Knowledge Base System
in Logic Programming Paradigm

Hidenori ITOH, Hidetoshi MONOT (ICOT)
Shigeki SHIBAYAMA (Toshiba Corp.)
Nobuyoshi MIYAZAKI (Oki Electric Industry Co. Ltd.}
Haruo YOKOTA (Fujitsu Ltd.)

Akihiko KONAGAYA (NEC Corp.)

ABSTRACT

This paper describes the currend research and devel-
opment status of the koowledge base subaystemn being
investigated in Japan's Fifth Generation Computer Sys-
tems (FQOT) project. Our aim is to realize the subsys-
Lem in the logic programming paradigm to manage large
knowledge bares shared by Al application systems. In
the intermediate stage of the project, several approaches
ste being taken to realize the kmowledge base subsys-
tem, Experimental syatems are being developed in order
to study the technical aspects. These systems will be
integrated inte the prototype of the FGCOS in the final
stage.

1 INTRODUCTION

The Fifth Generation Computer Systems (FGOSY
project aims to develop a prototype system for & knowl-
edge mformation processing system. The protobype sys-
tem processes knowledge in the logic programming and
parallel processing paradigms, To realize the prote-
type system, we have developed parallel inference subays-
tems and knowledge base subsystems in the intermediate
stage. These subsystems are integrated inte the proto-
type of the PGCS by the parallel logic programming lan-
guage Guarded Hormn Clauses (GHC) in the final stage
[ltah 88].

The knowledge base subsystem provides esnvenient
environments in which to construct, retrieve, and ma-
nipulaie large, shared knowledge bases for Al applica-
tions on fhe inference subsystems. The subaystem inher-
ite most of the traditional database functions, such ag
aceess path selection and transaction control. However,
knowledpe base systems must have richer functions and
interfaces for manipulating knowledge than traditional
datzbase systems. In other words, becanse the AT appli-
cation programs use knowledge-representing defs that
has & more complex structure, the knowledge base sub-
systems must have high-level functions so that they can
handle & large amount of knowledge and high-level in-
terfaces between the knowledge bases and application
PIOgTAIE.

In the initial (three-year] stage of the project, we
developed a relational database experimental system
Delta as the first step o research the knowledge base
subsystem [Murakami 83] [Kakuta 85]. By doing this,
we accurnulated archilectural experience aboul syatems
that must process large amounts of knowledge efficiently
[Itoh 87). We also developed an intedface betwesn the
leghe programming language Prolog and the relational
database on it so that we could study the technical prob-
lorns regarding their integration [Kunifuji 82] [Yokota 34
{Yolota Bfal.

We are in the intermediate four-year stage, and aim to
develop 2 prolotype of the knowledge base subsystem.
The subsystem can handle more complex knowledge-
representing data divectly and provide friendly interfaces
for the knowledge processing programs based on logic
programming paradigms. To develon the prototype, we
have defined and developed four models of the subsys-
tem using the sequential inference machines that were
developed in the initial stage. To research the knowledge
Lase subaystem efficiently, we employed the following ap-
proaches:

o The first approach iz te extend & logic program-
ming language that supports knowledge base fune-
tiona. We have d.qvalupead a Pra.ctir.a] ktmt&dge:
base system with a large amount of knowledge in
order to prove the effactivensss of the functions.

The entire system is developed on the CHF ma-
chine with a high- performance sequential inference
processor and a lavge-capacity memory. The mem-
ory capacity is sufficient for realiging a practical
memary-based knowledge base.

* The second approach iz te perform distributed
knowledge base processing: the efficient rvetrieval
and management of knowledge bases in the dis
tributed environment, The systemn is developed on
F3I machines connected by a local area netwark.

In this appreach, knowledge bases are vealized in
the context of deductive databases. We have de-
veloped saftware and hardware systems to manage
distributed knowledge bases and to process queries.

s The third approach is to realize parallel knowledge
base processing, We have developed an experimen-
tal knowledge base subsystem with multiple pro-
cessing elements and a large-seale multiport mam-
ory. We have also developed the contrel software
for the parallsl processing. The experimental sys-
tem is made accessible from PST through 2 logie-
baged query language.

In this approach, we adopted & relational knowl-
edge model, an extension of the relational daiz
modal. The architecture of the experimental sys-
tem follows the ideas behind databsse machines.

» The last approach is to research interfaces between
parallel logic programming languages and knowl-
edge bases.

In this approsch, we selecled applications to
study the interfaces in the parallel processing envi-
ronment. We adopied the parallel logic program-
ming leaguage GHO and embedded hnowladsge-
baze ham:l!ing functions in it.

Technologies obfained in these approaches have been
integrated inte the parallel knowledge base processing
model.

This paper describes each system with related research
topics. Section 2 describes the knowledge base system
on the CHI machine, Section 3 describes the distributed
knowledge base system using the PSE. Section 4 de-
scribes the parvallel knowledgs base processing model.
Section § describes the knowladge base interface aystem
for parallel logic programming lenguagss, Lastly, Section
f is a summary of this paper.

2 KNOWLEDGE BASE SUBSYSTEM ON A
SEQUENTIAL INFERENCE MACHINE

This section describes the high pecformance knowledge
base system developed on the CHT machine [Habata 87).
We developed this system in order to investigabe mech-
anisms for the efficlent retrieval and managoment of
knowledge bases. The novelties of the system are its
practicebility in terms of performance and memory ce-
pacity, snd ity extension of multiple name space in a
mulii-process snvironment,

2.1 Owverview of the System

CHI is one of the inference machines developed in the
FGOS project, designed for high pedformance execation
of large practical logic programming programs. Figure 1
shows the CHT hardware configuration. The hardware
consists of a high performance processor (500k LIPS for
benchmark programs} and a large main memory (320

Front oHI
end processar
Procosscr {500 KLIPS)

Lo~ '

Main memeory

{320 MB)
Figure 1. CHI hardware gystem configuration

Process B

Globul Atae
knwled#c
base Trall.

Frocoess A

|Tum| stack |

1,,,“1 [Global stack ||
]melnﬂgu
base

.r--""_ T - hm-nrladpe base
M — I——_y
Application layer
Infer
m],;:m Fagts
Language |
loyes)
Kernel layer I
"“--._______‘_"-v________.-—-"'"r

Figura 2. OHT software eystern configuration

MRB) connected to a front-end processor for input-output
operations,

The knowledge base system is composad of thres lay-
eral & kernel layer, & language-processing laver and
an application layer (Figure 2), The kernel layer pro-
vides bagic functions for multi-processing and remete
input/output operations [Kenagays 87). The language.
processing layer provides & full interactive programuming
environment for SUPLOG [Atarashi 88), a Prolog dialect
with multiple names space, The application layer pro-
vides special Inference rules and facts for specific areas,
such as DNA sequence matching [Doolittle 86] and ma-
chine translation systems. All processes shars the knowl-
edge base systemns and execute logic programs with their
own execution environmant: local, global and trail stacks
and a local knowledge base. From the user's polot of
view, CHT ncts like & domain-orviented knowledge-base
machine rather than like a Prolog machine, if applica-
tion layer programs are loaded with system programs.

The high performance comes from special hardware for
unification, backiracking, clanse indexing and sophisti-
cated compiler optimdzation [Habata 7). To make use

of compiler optimization, we divided predicates into dy-
namic predicates | predicates that can change their defini-
tion dynamically) and static predicates (predicates that
cannot change their definition dynamically). This divi-
gion distinetion iz very effective because we can elimi-
nate the overhead of predicate calling for most predi-
cates (static ones). We also endeavored to implement
high-performance dynamde predicates, sinee the dynamic
predicates tend to form a bottleneck if they are executed
by an interpreter. We infroduced a "dynamic eompi-
lation” or “ineremental compiling™ techmique that com-
piles a clause when asserted [Konagaya 88), As a result,
the OHI machine can execute dynamic predicates anly
thres times slower than it executes stadic predicates,

The large memory capacity (320 MB) makes it pos-
sible to realize a memory-based knowledge base system.
Knowledge base systems require a large knowledge data
az well as a number of inference rules, For exampls, a
DA sequence matching system requives DNA data (20
million residues), and a machine translation system re-
guires & languege translation dictionary (30,000 words).
From a practical point of view, large kuowledge dafa
retrisval is the mest time-consuming process in the im-
plernentation of practical knowledge base systems. The
memery-based knowledge base system solves this prob-
lem, since it eliminates disk access time, which cccupies
a large proporbion of the dats retrleval process in con-
ventional computer systems.

