& reflective mechanism to obtain the current confinu-
ation and envirenment., Smith hes alse deseribed the
mela-cireniar interpreter of 3-Lisp.

The study of reflection at [COT examines various re-
flective operations in GHC and, ab the same time, tries to
propose the new language specifications of GIHC based on
those arguments [Tanaks 1988). Since we have abtained
hints from Smith’s approach, the basic mechanism of fm-
plementing reflection is principally the same.

Since GHC has parallelism, and meta-level phenomena
are always invoked during goal execution, the implamen-
tation methed becomes more complicated. Like 3-Lisp,
uging reflective operations to deseribe the GHO nwta.
interpreter induces the problem of a reffective tower.
However, we are concentrating mores on the realization of
reflective operations rather than consideving the problem
of o reflective tower, The current status ol our resenrch
is aummarized below:

{1} Stepwise enhancement of the GHC meta-
interpreter
The simplest GHO meta-interpreter can be de-
scribed as & four-line program, similar to the four-
ling interpreter of Prolog. However, this founr-
line program only simulates the top-leval execution
of programs and cannot oblain much information
from the interpreter. Therefore, we have enhanced
this four-line program stopwise, and confirmed that
various enhanced meta-interpreters, such as fail-
safe, interruptible, scheduling and controlled meta-
interpretere, ave obtained from this interpreter.

o A failsafe meta-interpreter prevents the system
from failing, even if a goal fails during execution;

* An interruptible meta-interpreter can suspend,
resume or abort the execution of the given goal;

» A acheduling meta-interpreter enguenes the re-
duced goals and processes these gonl sequentially

Executor

Program

| Inference/Computation

Infersnce/Computation

Data I

R |

Causally sonnected representation

> Target dnmairD

e RNl

| | Hepresentation

Figure 1: Heflactive system

using a scheduling queus;
& A controlled meta-interpreter controls the total
reduction time of & given goal using a reduction

cotnt.

{2) Deseription of & variable management meta-
interpreter
To incresse the expressive power of meta-
interpreters further, we have developed a wniable
management interpreler which has the facility o
menags it own locsl varables, In (1), we have
assumed 2 coniinuation or reduction count as re-
sources which can be controlled. Variable bindings
have been added to this inlerpreler as resources
which can be controlled by the user. We confirmed
that this interprefer can ron at a practical speed
by running several sample programs,

(3) Application of reflection in GHC

We have examined the distributed computation
system of GHC 22 an spplication of reflection. We
assumned a system where several GHO machines are
connected to each other via nedworl managers. We
are not interested in simulating the physical strue-
tures of distribuled computers. Instead, our objec-
tive is to provide an abstract meodel of computa-
tion. We have examined the description methad of
a distributed computation system from the view-
points of nebwork managers, GHC machines and
meta-interpreters. We showed that various reflec-
tive operations, such as dynamic reduction eount
cantrol and load balancing, are performed on this
distributed computation system.

However, the approach we have adopted so far is still
very primitive. We can freely access meta-level informa-

biem or resenrces which we would like to contral, Since
this soams to be very dangerous, we are currently work-
ing on the language design of Refleetive GHC {RGHQ)
which allows mors sephisticated handling of reflections,

We still have many problems as to where to position
reflection in logic and how establish it in logic program-
ming, We are planning to work on thoss problems and
consder the semantics of reflective operations.

2.2, Constraint Logie Progranuning Language
CAL

Cronstreint progremming is one of the most important
pmgramrning 'pnradigma and gives a pmmising frame-
work for cooperstive problem solving as well as for ihe
concepl of refllaction we discussed in the previous section.
The most cuistanding feature of constrainl programm-
ing is that it allows the declarative description of prob-
lems. That is, a problem i solved by indicating & goal
without refevence to the method by which it should he
established.

ICOT has been reseavching and developing a con-
straint logic programming language, CAL, as an ele-
ment of basic software research. This subsection sutlines
the research and development of constraint programming
langnages, focusing on CAL.

Constraint logic programming languages, proposed
by Colmeraver [Colmerauer 1987], and Jaffar and
Lassez [Jaffar and Lassez 1987], incorporate the prob-
lem solving paradigm of constraint programming into the
logie programming paradigm.

— 64 =

User Frogram
= CeEv

Solution

Command

Preprocessor

Internal code
(ESP program)

Inference engine

Canonical form

Constraints

Constraint solver

Figure 20 Organization of the CAL systom

CAL aims at incressing the descriptive power of logic
programming languages by replacing unificetion with
a more powerful computation mechanism: constrainis
aolving, Problems are described in the form of con-
slraints, Lhat is, relations on objects, not only of the Her-
brand universe but alse of other fislds, and are solved by
& built-in mechanism. For example, if a system of equa-
tions on real numbers occurs in a program, it is solved
automatically.

CAL b & consbeaint logic programming langwage which
allows wsers to write several fypes of constraints, The
first protolype was implemented in 1987 on DEC2060,
and, now, three systems are available on PSI, the Per-
sonal Sequential Inference machineg: “Algebraic CAL®
which handles Enear and non-linesr slgebraic equaticns,
“Boolean CAL® which handles Hoolean equabions, and
“Typed CALY that handles several types of constraints,
including algebraic and Beolean equations, at the same
time,

In Algebraic CAL, the Buchberger algorithm for com-
puting Grobner bases of polynomials, which has besn
used in recent years In computer algebea and geomstry
theorem proving, j= utilized as the constraint solving al-
garithm, CAL is the first language to adopt the Buch-
berger algorithm as its constraint solver. This enables
the system to handle non-linear equations and wisld its
power over a lot of algebraic problems, such as the pro-
gramming for geometry theorem provers or the compu-

tation of conditional extrema by the Lagrange multiplier
methed.

— G5

In Boolean GAL, we wse the Grobner-base approach
again, Boolesn Grobmer bases can be computed by
slightly modifying the Buchberger algorithm.

In Typed CAL, users can use constrainks on several
iypes of objects simultaneously. Typing is intzoduced to
indigate the type of consiraint, In the execution of a
program, a suitable solver 13 selected automatically ae-
cording Lo the type of each constraint.

Each of the P5I's CAL described above consists of a
fpreprocessor”™, an “inference engine,” and & "constraint
golver™ asz shown in Figure 2. The preprocessor frans-
forme CAL pregrams and CAL gosls (gueries) to ESP
programs and ESP goals. The inference engine executes
ESF programs obtained by the transformation. When
& constraint is detected during execution, the constraint
solver is invoked to solve it. More precisely, the con-
gtraint solver collects constraints passed by the inference
engine and computes the canonical form of the set of
constrainte.