A multiple-rmultiple name space has been introduead
to avoid interprocess name conflict snd to represent a
hierarchicel knowledge database. To solve the inter-
process name conflict, the multiple-multiple name space
frcility copies name spaces when a process is created.
The name space copying scheme enables processes o ac-
coss name spaces independently while sharing elanses.

The hisrarchical knowledge database can be obtained
by the spcapsulation, inheritance and shadowing mech-
anisms of the multiple-multiple name space. The encap-
sulation mechenism enables the use of the same name in
a different way in the knowledge base. The inheritance
mechanism provides an efficient way of defining shared
clauges, The shadowing mechanism iz ueed for solving
name conflicts that occur in inheritance. The mechas
miem is alse useful for representing non-monetonic logic,

The following sections give further details about the
mmltiple-multiple name spaces that pley an essential role
in knowledge base systemns.

2.2 Multiple-Multiple Wame Spaces

Multiple-multiple name spaces provide an elegant way
of implementing & shared knowledge database in a multi-
process environment. The shared knowledge base ts very
important, especially in the field of co-operative prob-
lem solving. The problems that have to be solved are

Process A Procens B
= Lpoal knowledge base = Local knowledge baze
'.--—-—__-'-—'_

b-I-'-'_'—-_
Mew rides Clause |
Nﬂ_ﬁ'ﬂ‘ﬁm

Rules

[Clnage

Bhared kaswladge

7 \ / hwm

|Glnuu| [Ela:m|
|ﬁys!:¢m| { Fecta | Rules |

Filgure 3. Multiple-multiple name spaces

nams consistency and name conflict between processes,
The inter-process name conflict resultz from the inher-
ited mature of & knowledge base that permits it to update
its component (clanse) dynamically. A lock mechanism
may save this problem, but would still leave a schedul-
ing problem; the results of the program might change
depending on the process scheduling., Our obsarvations
sbont knowledge bases lead uwe to conelude that most
knowledge bases are static date. We solved the problem
by dividing a knowledge base inte two paris: a shared
knowledge base and & local knowladge base, The shared
knowledge base contains all system programs and the
static knowledge, The local knowledge base contains the
process’ own programs snd dynamic knowledge, To ve-
alizge interprocess communication, we chose 4 mail box,
a message based communication, rather than the shared
knowledge base, since wpdating the shared knowledge
base causes nondeterminacy of knowledge base access.

The inter-process name conflict may oceur when pre-
cesses share a name space. Do solve the problem, we
adopted the following name space copying scheme. In
the scheme, each process copies the name tables of the
shared clavse database, if one has beon created. The
point is that the copied name tables are in the local
clause database, so each process can change any name
space without affecting sther processes. Figure 3 shows
an example of this scheme. In this example, each pro-
cess has three shared-names spaces: "system”, “rules”
and “facts”, and two local name spaces: “new.rules” and
“new facts",

Process scheduling doss not affect program execution,
no mabier how the program changes 2 clause database
dynamically. Loecal clause database can be removed
when & process is terminated or killed.

2.1 Hierarchical Knowladge Base

Multiple-multiple name spaces also give us an elegant
way of represeniing & hierarchical knowledge base thai
supports encapsulation, inheritance and shadowing of
predicates. These facilities make it possible to repre-
sent frame-like hierarchical kmewledge naturally in logie
programming paredigms.

Encapsulation The encapsulation facility reduces
pame-conflict and increases reliability by hiding inter.
aally used predicates from outer-worlds. For example,
the knowledge about Mr. Konagaya's account may be
written in the following way.

i~ in_package(konagaya) .
1= axport withdraw/2, deposit/2.
1= dynamic current_account/i.

withdraw{Amount , ¥ew_balance) -
retracti{sccount{Balancal),
Hew.balance is Balance - Amount,
(How_balance >= 0
=¥ papart{account(Mow_balanea));
print("Not encugh balanca!"),
asgert(account (Balancal}) .

depesit{Amount ,New_balance) =
ratract{account{Balancal) ,
New.balanca is Palance 4+ Amount,
assert(account (How_balancal}) .

In the above case, the predicate account1 is ased only
for keeping Konagaya's current balance, So it should be
hidden so that no one can accesa the halanes direstly.

Inheritance The inheritance facilify enhances hierar-
chical knowledge representation such as frame theory
[Minsley 74] and seripts. One of the great advantages of
the name-based inheritance in a clause databasa is that
wa can conskruct both rule hierarchy and date hierarchy
in the same way, That is, we can provide more fexible
and powerful ways of mixing rule sets and dats sets then
conventional Al-tools can.

For exampls, & class of bird may have a general prop-
erty of birds, such x4 that & bird has two wings, or a bird
can flv. These rules can be described as follows.

1= in_packagaf{bird).
1= external wings/1, canfly/l.

wingz(2).
canfly.

A class of sparrow can be defined inheriting a class of
bird,

|ean_ily | [no_of_wings ()]

Figure 4. Inheritance in knowledge bases

1= dn package{sparrow, (fuse(birdi]).
t= extarnal coler/i.

color{brown) .

Shadowing The shadowing facility makes it possible
o hide some predicates so that they are not inherited
from the super class. A kind of non-monotonic knowl-
edge can be represented by weing the facility. For exam-
ple, & class of penguin can be defined inheriting a class
of bird, but the predicate canfly/¢ can be shadowed.

t= in_package(pangoin, [fusalbird)]).
t= axternal coler/i.
= shadowing canfly/0.

solorih & w),
canfly (- fail.

2.4 Summary and Future Works

A clanse database can be extended to a knowledge
base by means of & multiple-multiple name space. The
multiple-multipls name space alag gives an elegant way
of sharing & knowledge base 2mong processes,

The knewledge base system can be extended to an
shject-oriented base by introducing a listory-depandeant
date sirecture, that is, objects. In the system, & clause
may be used to define conztraints between objects.

3 DISTRIBUTED KNOWLEDGE BASE
SUBSYSTEM

Coordination of various knewledge bases and process-
ing knowledge bases in a distributed environment is im-

° AP :Application

program
GEBM : Global knewledge
base mansger

LEBM :Losal knowledgs
base manager

Figure 8. Logical configuration of the PHF system

GEEBEM

portant fer future knowledge information processing sye-
tems. One of the most fundamental issues in the study
of the knowledge base is the knowledge base model as a

© framework. We have selscted a deductive database as a

fundamental platform to study knowladge bases in dis-
tributed environment. We call this system & distributed
deductive database (DDINB) zyatem.

3.1 Owverview of the System

A deductive database consists of an infensional
database (II¥B), a set of rudes, and an extensional
database (EDR), 2 set of facts. The EDR is assumed
to be mouch larger than the IDB. There is a well known
one-to-one correspondenss between a ground unit clause
of the EDB and a tuple of & relational databasa. We have
adopted a two-layered configuration: the lower layer,
a relational database management syatem, handles the
EDB and the upper layver handlea the IDB.

In order to support & distribited environment, we gave
the deductive database system global knowledge man-
BEETS and local kﬂowh:dge base managers. AR exper-
imental syster, the Predicate logic based Hlerarchical
knowledge management (PHI) system, is being devel-
oped to study technical issues, In this system, one global
manager and one or more local managers are dynamically
assigned to cach user or application program as shown
in Figure 5.

The principal technical issues being investigated in the
remearch of the DDDE system are as follows,

o Distributed query processing.
¢ Distributed database updating and management.

o Interface between logic programming lanpguages
and the DDDB eystem.

e Architecture of & dedicated processor for efficient
handling of the deductive database.