For the final stage of the FOUS project, the geometry
thesrem prover has been selocted as 2 typical application
of constraint logic programming. A constraint solver
that handles equations and imeguations ever real num-
bers will be investigated through this application. The
hierarchical use of constraint eolvers will also be investi-
gated concwmrently. A preliminary study has begun on
research om parallel constraint logic programeming. We
intend to design a parallel constralnt logic propramming
language with & powerful constraint solver, which will be
called PCAL, based on the result of these studiss.

2.3 Parallel with

Streams

Programming

Layered

We have been sfudying how to write search programs
in committed-choice languages (CCLs). Prolog, a se-
guential logie pregramming langoage, embodies nnifica-
tion and backiracking as its basic mechoenisms, and is
suitable for search problems.

Since CCLs do not have a backtracking machanism, it
is not easy to write search programs in OCLs. Selutions
may be obtained by replacing some part of other solo-
tiong through backiracking. In a CCL, & process should
be forked for every candidate instesd of backiracking.
Hewever, structure copying is necessary for each paral-
lel enviropment, which is not efficient. We have therefore
proposed a data structure, called & layered stream, and 2
programming style based on them, called layered stream
programming, for parallel processing of search problems
in CCLs [Olurmura and Matsumote l'F]S'i"].

The basio idea behind lavered streams is to improve
communication between processes by sharing some of the
dats structures and to achieve high parallelism. It is &
generalization of the idea which is employed in the PAX
parsing system |[Matsumote 1987). In ather words, PAX
is & derivative variant of the methed.

We have studied a way of programming search prob-
lems directly in & CCL. However, there s anolher way
of abtnining search programs by a trensformation from
some specification of problems. An appropriate descrip-
tion 1a.|1guage for search pmhlf.ms wonld I'u=:1p ue to obbain
sueh programs. We have snalyzed the property of search
problems and sim to devise & compiler which generates
efficient codes as directly programmed.

2.4 Partial Evaluation System

The purpose of a parlial evalvation system is to decive
a more efficient special purpose program from a given
geneval purposs program and its partial input, by par
tially performing computation on as many parts as pos-
gible using the partial Input.

One of the most important applications of pavtial eval-
uztion i its nse in compilation, which is well known
as the theory of Futammza’s projection [Futamure 1971].
There has been a grest deal of research on partial evalu-
ation for this application within conventional imperative
and functional languages. In particular, within Lisp, re-
sults have been obtained in compiling, compiler genera-
tion, and compiler-compiler generation by partial evalu.
stion [Jones et al. 1983).

In logic languages such as Prolog, however, per-
tial evaluation hes recently stfracted many researchers

by its use in oplimizing meta-programming [Levi 1686,
Safra and Shapiro 1986, Takeuchi and Forplkawa 1986],
Hesults have been reported concerning enly compil-
ing meta-programs. However, compiler generation and
compiler-compiler generation remained as open prob-
lems,

The main problems to be salved for partial evaluation
SYSLEI are:
« Antomation of the partial evaluation process;

+ Making partial
self-applicable.

eveluation PrOETIS

By antomating the partial evaluation system, we aim
at making the partial evaluation process perlormable
with less human assistance. By making the partial evalu-
ation algovithm self-applicabls, we aim at realizing com-
piler generation and compiler-compiler generation.

Although the implemented system has nol vel sue-
ceeded in solving the automaiion problem, it has suc-
cesdled in making i sell-applicabls. Using the sys-
tem, we hove achieved results in compilation, com-
piler generation, and compiler-compiler generation. We
have also succeeded in using it for incremental compila-
tion {Fujita and FPurukaws 1958].

The keys to this success are:

o Eazy and sufficient use of the given partial input;

¢ Compactness of the partial evaluation program.

In Pm]o-g, unification malkes it very easy to utilize
partisl information,. Mare concretely, due to the bi-
directional nature of wnification, information retained
in variable bindings can be propagated both top-down
and bottom-up. Secondly, it is easy to write meta-
interpreters for Prolog concisely (only thres lines in its
simplast form}. Since a partial evaluation program itsell
is a kind of meta-interpreter, this compactness is a great
advaniage in realizing self-applicability.

We shall conduct further research for the fallowing
purposes:
+ Automaling the above system;
+ Enhancing the parfial evaluation ability;
+ Constructing a partial evaluation system for par

allel logic lanpuages.

In arder to antomate partial evaluation process, the
mest important problem to be solved is how to detect ter-
mination conditions for recursive user predicates. Since

the problem is undecidable in general, we mare or les
need an indication from programmers.

However, for a limited class of programs, it may be
possible to derive determination conditions by perform-
ing sophisticated program analyses. Moreover, using
mode and type information obiained by the program
analyses, partial evaluation process may be made more
effective, For these analyses, the abstract interpretation
technigue will provide a useful method.

As for improvement of the partial evaluation ability,
Futamurs has recently introduced the notion of gen-
evalized partial computation within a2 functienal lan
guage [Futamura 1988]. CGeperalized partial computa-
tion extends the task of partial compuiation from mere
propagation of constants and evaluation of constant ex-
pressions to propagetion and stepwise reduction of con-
strints, This idea can be reformulated in logic pro-
gramming languages. We have already oblained some
resulis by implementing this idea.

Finally, in research an partial evaluation in parallel
logic languages, we are confronted with the rather seri-
ous theoretical problem that there is no established se-
mantics for parallel logie langeages or program transfor-
mation rules that are proven to be corpect.

However, we have defined a set of transformation rules
called the UR-set which 15 rather restricted but sound
in the sense that the rules never introduce a dead-
lock condition [Furukawa b al. 1988, We have imple-
mented o parkial evaluation system based on the UR-
set [Fujita ot al. 1988). Turther research on semantics
and transformetion rules is in progress {Usda 1988). Wa
expect that this research will confribute to & more prac-
tical partial evaluation system.

2.5 Transformation and Formal Semantics of
GHOC Programs

We have developed a program bransformation scheme
to improve the efficiency of GHC programs, and also
investigated the semantics of GEHC programs frem the
model theoretical point of view, giving an extension
of the approach talen by [Apt and van Emden 1982,

Lloyd 1984]. The following brielly describes this re-
EEa.rd'h

2,51 Transformation of GHC Programs

Unfelding is & basic operation for partial evaluation
and program trensformation, The unfolding of Prolog
programs s steaightforward, and has no problem. How-
evar, it is not the case when synchronization among goals

iz considerad. Thoughtless wnfolding can cause & dead-
lock.

We have propoesed & set of unfelding rules which does
not introduce such a deadlock, The basic idea is to pro-
hibit the unfolding of a clause with unification goale in
its body if the unfelding changes the puard eondition.
There are four rules including auxiliary rules. The set of
rules iz called the UR-set.

The first rule of the UR-set ia “Unification Execn-
tion/Blimination®, The effect of a unification goal in the
body or the guard of a clanse is applied to some varl.
ables in the body., Thus, the variables may be further
instantiated.

The second is "Unfolding et an Immediastely Exe-
cutable Goal®, A cause i3 unfolded at a body goal i
the set of candidate clavses to which the goal can com-
mit iz fixed stafically.

The third is an augiliary “Predicate Introdustion and
Folding”. A new predicate s defined by intreducmg a
clange whose body consists of the non-unification goals of
the clawss which we want to unfold. The original clause
is folded by the new clange. This rule is for enabling
application of the last rale

The last rule is “Unfolding across Guard”. A clause is
replaced by a sel of elauses if it has ne unification goal.
Each clausge is made by unfolding the original clanze at
some body goal using some program clause,

The UR-set seems bo be powerlul enough for various
applications. Recently, it was restated more formally and
the folding rule was generalized (Ueda 1888, To evalu-
abe its effectiveness, we need to perform further experi-
ments such as process fusion [Furukawa and Usda 1985),
the leveling of the mets-dnlerpreter and its object pre-
gram, and program synthesis from & neive definition.

Tao build an automatic partisl evaluation system, we
must find a valid conteol steategy to apply the UR-
gat. We are mterested in implementing such a system
in GHC, We believe it will take the form of coopearation
of several unfolding processes,

2.5.2 Fermal Semanties of GHC Programs

In languages such as GHC, the notion of processes
which execute infinite computations controlled by puard-
commit mechanisms communicating with other processes
using input/output streams can be represented naburally.

I pure Horn logic programerming langusges, the re.
ault for declarative semaptics based on the least fix
point has heen mpurbed in [Apt. and van Emden 1882,

Lloyd 1984].

In this approach, the denotation of a program is given
as the mimimum model of the set of Hom clauses, in
other words, the set of unit clanses which is egquivalent
to the program. The set of unit clanses is characterized
as the least fixpoint of the function obiaingd from the sst
of definite clavses. In this approach, we can characterize
the set of solutions as the logical consequences of the
program independently from the execotion mechanism.
This approach is one of the best ways of appreciating the
claxity of logic programs,

Wi have investigated an extension of this approach
fo GHO programs, and presenfed a declarative ssman-
bies of a parallel programming language based on Homn
logic such as Flat GHC [Murakami 1988], The domain of
mputfoutput (I/0) histories has been infroduced. Tntu-
itively, an [/ () history denotes an example of a computa-
tion path of & program which s generated when the pro-
gram s executed without any failure or deadlock. The
denotation of & program is defined as & seb of 1/O his-
tovies. The notion of truth is redefined for goal clausss
and sets of guarded clauses. The semantics of & program
iz defined as the meximum medel of the program.

We have also shown that the semantics s characterized
as the greatest fixpoint of the function sbtsined from the
program. Using the semantics, the solutions of programs
which contam perpetual processes controlled by guard
commit mechanisms can be charscterized as the logical
congeguence of the programs,

The properties of programs which conbain perpsinal
computation controlled by puard-commit mechanisms
can be discussed nsing the semantics.

§ INTELLIGENT PROGRAMMING
SOFTWARE

Research on intelligent programming software aims at
high-level facilitios from the software enginesving point
of view, which enables us to automate basic functions
needed in each process of software development and
maintenance, and to support all the procasses in & uni-
form framewerk.

In the intermediate stage of the FGCS projeat, we have
been researching basic technology, focusing on mathe-
matical techniques such as the application of automated
theorem proving, constructive mathematics, and term
tewriting, An oubline of this research is given below,

4.1 Computer-Aided Proof System CAP

Research and development of the computer-aided
proof system (CAP) aims at technological elements such
as program transformation, verification, and synthesis
based on methods of automated mathematical resson-
ing and, thus, construction of a programming suppord
gpsbem,

CAP will finally evolve to a cooperative problem solv.
ing system equipped with genersl mathematical reason-
ing facilities, for example, wide and desp mathematical
hnowledge, various utilities such as a proof editor, twe-
dimensional input foutput, snd symbolic computation.

Figure 3 shows the configuration of the CAP. Tt con-
sisks of & proof editor, proof checker, and proof compiler.
For these components, we have been investigating the
following facilities in the intennediate stage:

o A geperal-purpese structure editor based on user-
defined grammar with various intelligent proof
editing fanctions;

* Anintelligent proof checker enabling users to write
proofs essily;

s A prool compiler to construck programs from
proofs with optimization functions, and an inter
preter which execntes constructed programa.

This subsection describes the statuz of each compo-
nent.

8.1.1 Froof Editor

The proof editor is an intelligent editor to support de-
scription of proofs based on mathematical knowledge.
It needs a user-friendly interface, We have developed a
structure editor (SEMACS) with general-purpose fune-
tions which can be used by oot only tha CAP but also
other intelligent modules such as the knowledge base sys-
temn (Kappe), computer algabra system, and programm-
ing system.

SEMACS has the following features:

& Smooth interface with the text editor;

e General-purpose editor independent of grammuar in
the sense that it allows wsers 4o define grammar;

e Basy axtension and costomization;

« Ouidance functions for users unfamiliar with for-
mal grammear;

Proof Equality

Equation

checker

checker

Checlked prool

Proof text
ettt Proof
Proof tree
User
edi
Checking ror
sl
Input data | pvecution [Extracted
Program
User
engine
Execution
result

Proof

compiler

Figure 3: Configuration of the CATD system

Matural definition and editing of list atructure;

-

Facility of holophrasting;

Pretty print function which can be defined by the

user;

Editing & text containing non-terminal symbels,

Using this geneal-purpose struchure edifor, we have
developed & front end for the CAP. It shows where the
proof checker is currently checking in a proof text, In ad-
dition to the facility, we are now developing proof editing
funciions supporting interactive proof writing and check-
ng.

2.1.2 Proof Checker

The proof checler s a kernel component of the CAP.
We planned to develop & checker which can checl & proof
in o nafural form enabling the user to write a proof eas-
ily. A prototype system, CAP-LA [Sakai 1988], has bean
designed and implementad according to this pelicy,

The curpent system is tuned to lmear algebra for first-
year vniversity students. Tt checks proofs written fairly
freely by users who do not know the mechanism of the
proof checler, although such proofs sometimes need te
be rewritten bo some extent, These two features of CAP-
LA — the Limited tacget fleld and functions required for
checking fresly written proofs — accord with resesrch

and development policies, The policies are intended fo
develop a practical system cather than promote pure re-
senrch, Other research and development policies on the
systein are vo confirm the latest technologies such as term
rewriting, automated theorem proving, logic programm-
ing, and intelligent editing, incorporabing them the sys-
tem.