PSI Pl
Hoat « & » Haak
| | 1COT LAN
oM || PEML Do || POML
H_'b.'l'.l..l, “MLL
EMLe || ppur || || Mo | DEML
GEEM LEBM GHEBM LEBM
Psi PSI

DEM . Distributed control module
EML : Knowledge management layer
DBML: Data base management layer

Figure 6. Physical confipuration of the PHT system

[(rs)

Enewladge Base Engine

ICOT LAN

Figure 7. Knowledge base engine

The PHI physically consists of & number of personal se-
quential inference machines [£303) as shown In Figure §.
BEach site has a global manager and & local manager, A
dedicated processor is designed as an atteched proces-
sor of & PSL The processor adopts & superimposed code
scheme, and has an aceelerator for processing indexes
based on the scheme illustrated in Figure 7. An experi-
mental application program for software development is
also being developed fo investigate the functionality and
performance of the system,

2.2 Distribuied Deductive Database

Principal Features A DDDB consists of a deductive
databasze distributed over a number of sites. A set of
ground unit clauses {facts) having the same predicaie
symbaol corresponds to a relation. IDB is regarded as
an extension of views in relational database. A query is
denoted by & goal atom or & set of clavsss. The answer

is a set of ground instances of the query that are “logi-

cal consequences” of the set of clauses in the deductive

database and of the sets of clauses in the query.
Principal features of the PHT are as follows.

The database is & set of function-free clavzes which
may have negative literals in their bodies.

» Data manipulations are performed by means of a
logic dafa language that ineludes extended definite
clauses.

o The query processing strategy is a bottome-up strat-
ey with guery transfermation and dynamic opil-
mizakion.

s Concurrency control is performed by 2 two-phase
logk method.

s Becovery is performed by a fwo-phase commitment.
methed.

« Security management is provided using password
and datz catalogs.

Algorithms used for the last three [eatures above are
gimiler to those developed for fraditional distributed re-
lational databases.

The interface of the PHI s designed to be embedded
in sequential logic programming languages sueh 28 Pro-
log and ESP (Self-contained Extended Prolog). The PAT
computes Lhe answer 10 & query as a sat, and returns the
rnswer piece by plece to the user program by instantiat-
ing values to variables in order to adjust to the sequential
execution of the host languages. If a backtrack oeocurs in
the nser program, the aystem refurns an alternative an-
SWeEL.

Distributed Query Processing Strategy In DDDE
system, it is important to reduce the communication cost
to transfer intermediate results by determining appropri-
ste transfer directions, For instance, when the system
joina twe intermediate results, transferring the smaller
ong iz better. There are two waya to determine trans-
fer direction. One iz a static optimization strategy that
determines the directions by predicting the sizes of inter-
mediate results before the actual processing. The other is
a dynamic optimization strategy that determines the di-
rections by comparing sizes of actual mtermediate resulis
during the processing. The PHT uses the dynamic opti-
mization strategy becauss it is difficult to predict sizes of
intermediate results for recursive queries. This decision
reduces the management overhead of statistical informa-
ton necessary to predict the size of intermediate results,
but increrses communication overhead o compare sizes
of intermediate results [Talasugi 87]. The latter prob-
lemn is ot serious in the PHT because of the broadcast
eommunication capability of IJOT-LAN [Taguchi 24],

Recursive Query Processing Strategy Recursive
query processing strategies are classified into top-down
strategies and bottom-up strategies. A top-down strat-
egy computes the answer to & query by gensrating sub-
queries in a shmilar way to that of Proleg. A bottemeup
strategy computes the answer by generating intermedi-
ate resulis from relations in the EDB. We have adopted
a bolttomeup strategy in the PHI becauvse s top-down
strategy vesulfs in large comumunication everhead with
frequent interactions between sites. Bottomeup sirate-
gies have bwe problems:

1. They compute unnecessary results because they
compute all elements of the least fixpoint (least
Herbrand model) of the databage.

2. The iterative procedurs which computes the least
fixpoint involves a ot of redundant computetions.

To solve the first problem, query transformation proce-
dures are used. They transform queries to other forms
that have smaller least fixpoints while preserving the
eguivalence of answers. To solve the secomd prohlem,
a differential computation technique [Balbin 87] is used.

Query Transformations Query transformation pro-
cedures called Horn clause transformations (HOTs) ane
used to transform & set of clanses to an equivalent sat
of clauses [Miyazeki 88a] [Miyazaki 58b] [Sakama §7).
Threa kinds of HCTs have been proposed for the sys-
tem. They are all based an a fundamental procedurs
callad “clause replacerpent™, Hecaunse unnecessary in-
formation is removed from the database, the resuliant
database has a smaller least Herbrand model than the
eriginal database. Adding logical consequences praserves
the equivalence of the transformed result for a given goal.
HCTs are briefly described below,

HCT/P {(HOT by Partial evaluation) :

This is & procedure that uses resolution to oblain

" logical conssquences. Tt is regarded as a generaliza-
tion of & procedure that substitutes the relational
algebra exprassion of a {derived) relation for the
relation symbol, I8 i called HOT/F because it is
based on the partial evaluation technigue devel-
oped for program transformation,

HCT/R (HCT by Restrictor) :
This s & procedure that uses new predicates called
regtrictors In order to construct clauses that are
logical consequences of original clauses based on
the swbsumpiion., HOT/R results in a similar
transformed database to the magic sel transforma-
tion [Bancilhon 86],

HCT/8 (HCT by ground Substitution) :
Thie iz 2 procedure that substitutes grownd terms
for variables of a clause to obtain legical conse-
quences, This procedure is 2 generalization of pro-
cedures Lthat move the constant in transitive closure
operation.

3.2 Handling Negations

The PHT allows negative literals in bodies of clanses.
This extension introduces some difficulties to the system:

s The semantics of such a database is difficult io de-
fine without some syntactical restrictions.

o Efficlent query processing for such database is more
difficult than for definite databases,

The PHI restricts the database to a “stratified”
database [Apt B8], A stratified datebase i a set of
extended clanses that has no recursive paths involving
negaiions. The atratified database can be partitionsd
into layers, and the semantics of the database are de-
fined layer by layer from the lowast laver. The semantics
of stratified databases has been extensively studied by
many researchers [Apt 88] [Van Gelder 86] {Gelfond].

For instance, let us consider the following extended
clanse.

(X, ¥} - plX, ¥, ~g{X, 2}

This clause has a variable, £, which appears only in &
negative literal. This Z is attached by an implicit wni-
vergal quantifier according to the standard logical inter-
pretation of clanses, Tt is inefficient to process this kind
of clause by a botfomeup procedure, becanse it is neces-
sary to check all instances of 9(X,2) or acbually obtain
ground instances of ~q{X,Z). 3o the PHT handles these
kinda of vanables as if they are attached by existential
guantifiers instead of universal quantifiers. With this
convention, the above clause is equivalent to the follow-
ing clauses.

r{xr?} i Pfxa"'}-*‘qi{x}-
q1(x) @~ q(X,2).

This convention enables us to compile negative literals
to difference operations in relational algebra. It {5 also
used in many Prolog processors.

Query evaluation methods for stratified databases
have been also investignted by several researchers. As
i the case of definite databases, these methods are
clasgified into either top-down computation or bottom-
up compulation. As for top-dewn computation, sev-
eral guery evaluation methods for stratified databages
have been recently proposed [Seki 88] [Kemp-Topor 88).

Since the usual SLDNF-resclution i ohviowsly insuffi-
clent, these methods have mcorporated some bottome
up computation festures into a top-down algorithm. In
[Seld B8], for exampls, & query evaluation method called
OLDTNF-resolution has been proposed, which is hased
on OLDT resslution (Ordered Linear Resolution with
Tabulation) [Tamaki 86], augmented with negation as
failure rule. OLDTNF-resolution was shown to be sound
and complete with respect to the standard model seman-
tics for a class of stratified programs under reasonable
assumptions for databasze applications.

The bottom-up query processing of stratified database
in the PHI i basically same as the query processing
of definite database, The PHT first transforms a query
to an equivalent form wsing HCOT:, and then computes
the results layer by layer. Howewver, unconditional us-
age of HOTs may result in unstratification. HOT/P and
HOT/S can be used in slratified database without lm-
itation, because they preserve lavered structure of the
database, HOCT/R may teansform & steatified database
to an unstratified database, and it g difficull to handle
unatratified database in general.