CAP-LA checks proofs constructing the proof tree,
which is based on the inference rules of natural dedue-
tion (NK), from the proofs wiitten by the user. Gen-
erally speaking, proofs which are easily understood by
the user have a lob of logical gaps. Therefore, a facility
to complement them is necessary. W call this facility
a proof finding facility. For firsst ovder logic, we use the
Prolog theorem proving tochnigues. For the squations,
we use the term rewriting techniques. CAP-LA has the
following [eatures:

» Separation of mathematical knowledge from the
checking mechanism, providing & facility to add a
checking mechanism and strategy easily;

s Environment for modifying grammar and for
adding and modifying knowladge for checking;

o Ability to complete proofs through interaction with
bhe waer;

» Inference mechanism for equations wsing term
rewriting techniques {described later);

* Auiomatic type checking to free the user from con-
CEIN over types.

3.1.3 Proof Compiler

The proof compiler is the system which translates
proofs verified by the proof checker system into pro-
grams [Takayama 1987, Thiz is based on the idea
that & special kind of proof, called & constructive
proof {Beeson 1985, Bishop 1967), can be sesn as the de-
scription of algorithms and their verification infarmation.

The system wses the notion of realizability inderpre-
bation [Kleene 1045, Beesan 1985, McCarty 1084], and
generates executable codes from the constructive proafs
of theorems. It is necessary fo jmplement a variety of
consiructive logic oo the proof assistant system to real-
ize the facility. The QPC [Takayama 1938), which is
o supared subset of QJ [Sato 1985, Sato 1986], is used
as the constructive logic. QPC is the logic in which
the specification, algorithms, and justification of algo-
rithms on natural numbers and netural pumber lists can
be described uniformly, and it is simpls snough to make
the resgarch on the proof fnding facilities and the ex-
iraclion of efficlent codes easier than other varieties of
constructive logie, Tiny Quiy Is used as the target lan:
guage of the proof compiler. The language is a subset
of Quiy [Sato 1987) which is alse the target langnage of
Qr. '

The theorstical issues of proof compilation have hesn
investigated, and the core part of the system has bean im-
plemented. A feasibility study has been also performesd
through the extraction of simple progeams by the proto-
type system such as » god program for naturel numbers.
The following ave the mein research issues:

Froof compilation algorithm based on the notion
of realizability;

s Optimization of the axtracled code;

+ Operatiomal semantics of Tiny Guty, that is, devel-
opment of the interpreter of the language,

The first iz almost completed. In the second issue,
the first problem is the dimination of redundant codes.
The verification information of algorithms, which is the
redundant code, is extracted by the straightforward ap-
plication of realizability, Tt causes a heavy runtime over-
head, particularly on the code extracted from procois
in induction, which I generally in the form of multi-
valuad recursive call programe. The extended projection
method (EPM), is = technique developed to eliminate
the redundant code [Takayama 10885]. The idea of the
EPM is to analyze and eliminate the redundancy at each

step of the proof which makes the procedure easier and
more effective than the traditional syntactic optimize-
tien technique. For higher level optimization of alge-
rithms, proof nermalization, which is a well-known no-
bion in the field of proof theory [Prawita 1%65), proved to
be effective to some extent. In the last jssue, the inter
preter was implemented experimentally [Taksyama 1987,
Tolayama 1988a, Takayama 1588%4].

The next stage of research will deal with a mom
general-purpoze prool assistant environment. The fol-
lowing themes have been set for this goal:

» Development of an intevactive proof assistant envi-
ranment, and the improvement of the proof editor

» Introducing higher order featurss to the proof de
scription language to describe & Jarger area of
mathematics than linear algebra, and enhancing
the proof checking facilities;

» Development of the mathematics knowledge base
for the improvement of proof assistant facilities,

The main resesrch themes in the final stege of the
FGOS project will be as follows: the ficst s the improve-
mant of the proof assistant system to make it practi-
cal, This research which will be aleng the sams lines as
current research. Another research theme is to develop
an advanced parallel programming environment by using
techniques developed for the proof assislant system.

3.2 Term Hewriting System Metis

Metis [Chsuga and Sakai 1986] supports specific math-
ematical reasoning, that is, inference associated with the
equal sign (=}. Such inference is, in general, intricate
and complicated, thus invoking an wrgent need for ma-
chine support. Metis provides an experimental environ-
ment for studylng practical techniques of equational res-
soning. The policy of developing Metis enables imple-
mentation, testing, snd evaluation of the latest tech-
ttiques for inference s rapidly and freely as possible
Therefore, we decided Lo develop & system separate from
CAP and intended to incorporate only practical tech-
nigues established on Metis in QAP whenever necessary.

We adopted the term rewriting system (TRS) as &
basie technique to handle equations, The TRS i a set
of oriented squations, called rewrite rules, and rewrites &
term replacing the left-hand side by the right-hend side
of a rewrite rule. There are main two reasons for our
selection of TRE: (1) il iz easy to handle by machine and
can be efficient, and (2) there are quite a few studies
of THSs from the theorstical point of view, especially
studies of termination and confluence property, which is
important for the computation mechanizm.

The kernel function of Metis is the Knuth-Bendic
(KB) completion procedure [Knuth and Bendix 1970).
Roughly speaking, the KB procedure consists of two pro-
cesses; (1) the orientabion process of equations to assure
the termuination of rewriting using the semantic ovdering
or gyntactiesl ordering method, and (2) the superposi-
tion process to make TRS confluent gemeraling cxitical
pairs (CPs) 2s new equations which represent ambiguity
between vewrite rules. By itesating these two processes,
a complete (terminafing and confluent} THS can be ob-
tained,

Howaver, two major problems ave encountersd dur-
ing the KB precess. One is the emergence of unori-
entable OPs in the superposibion process, The other is
the generstion of infinitely wmany CPs. In neither case
can we ohiain a complete TRS. We solved the first prob-
lem by converting unorientable aqua,t’-un; to orientation-
free rewrite rules which can be applied either lefi to
vight or right to left. Thiz extended procedure, that is,
the KB procedure with crientation-free rewrite rules, is
called wnfailing KB To solve the second problem, we
adopted an extension of the KB procedure, called the 5-
strategy [Heizng and Rusinowitch 1987). The S-strategy
determines whether a given equation & a theorem of the
agualional theory instead of obtaining o complete TRES
and is complete in the s=nse of refutational theorem prov-
II'IE.

THessarch and development of Metiz on how eguational
inference can become mors efficient without loss of com-
pletencss s & long-renge projsct, We ars t:mlsidm'iug
this [rom several points of view: implementation tech-
nigues [Oheugs and Sakai 1988), theoretical view point,
and user interface, We are planning to associate Metis
with & knuwlcﬂgc base such as Kappa o handle the enor-
mous number of rewrite rulss which may be reguirad in
the future.

4 BASIC SOFTWAHRE FOR ADVANCED
INFERENCE AND LEARNING

The aima of the study on the basic seftware for ad-
vanced inference and learning are Lo provide an advanced
inference mechanism such as commensense ressoning,
which cannot be achieved by ordinary deductive infer-
ence, and knowledge acquisition and learning mechs-
nisms which are essential for building large knowledge
information systems. In the intermedinie stage, we have
been conducting basic research to achieve the above poal
and have taken two approaches: logical and cognitive.

In the logical approach, we have been investigating
three themes: (1) ganeral formalization of commonsense
ressoning, {2) & methed for the revision and acquisition
of commonsense knowledge, and (3} mductive inference
baged on the modal theory,

In (1), we have developed a unified framework for ad-
vaneed inferenee metheds such as induction and analogy.
In {2), we have besn doing research focused on default
reagoning, which i a subclass of commeonsense reason-
ing, on formalized reviston, and en acquisition of com-
monsense knowledge, In (3), we have investigated the
problem of how to generate new predicates.

In the cognitive approach, we have constructed a cog-
nitive madel of conscious/unconseious processing, and
simulated the model in a parallel logic programming lan-
gouage. The model consists of two closely inferactive
parks: symbol processing and patbern processing, One
of the parallel symbal processes ie executed consciously
(conscious processing), and all the other processes are
executed anfomatically (unconscions processing). The
following subsections briefly describe these studies.

4.1 General Formalization of Commonsense

Heasoning

We believe thal human comimonsense ressoning is sup-
poried by advanced inference mechanisms such as in-
duction, analogy, and default reasoning. We have been
studying formalization of commonsenss reasoning for
mathematical discussion and have developed a unified
{ramework for various advanced inferences.

The unified framework is possible by regarding ad-
vaneed inference as nonmeonctonic reasoning. One of the
formalizations of the advanced inference is circumscrip-
tion by J. McCarthy [McCarthy 1980, McCarthy 1088].
Circumscription formalizes the notion of closed world as-
sumption, that is, “A property is estisfied by only those
entities which are explicitly stated so °. However, cir-
cumscription dees not successfully formalize these inder-
ences which generalize knowledge, such as induction and
analogy.

Therefore, we have formalized the following notion:
“MWhen all the demonstrated instances of predicate Fare
positive instances of ¥, we can assume that all instances
of Peatisfy 1 (When all the instances that praved to have
& property S have & property 9, all instances having a
property P have a property 1 [Avima 1982b).)" This
formelization is calied aseription and is a formalization
of induction and analogy

Advanced inference can be formalized as inferring on
the most praferred models by introducing a preference ar-
der over models. Unlike circumscription, ascription has
a digorete preference order, and performs radical beliel
revision. Thearelove, ascription is also suitable for repre-
senting management mechanisms for hypotheses which
are prodieed by the intelligent system itself.

4.2 Acquisition and Revision of Commensense
Knowledge .

In realizing ascription which is a unified framework for
commonsense ressoning, how to provide & concrete pref.
wrence order is a problem. We have studied the human
preference order in default veasoning. Default reasoning
infers the most plausible result from the commenzense
knowledge which is regarded as uvsually correct knowl-
edge even though there are a few exceptions. The follow-
ing subsection looks at acquisition and revision methods
for default reasoning.

4.2.1 Acecuisition of Commongense Knowledge

Since commonsense varies with historical, geographi-
ciul, social and individual background, intelligent syatems
need the abilibty to acquire commonsenss corresponding
to different contexts, For example, if they can acquire
individual commonsense that users have, they provide
user-friendly environments which interpret the users’ in-
tention appropristely. From this point of view, we have
taken the first step forward away from current research,
which assumes that commonsense is provided in advance,
towards the fubure research on acquiring commoensense

knowladge,

The idea of the resesrch [Arima 1988a) ie intuitively
explained as follows: “If entities in a class which are
shown te have & property are much more mumerous than
entities which are shown not to have that property, we
can acquire comuinensense that the properiy iz usually
satisfied in the class®

We have two theoretical problems to perform such
commonsenss acquisition. They are:

{1) Hepresentation of commeonsense knowledge varying
with classes;

(2) Representation of an overwhelming majority.

For (1), we have proposed partially directional eircum-
seription, a specialized version of formuls sircumsorip-
tion [MeCarthy 1985] which is a general form of ciream-
scripbion. For (2], we have introduced the swrpassing
relation, a binary relation over predicates,

We now plan te clasify problems for this approach and
investigate application and eoaperation with ascription

4.2.2 Revision of Commonsense Knowledge

The idea of the revision method of commonsense
knowledge iz related to the study on the famous exam-

ple of default reasoning called the Yele Shooting Prob-
fem [Hanls and MeDermott 1986].

Hanks and MeDermett evaluated the current formal-
igation of the default ressoning on ihe temporal projee
tion and showed that no curvent formalization captures
homean commonsense.

We have taken an approach based on minimal change
for the Yale Shooting Problem. The formalization of
minimal change states that hwmans infer by commen-
sense that a set of facts in & new situation is changed
minimally from the set of facts in the previous one to pre.
serve consistency. We have given approximate solutions
for the Yale Shooting Problam and a similar problem in
the inheritance system [Satoh 1987],

We have applied this formalization to the revision
mesthed of commonssnse knowledge, We have develaped
a formalization of revision strategy which performs inin-
imal revision, that is, to freat contradictory knowledge
as exceptions when it 15 added to current commensense
knowledge [Satoh 1938),

4.8 Induective Inference Based on the Model
Theory

Shapire's model inference [Shapiro 1982] gives a very
important strategy for inductive inference based on the
model theory for logie programs. In the model infevence,
however, there are very strong assumptions, as follows.
Finitely many predicates, which are sufficient for describ-
ing & targel program, are given in advance. Furthermore,
it is assumed that an oracle which gives inpui/output
examples of the progeam lnows the intended interpreta-
tion of all the predicates. This means that the ability
of the inference system very much depends on the user's
programming knowledge.