3.4 Superimposed Code Scheme for Deductive
Databases

In & deductive database systemn that adapts & boltom-
up strategy, operations such as selections, joins, seb op-
arations and set comparisons are frequently performed.,
The frequent usage of set operations and sef comparisons
14 & major diffsrence between a deduciive database and a
relational detabase. The concept of superimposed codes,
which ongimally was proposed for text processing, possi-
bly provides a unified approach that will realize efficient
processing of both EDB and IDB [Wada 38) [Morita 88).
Superimposed code schemes have been studied for the
knowledgs base engine.

Superimposed Code Scheme for the EDB In re-
lational database, indexes to attributes are used for effi-
cienk access to tuples in an EDB. I enly a few attributss
are frequently wsed in conditions of queries, the design
of the indexes is easy. This is usually the case in busi-
ness applicitions. We consider that more uniform treat-
ment of abivibutes i necessary in deductive database.
An index scheme based on superimposed codes is & good
candidate for such a purpose. The index is obiained as
follows (Fignre 8).

1. The value of each key attribute is hashed to a code
called a binary coded word (BOW)

2. All BOWs for 2 tuple are OHed together to obtain
a supsrimposed code word (SOW)

The 5CWs are much smaller than the original tuples.

Belation SOW index

Index

Hash
V1=100_01
V=4 01000
V=110 __0d ll.'.lR
110_01 [« .. 110_00
Goery mask

Hash
W2 = 010_00
Va==110_0dH IGR
Quary mask: 110__00

Figure 8, Example of SCW

Query VZond V3

Retrieval using this index is performed as follows,

1. The value of each key attvibute in the guery is
hashed to obtain BOW.

2, BCWs are ORed together to obtain a query mask
[ed

3. Check the SCW index if each SOW satisfies (Q
fand" SOW = @), If a tuple corresponding to the
index satisfies the query condition, the SCW satis-
fies this condition,

Set operations and set comparisons necessary to pro-
cess recursive queries can also be performed with BOW
indexing. The SCW indexes are used to make pairs of
indexes whose eorresponding pairs of tuples may be the
same. Because the SOWs are much smaller than the
original tuples, we can improve performance by prepro-
cessing with the SCW index.

The advantages of the superimposed code scheme are
] MWB.

o The fotal size of the indexes iz smaller than in other
index schemes if there are many key attribubes. In
deductive databases, all attributes might be keye,

» Performanee iz better if more than one key at-
tribute is specified in & query.

Index processing can be essily performed in paral-
lel, because the structure of the index is simple.

The disadvantages of the superimposed code scheme
are as follows.

¢ A whole index scan is usually necessary. Although
the index may be small, the index scan is still time
COnSHITIng.

+ Retrieval cannot be efficiently handled with range
conditions.

. e

i B @ 2010000 0080 010101]
bkt o L !

Index for figia,b),X) Query mask for f1X, (0,8}
Figure 8. Example of 350W

Sz iomwai00ic 1111

Dedicated hardware, a parallel processing architecture,
or a combination of both can solve ihe ficst problem.
Dedicated hardware is used n the experimental system
for index processing.

The superimpesed code scheme can be extended for
structures {functions) and rules. Structures and rules
can be handled by 2 supedimposed code scheme for
terms. The extended scheme uses structured superim-
posed code words (550W) an example of which is illus-
trated in Figurs § [Morita 88),

4 PARALLEL KNOWLEDGE BASE
SUBSYSTEM

This section describes the knowledge base system
based on the parallel knowledge base model. The dis-
tributed model mentioned in the previous section as-
sames an environment where inference machines (P9J5)
are connected by a bocal area network, In that sense it
Investigates a knowledge base processing scheme among
the distributed processing powers. The paraliel model,
however, i3 a processing scheme to enhance the process.
ing power of a network site.

4.1 Owverview of the System

This systere alms at implementing an experimental
parallel knowledge base system (Mu-X) as the backend
of the P57 machings. In this approach, dedicated hard-
ware with multiple processors and a large-seals multiport
shared memory is implemented,

The Mu-X adopted the term-relational model pro-
posed in [Yokota 88b). The term-relational model was
used as a candidate for bridging the gap between logic
programming languages and databases. The model could
be considered to be a basic mechanism to implement
deductive database systems, However, in this research,
more attention was paid to providing primitives of term-
velational model manipulation. The term relations can
naturally store basic logic programming constituents
{terms} and provide retrieval capabilities, based an uni-
fication, for terme. As & concrete example, & unification-
based query language has besn implemented [Monoi 88h)

on the model. It is based on relational calevlus and in-
terfaces PST programming environment and the experi-
mental machine. A seh of classes were written in ESP
[Chikayama 84] and added in the PSF programming en-
vironment. These classes provide methods (predicates)
which interface with the user in the PSI's programming
envirenment and the Mu-X. The classes are activated
by the method call from user programs, It forwards the
message specified by the method call (typically, & ®re-
irieve” predicate) to the Muw-X weing network facilitios
for execution,

Put simply, the Mu-X"s role in this context Is o be a
backend machine for execution of the querles denobed
by the retrieve predicates of ESP. Parallel processing
was adopted to accelerate the rveirieval. This will be
described in later chapters. This experimental machine
shares many research issues with parallel datahase ma-
chines [Shibayama 87].

4.2 Hardware Considerations

Mu-X has & shaced memory mulbiprocessor architec-
ture (Figure 10). There are two types of shazed mems.
ries, Ome is conventional word-grasularity shared mem-
oty for control information storage and can be regarded
as an interconnection structure for multiple processing
elements, The other iz page-granularity confliet-free mul-
tiport page-memory for working knowledge base atorage
[Tanaka 84k). The multiport page-memory consists of
a seb of erdinary memory banks, a switching network
for interchanging the multipls ports and memory backs,
port controllers attached o each port and 2 mein con-
troller. By cyclically interchanging the network and ap-
propristely reading/writing the proper part of memory
banks, simmultaneous access from each port to arbitrary
memaory pages i realized, The multiport page-memory
was incorporated so that seversl idle processing elements
(PEs} could participate in the processing of a query with-
ouf any memory access interference. From another point
of view, the multiport page-memory can enhance the
memory bandwidth to the multiple of memory banks
{usually, number of ports).

The IjO bandwidth enhancement is achisved by pro-
viding a digk system to each of the PT. Term relations
are horizontally pactitioned and stored scross the disk
syatems.

Thiz architecture follows that of the lknowledge
base machine architecture given in [Yokota 86L] and
[Morita 86). However, simulation study of the architsc-
ture [Jalai 88] [Monoi 88a) revealed that even multiple
brute-foree hardware engines did not provide a perfor-
manece improvement proportional fo the number of PEs.
Thiz is becanse of the input-length dependency of the
processing timea. If & join processss the area of a rect-
angle that has sides whose lengths are the cardinalities

| Interconnection 1
1 | | | |
|PIE| |PIE§|PF|---|FIE| |P|Ei
MPPM

Figure 10, Hardware configuration of the parallel knowl-
edge base systam

Table 1. Hardware specifications

Number of PE]
PL cora MOGEDED at 12.5MH2
"PE memary aME

Multiport page-memery | 8 ports

GAMT with G10-byke pages
Eﬁﬂf&e:?pmt transfer spesd

of the relations, division of the area increasea the total
input data that must be read to be processed.

So avan using & lot of engines that can process join with
only the datz input time will not reduce the processing
time. It was also recogniged that a hardware oriented
enging could only perform a limited class of operations.
At the time the hardware design of this experimental
machine]:e.gan* it was ool clear what nparat.ima should
be sapported by the processing element core.

For thess reasons it was decided that the Mu- X wounld
not incorporate hardware engines. Insfead, it incorpo-
rated genesal-purpose microprocessors in place of the
hardware engines. The effort to implement & more flexi-
ble unification engine is carried out separately. The mul-
tiport page-memory was implemented with eight poerts
and has a capacity of 84ME. The specification of the
hardware i shown in Table 1.