Recently, several approaches to the problem have been
made, in which an inference system generates new pred-
icates by itself [Mugglelon and Buntine 1938). In such
approaches, it Is impectant to handle the following prob-
lems:

{1) When will be a predicate generated?

{2) What is the meaning of the new predicate?

To desl with these problems, we consider a
class of logic programs, which are sufficiently and
syntactically restricted, as a farget of inference,
Lshizaka [Ishizeks 1988] gives an efficient algorithm for
inferring ons such class, DRLP, which is eguivalent to
the class of finite state acceptor. We will try to extend
this class to deal with more general logic programa,

— T8 -

4.4 Cognitive Model of Conseious and Uneon-
scious Processing

We understand that the basic problems in resliz-
ing artificial intelligence are knowledge acquisition (or
learning) and efficient extraction of acquired lknowledge.
Realizing their importance, we proposed a cognitive
model of conscious/unconscious processing (O 1) madel)
[1987, Okm 1988].

The model consists of two closely inferaciive parhs:
symbol processing and pettern processing. In symbol
processing, af most one of the parallel processes s exe-
cuted consciously (consclous processing) and the others
are execuied automatically [unconscious symbal process-
ing). Although symbel processing proceeds determin-
istically, pesude-backiracking is available in conscious
processing using recent memory. Patiern processing is
spreading activalion in a network, which is executed un-
consciously {unconscious pattern processing}.

We simulated the model in a parallel logle programm.
ing language GHC ulilizing the characteristies of the lan-
guage. That iz, we noticed the corvespondence betwesn
the basic characteristics of the model and that of the
language: AND-parallelism, chodee nondeterminism, and
the suspension rule. Utilizing these characteristics of the
language as it is, we sdded the following functions:

(1) Nerrowing down OR candidates with pattern pro-
cessing;

(2) Enabling pseudo-backtracking with recent mem-
ory.

Pattern processing is simulated using the language as o
process description language.

We started simulation from the part of interaction be-
tween consclous processing and unconscious patiern pro-
cessing, As an exampls for simulation, we took up the
process of doing a task of selecting a disparate ons of &
few items, for example, {run, write, pick, eat}.

The process of doing this kind of task consists of con-
ecious processing and unconsclious patiern processing.
That s, ficstly, a property for a classification occurs un-
congciously, sceording to the problem, context, and the
solver’s explicht and implicit knowledge which refiects
hizs experience, Secondly, the property of sach item is
checked consciously. B exactly one item is disparate on
the property, it ia the answer. If not, another property
occurs and 1% §s checked. Conscious processing is efficient
becanse it deals only with prapertiss thal have oecnrred;
that is, knowledge which can be accessed from conscious
processing s narrowed down by unconsclous processing,

In the model, tasks can be shared between symbol
processing and patiern processing, making the best use
of each part; meveover, inference and learning in each
part ave expecied to become more efficient through the
interaction of each part,

5 CONCLUSION

Our final goal of the research and development of
problemesolving and inferance software i {0 develop a
gooperative problem-solving system which supports the
construction of many kinds of application software. One
of the main themes in the intermediate slage is paral-
lelization which 2 essential to the development of such &
gyslem. We obtained fondamental vesults in this area.

Meta-programming by reflection and constraint logic
programming will be imporlant paradigms fo make
schemes of knowledge representing languages which
should be developed using the kerneal language KL1, We
believe that the meta-function snd constraint-funciion
vealized by thess paadigms glves a common base for the
cooperative problem-solving system.

Program transformation technigues and partial evah-
ation techniques based on a parallel logic programming
language GHO are almost completely developed. In the
resesrch on the proof support system, CAF, we deve
loped & good amount of theoretical background and im-
plemented many tools,

Advanced inference and learning iz one of the most im-
porbant themes of the FGOS project. To achieve progress
in these areas, however, il is necesary to meke it clear
whal buman knowledge information processing is, which
iz a very difficult problem. There iz no world-wide ap-
proved standard method Lo study it yet. At present, we
are investigating this theme based on its mathematical
maodel,

Although this paper did not diseuss other relafed
research comducted by the First Research Laborvatory
becanse of limited space, much has been done. Re-
leted research includes ARGUS [Kanamori eb al, 1880,
Kanamori and Hortuchi 1984, Kensmer: and Horiuchi
1884), & program verification, transformation, synthesis
and analysis system; ANDOR [Tekeuchi ef al, 1987s,
Takeuchi et al. 19875, a parallel problem-solving lan-
guage {or comeurrent systems; EUQDHILOS [Sawamura
and Minemi 1982, Sawamura et al. 1988], a computer
eided reasoning system; and MENDEL [Hunideu et al,
1985, Heniden et al. 1986, Uchihira et al. 1987], a pro-
totyping support system.

In the final stage we will concentrate on paralleliza.
tion. Az part of the research on intelligent programm-
ing software, we are planning to develop (1) & parallel

knowledge programming language submedule, (2) & pas-
aliel intelligent programming support submedule, (3) &
proof support submodule and (4) advanced inference and
learning mechanisms. :

For the parallel knowledge programming language
submodule, we will conduct further research on meta-
programming, consteaint logic programming and seman-
tics based on a parallel logic programming language.
Cemsidering these resulis, we plan to extend and improve
KL1.

For the parallel intelligent programming suppert sub-
modile, we will continue basic research on program
transformation and verification of parallel logic pro-
grams, then develop o praciical pactial evaluation system
and an interselive transformation, synthesis and verifi-
cation system considering flexibility and esdensibility.

For the proof support submodule, we will enrich the
practicality of the proof support system (CAP) deve
loped in the inteymediate stage, then expand it to a par-
allel alporithm design sapport system to develop an in-
telligent support environment for parallel programming,

For the advanced inference and learning mechanizms,
wa plan to proceed with research on the formalization
of commonsense reasoning, & predicate gensrator based
on inductive inference, and & model of cognition. Then,
cooperating with research on natural langiage process-
ing and expert systems in the ather laboratories, we will
develop them as integrated research on learning from the
viewpoints of both theory and application.

ACENOWLEDGMENTS

The research on the problem-solving and inference
software was carried out by the firsi research labora-
tory at IOOT in tight cooperation with six manufac-
tures, Thanks are firstly due to who have given suppori
and helpful comments, including Dr. Fachi, the direc.
tor of the research laboratories at ICOT, Mr. Yoled, the
former chief of the second research laboratory st ICOT
and the current director of EDER, and Dr. Furulaws, the
deputy director of the ressarch laborateries at ICOT.
Many fruitful discussions were done at the meetings of
Working Groups: PPS, S5YOQ, and FAL Special thanks
go to many people al the cooperating manufacturers in
charge of the joint research programs.