4.3 Software Considerations

The softwere’s aim in this system is to pursus paal-
lel processing technology in the field of knowledge base
processing. This aitn shares much with database sys-
temns research. There are numerons researches belong-
ing to this category, for example, GAMMA [DeWitt 8],
Grace [Kitsure 82, MPDC [Tanzka 84a), and MDBS
[Depciian 86, The characteristics of this research are

a5 follows:
* Moderate size of experimental machine.

Grace and MPDC, for example, sre systems that
require enormons effort to implerment because of

the variety of hardware components and the com-
plexity of the software. The Mu-X falls into a sim-
pler category of parallel processing. There are two
kinds of hardware components that must be pro-
grammed, One is the processing element (PE), the
core of the processing, and the other is the front
end processor (FEP). Since the FEP% functions
ave very simple, the PE is the only compenent that
nesds intensive programming,

s Incorporation of terms as the basic data represen-
tation scheme

This system mamipulates terms in much the
same way that inference machines do, We not only
provided an additional data type (teem) but also
adopted it as the basic data representation scheme
in the systern. For example, in the inferface be-
tween PSS and the FEP, term representation is
used to denote the query language,

» Flexibility of the software

The system i experimental, so later modifica-
tion or addition of operations is quite probable.
The systemn software has been designed to cope
with those changes.

Parallal Processing

{a) Considerstion of hybrid memory svstems

The pagallel processing in this aystem js strongly in-
fluenced by the two types of memory svstem: & convens
tional shared memory and the multiporl pagememaory.
The seftware = designed to make the best use of the
charseteristics of the memeory systems.

The conventional shared memory has the Dbllowing
characteristics.

The unit of access i= typieally & word.

s There is potential access conflict among multiple
PEs.

» Access (when there is no memory access conflict)
ia quick, typieally within a fow microseconds,

The multiport page-memory s 2 page-based memory
syslem activated by meank of a control block {page trans-
fer control block, PTCE for short), It has the following
characteristics.

o The unit of access Is a page.
» There is no access conflict among PEs (PE ports).

s Access 15 associated with overheads.

The overheads are of three types. The first is the over-
head similar to the latency of disk access. This iz the
time that it takes for the asynchronons memory page ac-
cess request (through the PTCE) to be recognized by
the port controller that polls for the request. In thiz im-
plementation, the polling interval iz equal to the page
transfer time, so on average there is half the page trans-
fer tima latensy. The second type i3 the overhead of
one-page transfer. This is the time that it takes for the
requested page to be transferred to a buffer space. The
last ong is software averhead requiced to prepare a PTCH
for the multiport page-memory. It consists of search-
ing the multiporl page-memeory directory for the proper
page number, assigning a destination buffer, making up
a PTCB and so on. In the current implementation, four
physical pages of 512 bytes constituie a logical page of 2
KB. As physical page transfer time is 100 microseconds
and is the interval of request polling, one logical page
transfer requives 4 » 1004 100/2 or 480 microseconds on
average, The software typically reguives about 500 mi-
croseconds, To sum up, the transfer time for one logical
page is about one millisecond. Both the hardware speed
and software speed could be Improved using faster teche
nelegy for the former and a faster processor with cache
memory for the latier.

Considering these characteristics, using the multiport
page-memory as 3 buffer memeory for the database pages
was a natural choice. We also decided to place the system
directory in the mulliport page-memory. Initially it is
ghored in the disk and at startup time i loaded into
the multiport page-memory so that the PEs can access
the shared information quickly, The directoay related to
a PE is further copied in the local memeory of the PE.
Other control information, such as command gueuss, is
placed in the convertional shared memery. Locking is
done using the conventional shared memory by means of
atomic read-modify-write instructions.

{b) Scalability consideration

The multiport page-memory is a hardware component
that has & sealable property. We tried to keep the hard-
ware’s scalability within the tolerance of the conventional
shared memaory’s bandwidth. For example, the control
software is not placed on o special (centralized) control
proceseor. Instend, any processing element can becoms
the control processor in & unit of a fransaction, When a
transeckion is received from a PS5 machine, an idie PE
is aszigned to be the master of that transaction. The
transaction master takes care of the compilation, paral-
lel command generation, and response generation of that
transaction, Parallel command execution is a task for
mmltiple PEs (possibly including the teansaction master
PE). In that sense, paralle] processing i= applied toward
(1) inter-transaction and {2) parallel commsand execu-

——

E'I‘ra.uulinn masker .Pn:aﬂal command
task processing

D ldle

Figure 11. A paraliel processing timing diagram

Tuple |Fixed- [Ralotive]Flxed- |Relative |Veriable [Variakle

hender|langth ([pointer flengih [oolnter |length flangth
mttsibute tiributa sgiribube [nbtribute
body [rody

A f

Figure 12, Representation of variable-length records

tion levels. Figure 11 shows a timing diagram of query
processing where parallelism in the command execution
level is realized. In this figure, PEQ is the transaction
master and takes care of the mester’s tasks. This is a
sed, of serialized operations performed intermittently be-
tween parallel command executions, The parallel com-
mand execuiion s done by idle processors as shown in
Figura 11.

Termy Data Type Support From software's point of
view, relational knowledge base support is (1) the ad-
dition of a data type (term) and (2) the addition of a
set of operations Lo relational database enhanced with
the term data type. To do thess, the basic data struc-
ture supports tagged data and variable length records,
which {s required because the terrn relational model al-
lows variance of atomic and structured data &8 in Prolog.
The structure of & record that supports variable-length
record iz shown in Figure 12,

Efficiency Consideration In database machine re-
search, the importance of eimination of software over-
heads is often siressed. The software system has been de-
signed and coded with this clearly in mind. The systam
owes the file system and the software develepment envi-
ronment to the residing operating system. However, the
rest of the software was made from seratch. To develop
g0 mrch new software was expensive, but helped to make
aspaecialized, compact and efficient system. For example,
the control software of the PE is a single-process program
and there is little overhead in switching between trensac-

Precegsing time {s)

19— Communiestion
Prralle]l sommand procesain
08— (max--average; e
Forxllsl [
eoimim pl{'wtuilg
0.6
M pr—
02— 1 rﬂ]
0

Figure 13. Performance of the selection operation

tion raster fasks and parallel command execution tasks.
Considering the natore of the system and preliminarcy
evaluation results, we are convinced that this has been o
good choice. We note that there are numerous decisions
we took that have to undergo further evaluation.

4.4 Ewvaluation

So far, we have made a prellminary performance eval-
vation. This evalualion was to obtain the basic speed of
the hardware and the efficiency of the parallel processing
melhod, not to discover the final performance values.

The queries we tool were selection end join operations.
The selection query selects 111 tuples from 1600-tuple
relation, the size of which is 500 KB. The join 15 per-
formed between a 15 KB, 111-tuple relation, the result
of the previous selection, and a 20K-byte, 215-tuple re-
lation, A nested-loop algorithm i used. The result is
37 tuples, Note thet the tuples are variable-length and,
aecording to the parallel processing scheme, the query s
processed as shown in Figure 11,

Figure 13 shows the result of the sslection. The total
processing time is almost identical to the time for parallel
comuaand execution. The overhead of parallel execution
{in this case, communicetion time) is not recognized un-
til the number of participating processors reaches six,
Still the overhead is quite low. The effect of paralls] pro-
cessing is thus satisfactory, at least within the machina's
degres of parallelism.

Figure 14 shows the resnit of the join. In contrast
to the selection case, the total processing time of the
join saturates at the processor count of six. In this case
also, the effact of parallel command execution is good.
However, the overhead increases as the number of pro-
cesgors increases, The source of overhead is the varjance
in the proceseing times of PEs. The communication time
is hidd=n because the absolute processing time is about
ten times greater than in the case of selection.

This phenomenon is clearly illustrated by comparing

Processing tima (z)
2= Communieation
1l— — Parallel commond procssilng §
[mox=amerage) §
Parslla] comeand processi
8 [T
-] -
‘_ Fr—
i} 1
Figure 14, Performance of the join aperation
Processing times of PRs
12
10 R
i
Joln
-4

=

FE eownd PE eount

Figure 15, Comparison of processing times

the processing times of PEs in selection and join cases
(Figure 13). The reason why there is variance in the
join is because the size of the source relation is not large
enough to be evenly shared by the PEs. The 20 KB
relation (ten 2K pages) s divided by eight PEs, so two
PEy have to process two pages while the remaining six
only have to process one page each,

This evaluation iz done weing the first version of soft-
ware where there are neither indexing schemes nor clus-
tering schemes. The hashing based indexing scheme
and, for join operation, bucket-wise hash-join method
{Kitsure 83a) is being implemented. We leave more de-
tailed evaluations for the fubure.