REFERENCES

[Apt and van Emden 1982] Apt, K. and van Emden, M.
H., Contributions to the theory of logic programm-
ing, J. ACM, 20, 1982

[Arima 1988a] Avima, J., Generating Rules with Excep-
tiong, in thiz velume, 1988

[Arima 1988b] Arima, J., Formalization of Advanced In-
{erence Processing as Nonmenstenic Reasoning (in
preparation)

[Beeson 1985] Beeson, M. J., Foundations of constrie-
tive mathematics, Springer Verlag, 1935

[Bishop 1967] Bishop, E., Foundation of construetive
analysis, McGraw-Hill, New York, 1067

[Chilayams et al, 1988 Chikayama, T, et al,, Overview
of the Parallel Inference Machine Operating System
{PIMOE), in this volume, 1988

[Colmeraver 1987] Colmeraver, A, latraduction to
Prolog-111, in ESPRIT'EY, Achicvemenis and Jm-
pact, Proo. fth Annual ESPRIT Conference, pp.28-
20, Brussels, Novth-Holland, 1987

[Fujita and Furukawa 1988] Fujita, H. and Furukawa,
I., A Sell-Applicable Partial Evaluator and Iis Tse
m Incremental Compilation, New Generation Com-
puting, 5(2,3), June 1958

[Pujita ot al. 1988] Fujita, H. Okumura, A, and Fu-
rukaws, K., Partisl Evaluation of GHO Programs
Based on the UR-set with Constraints, in Proc, Fifih
International Confevence and Symposiam on Logic
Programming, Seatile, 1988

[Furikawa and Usda 1985] Furukawa, K. and Usda, 1.,
GHC Process Fusion by Program Transformation, in
Snd Conf. Proc. Japan Sec. Softw. Se. Tech., Tokyo,
1985

[Fuyukaws et al. 1988] Furukawa, 1., Okumuars, A., and
Murakami, M., Unfolding Bules for GHO Pregrams,
New Generation Computing, 6(2,3), June 1988

[Futamura 1971] Futamura, Y., Partial Bvaluation of
Computation Process ~ An Approach to a Compiler-
Compitar, Systems, Computers, Coniroly, 2(5)5-
a0, 1971

[Futamurs 1988] Futamura, Y., CGensralized Partial
Computation, in D. Bjgrner, A. P. Exshov, and N.).
Jones, editors, Partial Bvaluafion and Mized Com-
putation, North-Holland, 1988

[Hanks and McDermott 1986] Hanke, 3. and MeDer
mott, D, Default reasoning, nonmonotonic logies,
and the frame problem, in Proc. AAATSG, pp.a2s-
333, 1986

[Honiden et al. 1985] Honiden, 8., Uchihiva, N, and Ka-
suya, T., Software Prototyping with MENDEL, in
FProe. Logie Programming 85, LNCS-221, pp.108-
116, Springer-Verlag, 19285

- T4 —

[Honiden ot al. 1986] Honiden, 5., Uchihira, V., and Ka.
suya, T., MENDEL: Prolog based concurrent objech
oriented language, in Proc. COMPCOON 86, pp.230-
334, 1986

[Hsiang and Rusinowitch 1987] Hsiang, J. and Rusincw-
iteh, M., On Word Problems in Equational Theories,
in [CALP, 1ith International Colloguwium Automate,
Longuages and Programming, pp.54-TL, 1987

[lshizaka 1988] Ishizaks, H., Inductive inference of
vegular languages based on medel inference, In
Proe. Logic Programming Conference ‘87, LNCS.
315, pp.178~184, Springer-Verlag, 1988

[Faffar and Leseex 1987] Jaffar, J. and Lasses, J-L.,
Clonstraint Logic Programining, in Pros, Jth JEEE

Sympozinm on Logie Programsning, 1987

[Jones et al. 1985] Jones, N. D, Sestoft, P., and
Sendergaard, I, An Experimeant in Partial Evalus-
tion: The Generation of a Compiler Generator, in J.-
P. Jouannavd, editor, Rewrdting Technigues and Ap-
plicalions, LNCS-202, pp.124-140, Springer-Verlag,
1985

[Kanamoeri and Horluchi 1884] Kanamori, T. and Hori-
uchi, K., Type Inference in Prolog and Ite Applica-
tions, Tech. Repart TR-035, ICOT, 19584, also in
Proe. Otk Internotional Joint Conference on Artifi-
cial Mtelligence, pp 704-T07, 1085

[Kanamori and Horiuchi 1086] Kanameori, T, and Hoai-
wehi, K., Construction of Logie Programs Based
on Geperalized Unfold/Told Bules, Tech. Report
TR-1TT, 1IGOT, 1986, also in Prec. fik Interna-
tional Conference on Logic Programming, pp.T44-
758, 1987 '

[Kanamori et al. 1886] Kanameri, T., Fujite, H., Seki,
H., Horiuchi, K., and Magji, M., Argos/V: A System
for Verification of Prolog Programs, in Prec. FJOC,
Dallas, Toxas, IEEE Computer Society Press, 1986

[(leene 1943] Kleene, 8. C., On the intecprefation of
intuitionistic number theory, J. of Symbolic Logie,
10:100=-124, 1845

[Knuth and Bendix 1970] Knuth, D. E. and Bendix, P,
B., Simple word problems m universal algebras, in
J. Leech, editor, Computational problems in abstract
alyebra, pp.263-297, Pergamon Press, Oxford, 1970,
glso in Siekmann and Wrightson, editors, Auloma-
Hon of Reasoning 2 pp.342-376, Springer-Verlag,
1983

[Lewi 1686) Lavi, <., Object Level Reflection of In-
ference Rules by Partial Evaluation (extended ab-
stract), in P. Maes and D, Mardi, editors, Work-
shop on Mete-Level Archifectures and Reflection,
Sardiniz, North-Helland, 1986

[Lloyd 1984] Lioyd, J. W., Foundefions of logic pro-
gramming, Springer-Verlag, 1984

[Matsumoto 1987} Matsumoto, Y., A Parallel Parsing
System for Natural Language Analysis, New Gener-
ation Computing, 5(1):63-78, 1987

[MeCarthy 1080] McCarthy, J.,, Circumseription — a
form of non-monslenic reasoping, Artf Tntell,
132739, 1980

[MeCarthy 1086] MeCarthy, J., Application of Cirewrn.
seription to Formalizing Commen-sense Knowledge,
Artif., Fnfell, 25:80-116, 1988