5 INTERFACE BETWEEN GHC AND
PARALLEL KNOWLEDGE BASE
SUBSYSTEM

The knowledge base subsystem should retrieve infor-
mation quickly from a large amonnt of knowledge and
treat a variety of knowledge objects uniformlby. Then,
it should manipulate the retrieved Imowledge elements
efficiently. The goal of the FOOS project iz to bujld
a knowledge information processing system uging logic

programming paradigms. Combining a parallel logic pro-
gramming language and a dedicated system for operat.
ing & knowledge base seems to be one possible way fo
implement applications of FGCS project.

This section describes mterfaces that combine a par-
allel logic programming language and a knowledge base
syshem.

5.1 Overview of the Svstem

Retrieval-by-unification (RBU) operations have been
sroposed [Yokota 86b] as the dedicated system for aper-
ating & knowledge base. RBU operations are an exten-
sion of relationsl databsse operations for manipulating
the variely of knowledge objects. A knowledge element
is represented by a term, a well-defined structure capa-
ble of handling variables. A knowledge base consists of
sele of terms called term relations. The RBU system
serches the term relations for desived terms, those unifi-
able with a search condition. We have implemented two
extended relational algebra operstions: unificstion re-
striction stream (urs) and unification join steeam [ufs).
Other conventional retrieval operations, such as union,
projection, join, and selection, and apdating operations,
such as insert and delete, have also been implemented,

Guarded Horn Clauses (GHC) [Ueds 85), & paralle]
logic programming language with committed choice se;
mantics, ia the bernel language of the FGEOS, It handles
parallel processes and streams for communication among
processes efficiently, but i3 inzdequate in searching for al
ternative knowledge elements, since s varlable of GHC
can be assigned only once. GHO ales has trouble han-
diing global information such as that in knowladge bases.
GHO has no appropriate means of guaranteeing the con-
sistency of knowledge bases during parallel updating.

RBU enables GHC to process knowledge bases. REU
commands for retrieving and updating term relations ace
issued from parallel problem-solving systems written in
GHC. A term relation is used to control consistency in
paralle]l operation. The combination of GHC and RERU
is useful in many types of knowledge information pro-
cessing system for the POOS project.

5.2 Parallel Retrieval

Now, consider production (rule-based) systems check-
ing for feasibility of the combination of GHC and REU.
The basic concept of a production system involves ap-
plylng state transition production rules from an initial
state to reach a goal state that satisfies termination con-
ditions, Several states can be generated from a single
state by applying the production rules, and the state
transitions make a search tree. The goal of & production
system is to derive a path from the initial state to a goal
state by traversing the search troe.

Figure 18. Process configuration and a search tree

Parallel processing iz viewed as & way of reducing the
large amouzits of thme consumed by production systems
{Gupta 87]. One implementation is the parallel traversal
of & search tree in which new states are geoerated from
different states n parallel. [imite on memory and the
D.uﬂ'.lbﬂl Df FIDM Iﬂluil'ﬂ tI'I'E 18 Df EFEBI‘EI EE‘II.I"E]:I.
strategies. The best fivst search [Barr 81) is one such
strategy. It selects a state from a search tree using state
evalnation of the current state to gensrate new states,
The state selected has the best evaluation value in the
tree at o given time. The centrabzed conirol of this strat-
egy makes finding the best value a botileneck, however.
Control must be localized for eflficient pasallel process-
ing. We propose & new search strategy called the Betier
First Search. The strategy looks only in & subtree of
the search tree for the state that has the best evaluation
value. Although this value is good, it may not be the
best in the entire tree; we call it a "betier” value,

We use & tree shructure as the process configuration to
implement the Better First Search in parallel. The tree
configuration is not divectly related to the search tres
traversed by the production system. The three types of
nodes (processea) in the process tree are the root node,
leaf nodes, and other brasch nodes. Productions are
performed af the leaf nodes. Production priorities are
controlled &t the branch nodes based on their evaluation
values, System control such as that of the user inter-
face is performed at the oot node. Figure 18 shows the
process configuration and & search tree,

Nedes in the process tree are implernented using per-
petual processes generated from recursively called GHC
clanses, Process behavior is controlled by streams bound
to variables in arguments in the clauses, The streams are
treated as messages for the process, This configeration

Froceas Frocessor Cluater
e e VeV i i e T LN S G
| i

3
{2 "
i LA
] i
i noede i
I 14
[[¥]
1|_node H] node
1 i
I il [~
I i 11
: node node :: node X
1Y Leaf Lenf Leal I &8
: nodo nods H 1
] J| [ee—
I Bhared Storage ”
e e e

Figure 17. Implementation on the parallel model

iz switable for the parallel model of knowledge base ma-
chine mentioned in Section €. A number of processors
and shared storage compose a choster in this machine,
making it important to localize Processor GOTNIIALCA:
tions. We plan to locale eech leaf process in a processor
(Figure 177,

6.8 'L_:"HG Interface

A production is performed by refrieving knowledge el
ements from a knowledge base and updating the knowl-
edge base based on production rules.. The knowledge
base iz a global state for parallel production peocasses,
GHOC canpot handle global states among perpetual pro-
ceszes, nor effectively retrieve and update the knowledge
base, aven if a common stream iz prepared as an argu-
ment of every clause to implement a global state in GHC,
The unification implemented in GHC cannot be used to
seavch for multiple knowledpe elements, becavse o GHO
variable can only be assigned a value once. Onece bound
o a knowledge element, the GHC variable's binding can-
not be changed.

Connecting OHO to & dedicated system that processes
knowledge bases enables a paralle] production system to
be built. RBU knowledge elements are terms defined in
the same ficst-order logic as GHT, thus eliminating syn-
tactical transformation. RBU stores & sct of terms as a
term relation which is veed to guarantes the consistency
in knowledge bases during parallel updating.

The special predicate rbu{C) is provided in GHO to
enable the use of RBU. Commands for retrieving and
updating knowledge bases are bound to the stream ar-
gument €.

For example:

¢ = [urs(tzl, 1], p(=, (1)), (1], %),

wi=(trl, [2], tr2, (1], (2], ¥), -)

The first command sentence, wrs(tri, [1],
pla,$(11), [1], X}, dictates a search of the first at-
tribufe of the term relation trl for terms unifizble with
the condition pla,$(1)}, yielding the derivation of the
first atiribute as a pesult, Results are refurmed as a
ghream bound to the variable X in the command sen-

tance:
X = [p{a, g($(2))), p(2, 2(®)),- - 1.

The second command sentence, ujs(tr1, [2], tx2, [1],
[21, ¥}, is vsed to derive the third attribute of a esult
relation gensrated by a unification join operation which
searches the sscond attribute of trl and the firat at-
iribote of 22 for unifiable terms. Resolts are returned
bound to the variable Y.

¥ = [q(8(10),¢), -]

The apecial function symbol & s used to indicate a
variable in command sentences and in resulis. GHO vari-
ables cannot be used for knowledge retrieval, so other
gymbaols are nesded to indicate variables for retrieval.
Thess variables are bound to knowledge slements in
RBU, but unbound in GHO. This corresponds to un-
bound variables appearing in & template predicate of the
setof predicate in Prolog systems.

.4 Implementation of BB

Different approaches have been proposed to improve
retrisval speed. One approach was to use dadicated hard-
ware: for example, & unification engine was propoged by
[Morita 86] [Yokota 86b]. [Ohmori 87] proposed & hash
vector for indexing clauses. Superimposed code words for
terms and a dedicated engine for manipulating the words
wape propnaad T:r‘r [‘l‘.rada BS]. We use indsxing that re-
trieves & set of terms by unification and backiracking,
Retrieved terms resemble each other somewhat because
they are unifiable with the ssarch condition. For efficient
backiracking, these terms must be lecated nesr an index.
The trie iz & type of tree structure that shares identical
elements [Knuth 73] and meets this requirement. Fig-
ure 18 gives an example of a trie for a set of terms.

The costs of unification are proportional to the count
of comparisone betwesn components of the object terms.
A trie reduces the sumber of comparizons when unifica-
tion is performed. For axample, consider what happens
when the sel of terms in Figure 18 is searched for terms
that can be unified with the condition p(f{a,b) ,h{c)].
Using the trie strocture, the component p Is compared
only onee, whereas four comparisons are necessary if the
trie structure is not used, Using the trie structure, 10
comparisons are needed to search for all terms unifiable
with the condition; 18 comparisons are needed if Lhe trie
structure is not used.

Hasl
tahle

PEILEIEEN PSR e S1BOSN pilab) bisLE
Figure 18. Tuple index with hashing and trie strocturs
¥

REU without indexing o0—o
HEU withindexlng w =2
Quintus Proleg a=-~a

0.4

b2

[N}

L LB L 1

o 250 E(D T80

1,000
tuplen

Figure 18, Comparison of search speeds

A hash table ia used before the trie structure when
storing mamy types of terms in a term relation (Fig-
ure 18), The first components of terms are used as hash
entries. The trie siructure is combined with hash colli-
sion resolution.

We compared the ssarch and updating speeds of the
RBT prototype with those of the Quintus-Prolag inter-
preter. Frolog compilers do not support assert and re-
trace predicates, (they cannot update knowledge bases),
s0 the compiler has not been examined. Figure 19 com-
pares the search spwda of the r"n;tll:tg intgrproter and urs
with and witheut indexing. The urs without indexing is
about four times slower than the Prolog clause search.
This search time increases with tuple count in both Pro-
log snd urs witheut indexing. However, the search time
of urs with indexing scarcely increases regardless of the
number of tuples. For 1000 tuples, it iz about one-fourth
of the time that a Prolog elause search would take. This
is a resull of the indexing,

Figure 20 compares the tuple insertion speeds of the
two systems. Tuple insertion using RBU takes only
about one-gixth the time of 2 Proleg consult operation.
The overhead for making an index for & term relation is
about one tenth of the insertion time.

8 CONCLUSILONM

In this paper, we have described the current status of
research and development concerning the knowledge base

sor REUlsad s——s .
ag - REUloed + mkindsx =~ r_..#'
Guintus Pralog wmvma L
W F+"‘
15 e -
‘-'"

0 L

|- Ll

o

'D' ltlltll‘rfllll1

L] 260 500 T50 1,010

tuples

Figure 20. Insert speed comparison

subsystem in POCS project. In the intermediate stage,
we have investigated and experimented on the following
four knowledge base mechanisms required for construct-
ing the prototype of the FGOS.

{1) The knowladge base system developed on the CHJT
machine,

The knowledge base systern on the CHI me-
chine provides & very high performance knowledge-
retrieval mechanism, a practical memory-based
knowledge database, and a hierarchical clause
databese for a multi-precess environment. In the
system, multiple-multiple name spaces play en es-
gentizl role in avoiding interprocess name conflicts
and in hierarchical knowledge representation. The
system will be & good vehicle for the mext knowl-
edge hase research project,

(2) The distributed knowledge base systam based on
deductive databases.

A distributed deductive database spstern has
been developad. & wees PST machines connected
by ICOT-LAN. The query processing strategy of
the system is based on a boltom-up approach com-
bined with query transformation procedures, A
dynamic optimization method is used lo process
distributed queries. Dedicated hardware for pro-
cessing indices has also been designed based an a
superimposed code scheme for efficlent knowledge
base processing.

(3) The parallel knowledge base system,

The total system with the axparimental haed-
ware and knowled ge base management software has
been developed. The system can manipulate sets of
terms efficiently in parallel, The hardware config-
uration proved useful for knowledge base purposes,
The system connects to PST machines, and a pow-
erful unification-based query language has been de-
veloped as an interface.

(4) The knowledge base interface system for parallel
logic programming languages.

We proposed to introduce a parvallel logic pro-
grammming langnage interfaee into o dedicated
knowledge base system. We considered o parallel
production system to check the feasibility of the
combination of RBU and GHO. Parallel processes
for the production system ave implemented by per-
petual processes written in GHC. Each process is-
sues REL commands for retrieving knowledge. We
also outlined the concept for interfacing BB with
GHC using stresms, and evaluated the search and
updating spesd of our RBU protetype.

The various kinds of technology developed in this stage
will be incorporated into the FRCS prototype.

ACKNOWLEDGMENT

We would like to express our gratitude to the other
members of the third laboratory of the IQOT Research
Center, FEach syabem described in this paper has beon
devalnped with the close cn-upl:ra.l:iun of manufacturers.
Thanks goes alzo to the manufacturers’ people who were
engaged in the implementations. We are indebted to the
membera of the KBM Warking Group for their fruitful
discmesions.

References

[Apt 58] Apt, K.R., Blair, LA, and Walker, A, "To-
ward A Theory of Declarative Knowledge®, Minker
(ed), in Foundations of Deduetive Databases ond
Logic Programming, Morgan Kaufmann Publishers,
1988

[Atarashi 88] Atarashi, A., Yanagida, 5. and Kona
gaya, A, “SUPLOG Reference Mabual”, 1088 (In
Japanese)

[Balbin §7] Balbin, I. and Ramamohanarse, K., "4 Gen-
eralization of the Differential Approach fo Hecur-
siva Query Evaluation”, J. Logic Programming, Vol.4
No.3, 1987

[Baneilhon 6] Bancilhen, F., Maler, D, Sagiv, Y. and
Ullman, J.D., " Magic Sets and Other Strange Ways
to Implement Logic Programs™ Sth ACK PODE,
L9BG

[Barr 81] Bare, A, and Feigenbaum, E. A, in The Hand-
book of Artificial Ftelligence, 1, William Kaufmann,
Ine 1981

[Chikayama B4] Chikayama, T., *Unigue Features of
ESP®, in Proe. Ml Confl Fifth Genernlion Com-
puler Systems, pp.202-208, 1934

[Demurjian 86 Demurjian, S.A. and Heiao DK, “A
Multibackend Database System for Pedormance
Gains, Capacity Growth and Hardware Upgrade®, in
Proc. Int. Conf. on Data Engineering, pp.542-554,
1986

[DeWitt 36] DeWitt, D.J., Gerber, R.H., Graefe, G.,
Heytens, M.L., Kumar, K.B. and Muralikrizhna, M.,
“GAMMA - A High Performance Dataflow Database
Machine”, in Pree. 18th Ini. Confl Very Large
Databoges, ppo228-237, 1986

[Doclittle 86] Dookittle, R. F., “0f Urls and Orfs, A
Primer on How fo Analyze Derived Amine Acid Se-
quences®, University Science Books, Mill Valley, CA,
1986 :

[Gellond] Gelfond, M. and Praymusinsks, H. and Pray-
musinski, T., " On the Relationship between Cireum-
scriphion and Negation as Fallure®, to appear in Jour-
nel of Artificial Intelligence

[Gota 87) Goto, A., “Parallel Inference Machine He-
search in FGOS Project”, in Proo. of the US-Japan
AT Sympostum 87 pp. 21-36, 1987

[Gupta 87] Gupte, A., in Perallelizm in Production Sys-
tems, Morgan Kavlfmane Publishers, Inc., 1987

[Hobata 87] Habata, 5., Makasski, R., Konageya, A,
Atarashi, A. and Umennra, M., *Co-operative High
Perlormance Sequential Inference Machine: CHI', in
Proc. 10CD'57, New York, 1987

[ltoh 87) Ttok, H., Sakama, C. and Mitomo, Y., “Par-
allel Control Technigues for Dedicated Relational
Database Engines™, in Proc. 8rd Int. Conf Dafa
Fngineering, pp. 208215, 1987

[Ttoh 88) Itoh, H., Takewaki, T. and Yokota, H.,
"Knowledge Base Machine Based in Parallel Ker
nel Language”, in eds. Kitsuregawa and Tanalka, in
Datebagze Muochines and nowledge Base Mashines,
Khuywer Academic Publishers, 1988