[MeCarty 1984] MeCarty, D, G, Realizability and Re-
cursive Mathematics, Ph.D thesis, Oxford, 1084

[Muggleten and Buntine 1988] Muggleton, 5. and Bun-
tine, W., Towards Constructive Induction in Firel
arder Predicate Caloulus, TTREM 88-031, The Turing
Institute, 1988

[Murakami 1988] Murakami, M., A Mew Declarative Se-
mantics of Paralle]l Logie Programs with Perpetual
Procasses, in this volume, 1988

[Ohsuga and Saksi 1986) Ohsuge, A, and Saksi, K.,
Metis: A Term Rewriting System Generator, in
Sympesinm on Soffware Seience and Hngineering
(S5E), RIMS, 1988, alse Tech. Memorandum TM-
0226, 1C0T

[Ohsuga and Salai 1988] Ohsugs, A, and Sakad, K., An
efficient implementation melhod of reduction and
narrowing in Metis, in Infernational Workshop of
Unification {UNIF} ‘88, 1988 zlso Tech, Report {to
appear), JCOT

[Oka 1987] Ola, N., A Cognitive Model of Con-
scionsUnconscious Processing. in 4 Conf Proc,
Japan Sec. for Seftw. Se. Tech., pages 450-462, 1087
(in Japsnese)

[0l 1888] Oka, M., Cognitive Model of Con-
seious f Uneonseions Processing and [is Simulation in
& Parallel Logic Programming Language, Tech, He-
port TR-415, ICOT, 1988

[Okumura and Matsumoto 1987] Okunuea, A, and
Matsumaotn, Y., Parallel Programming with Lay-
ered Stroams, in Proe. Fourth Sympostem on Logic
FProgramming, San Francisoo, 1957

[Prewits 1955] Prawita, D, Netural Deduction,
Almaquist and Wiksell, Stockholm, 1968

[Gafra and Shapire 1956) Safra, 5. and Shapie, E.,
Mata Interpreters for Resl, in H.-J, Kugler, aditor,
Informalion Processtng 86, pages 2T1-278, Dublin,
Ireland, MNorth-Holland, 1956

[Salai 1988] Salai, K., Toward Meshanization of Math-
ematics, i K. Fochi and M. Mivat, editors, Fro-
gramming of Fulure Generation Computers, pp. 335
390, North-Helland, 1985

[Sate 1985) Sate, M., Typed Logical Caleulus, Tech.
Report 85-13, Department of Information Science,
Faculty of Science, University of Tokyo, 1985

[Sato 1986] Sato, M., QJ: A Constructive Logical Sys-
tem with Types, in Franee-Japan Artifeial Jatelli-
gence and Computer Science Symposzinvm 86, Tolkyn,
1986

[Sato 1987] Sato, M., Quiy: A Concurrent Language
Based on Logic and Function, in Proc. Fourth
Internalional Conference on Logle Programming,
P 1034-1056, MIT Press, 1987

[Satoh 1987) Satoh, K., Minimal change — A criterion
for choosing betwesn competing models —, Tech,
Report TR-316, ICOT, 1987

[Satoh 1928] Satoh, K., Nonmonotonic reasoming by
minimal belief revision, in this volume, 1088

[Sawamura and Minsmi 1988] Sawamura, H. end Mi-
nami, T, General-Parpose Ressoning Assistant Sys-
tem EUODHILOS and Its Applications, Tech, Mam-
orandum TM-0576, I00T, 1988

[Sawamora et al. 1088] Sawervors, H., Minami, T,
Sato, ¥., and Teuchiva, K., Potentials of General-
Puzrposs Reasoning Assistant System BEUQODHILOS,
in Symposium on Software Science and Bngineering
(SSE), RIMS, 1988

[Shepiro 1982] Shapirs, E., Algerithmic program debug-
ging, Phud thesis, Yale University Computer Scisnce
Drept., 1282, Published by MIT Press, 1983

{Smith 1584) Smith, B. C., Reflection and Semantics in
Lisp, in Froc. 11th Annual ACK Symp. on the Prin-
ciples of Programming Languages, pp.23-25, ACM,
1984

[Takayama 1987] Takayama, Y., Writing Programs s
QJ-Proofs and Compiling into PROLOG Programs,
in Proe. {th Sympesium on Logic Programming, San
Francisen, 1087

[Takayama 1983a] Takayama, Y., QPC: (J-based Proaf
Compiler —Simple Examples and Analysis, in
European Symposium on Programming ‘88, Nancy,
France, 1988

[Takayama 1988h] Takayama, Y,, Proef Theoretic Ap-
proach fo the Extraction of Redundaney-free Real-
iwer Godes, (to appeat), 1938

[Takeuchi and Furukawa 1938] Takeuchi, A. and Fu-
rukaws, I, Partial Bvaluation of Prolog Frograms
and Its Application to Meta Programming, in H.-
J. Kugler, editor, Infarmation Processing 86, pages
415420, Dublin, reland, North-Helland, 1986

{Telenchi et al. 198Ta] Takeuchi, A,, Takahashi, X,
and Shimizu, H.,, A Description Language with
AND/OR Parallelism for Concurrent Systems and
Tta Btream-Based Realization, Tech. Report TH-220,
IC0T, 1987

[Takeuchi et al. 1987h] Takeuchi, A., Takahashi, K.,
and Shimizu, L, A Parallel Problem Solving
Language for Congurrent Systems, in Prec. IFIP
WG10.1, 1987, (to appear)

[Tanaka 1988] Tanaka, J., Meta-Interpreters and Reflee-
tive Operations in GHC, {n this volume, 1988

[Uehibira et al. 1887) Uchihira, M., Kasuya, T., Mat-
suntoto, K., and Honiden, 5., Concept Program Syn-
thesis with Heusable Components Using Temporal
Logie, Tech. Report TR-271, TCOT, 1957

{Ueda 1986a] Ueda, K., Introduction to Guarded Homn
Clanses, Tech, Report TR-200, ICOT, 19286

[Jeda 19865 Ueda, K., Guarded Horn Clauses: A Par-
allel Logic Programming Lenguage with the Con-
ceph of & Guard, Tech. Report TR-208, [C0T, 1988
{revised 1987), also in K. Fuchi and M. Nivat, adi-
tors, Programming of Fulere Generation Compufers,
prd4l-456, North-Holland, 1988

[Ueda 1988) Ueda, K. and FParukawa, K., Transforma-
tion Rules for GHO Programs, in this volume, 1588

[Weyvhrauch 1950] Weyhranch, R. W., Prolegomena to
a Theory of Mechanized Formal Ressoning, Artif,
fntell., 13(1-2):133-170, 1980