[Kaleuta 85] Kakuta, T., Miyazaki, N., Shibayame, S,
Yolota, H. and Murakami, K., “The Design and
Implementation of Relational Databass Maching
Delta”, m Proc. Int. Workshop on Database ma-
chines "85, 1985

[Kemp-Topor 88] Kemp, B.D. and Topor, W.R., *Com-
pleteness of & Top-down Query Evaluation Procedure
for Stratified Databages™, Dept. of Computer Sei-
ence, Univ. of Melbourne, Technical Repert, 1088,
also in Proc, Stk Int. Conf. ond Symp. on Logic
FProgramming

[Kitsure 82] Kitsuregaws, M., Tanaks, M. and Moto-
olea, T, “Relational Algebra Machine GRACE", Lec-
ture Notes in Compuler Sciencs, Springer-Werlag,
pp 191-214, 1082

[Kitsure 83a] Kitsuregawa, M., Tanaks, M. and Moto-
oka, T., "Application of Hash to a Data Base Ma-
chine and [ts Architecture”, in New Generation Com-
puting, OHMSHA, 1, 1983

[Knuth 73] Knuth, D. E., "The Art of Computer Pro.
gramming”, 3, Sorting and Searching, Addison-
Wesley, 1973

[Konsgays 87] Konagaya, A., Nakazaki, R. and
Usnemura, M., “A Co-operative Programming Fa-
vironment for a Back-end Type Sequential Inference
Machine CHI®, in Proo. Ini Workshop on Parallel
Algorithms and Architzciures, East Germany, pp.25-
30, 1987

[Konagaya 88] Konegaye, A., “Implementation and
Evaluation of & Fast Prolog Interpreter”, in IFS
Japan SIG-3YM 46-4, 1988 (in Japanese)

[Kunifuji 82) Kunifuji, 5. snd Yokota, H., “Prolog and
Relational Database for Fifth Generation Computer
Systems”, in Proe. Workshop on Logical Bases for
Date Boses, Gallaire, ot &l.(eds.), ONERA-CERT,
1982

[Minsky T4] Minaky, M., “A Framework for Represent-
ing Knowledge®, MIT Al Memo Ne. 206, 1974

[Miyazaki 882] Miyazaki, N., Haniuda, H. and Itoh,
H., "Horn Clause Transformation: An Application
of Partial Evaluation to Deductive Databases”, in
Trana. IPSJ, Val29, No.l, 1888 (in Japanese)

[Miyagaki 88b] Mivazald, M., Haniuda, H., Yokots, I
and Itoh, H., “Qunery Transformations in Deductive
Databases”, ICOT-TR 377, 1088

[Monet B8s] Monei, H., Marita, Y., Itoh, H., Sakai, H.
and Shibayama, 5., “Parallel Control Technique and
Performance of an MPPM Knowledge Base Machine
Architecturs®, in Proe. Jth fut. Cowf Data Engi-
neering, pp 210-217, 1988

[Monei 88b] Monei, H., Morita, Y., Ttoh, B., Takewaki,
T., Sakai, H. and Shibayama, 5., “Unification-Basad
Query Language for Relational Knowledge Bases and
its Parallel Execution®, in Proc. Int. Conf Fijth
Generation Jomputer Systems, 19588

[Merita 88] Morita, Y., Yokota, H., Mishida, K. and
Ttoh, H., “Retrieval-By-Unification Operation on &
Relational Knowledge Base®, in Proe. of 18th Int.
Conf. on Very Large Dotebases, pp. 52-59, 1986

[Merita 88) Morite, Y., Itoh, H. and Makase, A., ¥An
Indexing Scheme for Terms using Structural Super-
imposed Code Words™, ICOT TR-383, 1988

Muralkami 83] Murakami, K., Kalota, T, Miyazaki, M.,
Shibayama, 5. and Yokota, H., "Relational Database
Machine; First Step to & Knowledge Base Machine®,
in Prec. 10k ind. symp. Computer Archifecturs,
PRA2E-426, 1983

[Ghmor 8Y] Ohmord, T. snd Tanaks, H. *An Alge
braic Deductive Database Managing & Mass of Rule
Clavses”, in Proc. of 5tk Int. Workshop on Datebose
Machines, pp, 291-304, 1987

[Gakai 88]) Sakad, H., Shibayama, 8., Monoi, H., Morita,
Y. and Itoh, H., *A Simolation Study of & Knowl-
edge Base Machine Architecture”, in Datobase Ma-
chines and Knowledge Bose Machines, Kluwer Aca-
demic Publishers, pp.585-508, 1988

[Sakama 87] Sekama, C. and Itoh, H., “Partial Evalua-
tion of Queries in Deductive Databases™, Workshaop
om Partial Evaloation and Mixed Computation, 1987

[Feki 88} Seki, E, and Ifoh, H., “A Query Evaluation
Method for Stratified Programs under the Extended
CWA™, ICOT Technical Report TR-387, 1988, also in
Proe. Sth Int, Conf. and Symp. Logie Programming

[Shibayame 87] Shibayama, 5., Sskai, H., Monei, H.,
Moria, Y. and Ifoh, H., "Mu-X: An Experimen-
tal Knowledge Base Machine with Unification- Based
Retrieval Capability®, in Proe. Fronee-Japon Arfi-
ficial [ntelligence and Computer Science Symposium
&7, pp.343-357, 1987

[Taguchi 84] Taguchi, A., Miyazaki, N., Yamamoto, A.,
Kitakami, H., Kaneko, K. and Muraksemi, K., “INI:
Internal Network in the ICOT Programming Labo-
ratory and its Future”, in Proe. of ¥ih JOOC, 1984

[Takasugi 87 Takasugi, T., Heoiuda, H., Miyasaki, N.
and Itoh, H., “Distributed Query Processing in
KEBMS PHI®, in IPS Japan STGLMDP, 34-9, 1987
{in Japanese)

[Teunaki 86] Temaki, H. and Sato, T., *0LD Resolution
with Tabulation®, in Proe. of Svd [CLP, 1985

[Taneke 84a] Tanaka, Y., "“MPDO: Massive Paraliel Ar
chitecture for Very Large Databases”, in Proe. fal
Conf. Fifth Generation Computer Systems, pp.113-
137, 1084

[Tanaka 84b) Tansks, Y., “A Multiport Page-Memory
Architecture and A Multiport Disk-Cache System”,
in New Generation Compuling, OHMSHA, 2, pp.241-
260, 1984

[Jeda 85] Ueda, K., “Guarded Horn Clauses”, in Layic
Programming "85, B. Wada (ed)., Lecture Notes in
Computer Seience 221, Springer-Verlag, 1086

[Wan Gelder 86] Van Gelder, A., *Negation as Fail-
ure Using Tight Derivations for General Logic Pro-
grams”, in Frog, 1888 Symp. an Loplc Programming,
IEEE Computer Sodety, pp. 127-138, 1088, also to
appear in Journal of Logic Programming

[Wade 88] Wada, M., Morita, Y., Yamazaki, H., Ya-
mashite, 5., Miyazaki, N. and Itah, H., *A Supecim-
posed Code Scheme for Deductive Databases”, in eds.
Kitsuregawa and Tanaka, in Database Maochines and
Fnowledge Hase Machines, Kiuwer Academic Pub-
lishers, 14988

[Yokota 84] Yokota, M., Kunifuji, §., Hakuta, T.,
Mivazaki, M., Shibayama, 5. and Murakami, K., “An
Enhanced Inference Mechenism for Generating Rela-
tional Alpebra Queries”, in Proe. Brd ACM SICACT-
SIGMOD Symp. Principles of Database Systems,
pp.229-238, 1984

[Yolots 86a) Yokots, H., Sakai, ¥, and loh, H., “De
ductive Database System Based on Unit Resolution”,
m Proc. Bnd Int. Conf, Data Engineering, pp.238-
235, 1086

[Yokota 860] Yolota, H. and Ttoh, H., "A Model and
an Architecture for a Relational Knowledge Base”,
in Prec, 18th Int. Symp. Computer Architecturs,
pp.2-9, 1086

— B9 —

