SEQUENTIAL INFERENCE MACHINE: SIM
- PROGRESS REPORT

Shunichi Uchida and Toshio Yokoi

ICOT Research Center
Institute for New Generation Computer Technology
Tokyo, Japan

ABSTRACT

The Fifth Generation Computer Sys-
tems (FGCS) project adopts a logic pro-
gramming language as its kernel language.
It specifies the general framework of both
software and hardware gystems of target
computer systems. Thus, a new tool, that is,
a new computer system is needed to provide
researchers with an efficient programming
environment for logic programming.

This new computer system is called a
sequential inference machine (8IM) because
it has a high level machine language, called
Kernel Language version 0 (KL0). It is
based on logic programming and executes
KLU sequentially.

A subproject is made to develop a SIM
system and is called the 5IM project. This
project includes the development of both
hardware and software systems, such as a
personal sequential inference machine, PSI;
a local area network system, ICOT-Net;
and a programming and operating system,
SIMPOS.

Thiz paper describes the progress of
the SIM project, mainly, the development
of its architecture and hardware system.
However, its software system, including
SIMPOS and its system description lan-
guage, ESP, are closely related to the ar-
chitecture. Therefore, they often require
and will require the moedification and exten-
sion of the KLO function, as well as of the

IC0T TR-088

architecture and hardware system.

This paper briefly describes this feed-
back from the software system to the KLO
funetions and hardware system. It also in-
cludes a R&D plan for the intermediate
stage.

1 INTRODUCTION
1.1 Motivation

The FGCS project adopted legic pro-
gramming as its basic language because the
language is considered to be the interface
between the software system and hardware
system of Lthe project’s target computer sys-
tems. It was also chosen as it is considered
the most appropriate base from which to
implement a sophisticated software system
for a knowledge information processing sys-
tem and a powerful hardware system using
highly parallel architectures and VLSI tech-
nology. :

To carry out the research and devel-
opment, certain tools were considered very
important. In particular, an efficient pro-
gramming environment is essential. Thus, a
subproject to develop a new computer sys-
tem which supports logic programming was
planned.

This computer system was named a se-
quential inference machine, SIM, and the
subproject is called the SIM project. The
SIM project was classified as one of the most



impertant subprojects in the initial stage of
the ten-year FGCS project. Its goal is to de-
velop hardware and software systems which
can provide researchers with an efficient pro-
gramming environment and also make a lot
of software experiments possible,

1.2 Requirements

The SIM system was and is required
to have sufficient processing power and
memory space for the hardware system, ag
well as efficilent and easy-to-use program-
ming facilities for the software system.

For processing power and memory
space, it was estimated that the hardware
system should attain at least the same level
of processing power as DEC-10 Prolog, the
world’s {astest software processor runming
on the DEC 2080. A faster hardware proces-
sor was also hoped for by some software re-
searchers to cope with larger scale software
experiments,

These bagic requirements were con-
sidered to be best realized by a super per-
sonal computer eguipped with sophisticated
man-machine interface devices., [Its soft-
ware system shounld have many new features
to make programming more productive and
reliable. These features are realized by such
software subsystems as a multi-window sys-
tem with a mouse, an efficient editor, an
gagy-to-use debugger, a librarian for soft-
ware modules and a ¢oordinator (or session
manager).

A personal computer should also have
a local area network system to exchange
messages, programs and so forth. Its soft-
ware system sheuld, thus, include a network
subsystem to enable users to access remote
files and processes of other computers.

To implement these sophisticated soft-
ware systems summarized as a programming
and operating system, a powerful system
description language is required. Programs

written in this language are compiled in the
machine language and executed.

All of these requirements for both the
software and hardware systems were inves-
tigated and an outline of the R & D plan
was made before the FGCS project actually
started in June 1982,

1.3 R&D Schedule

As the SIM system should be used as
a project’s standard tool and be available
in the intermediste stage, R & D of ihe
both software and hardware system should
be completed in the first three years of the
project, namely, the initial stage. This
means that the hardware system had to be
built as soon as possible, namely, in a year
or less, so that the final phase of software
development could be done on the actual
hardware system.

After the FGCS project started and
ICOT began its R & D activities, a detailed
plan of the SIM project was made. In
this plan, we decided te build two types of
hardware systems, which were named * basic
hardware system”™ and "extended hardware
system®. The bagic hardware system had
to be built within a year so that it could
be used for software development. The ex-
tended hardware system was allowed a little
more time, two years. However, it had to
attain faster speed than the basic one.

1.4 Organization of SIM System

From the project management view-
point, the SIM project can be divided into
such components as the following:

(1) SIM hardware system
& Bazic hardware system

This system consists of a personal se-
quertial inference machine, PSI, and a lo-
cal area network system, ICOT-Net. This
alzo includes PSI’s firmware development

—G



and also its development support system.
+ HLxtended hardware system

The main part of this system is a high-
speed processor system which is designed as
to be the backend hardware precessor of tha
P31 Some specialized I/0O equipment such
as a picture input and output device was
also included in this system.

{2) SIM software system

SIM’s total software system is named
SIMPOS, i.e. SIM Programming and Oper-
ating System.

« Kernel operating system

The kernel operating system provides
functions for managing processor, memeory
and I/O devices; for formulating abstract
resources such as process, pool, stream: and
for providing sophisticated 1/0O functions
sueh as a multi-window gystem, file system
and network system.

» Programming system

The programming system has such
functicns for programming as language
processors for the system description lan-
guage, ESP, and other modules as an editor,
an debugger, and an coordinator.

2 PROGRESSOFREZD
2.1 Machine Language Design

The design of the SIM system began
with the design of Kernel Language, version
0 (KLO). The basic design philosophy deter-
mined that KLO should be based on logic
programming. However, existing logic pro-
gramming languages such as DEC-10 Prolog
of Edinburgh (Bowen, et al. 1983) and
Prolog-1I of Marseille {Van Caneghem 1982)
were not designed as for machine language
or system description languages.

Therefore, we had to reconszider the
control structure, the data type and low

level built-in predicates so that we could
write the kernel operating system and the
expected application programs.

For extension of the control mecha-
nism, we did not think that the simple cut
operation in DEC-10 Prolog was sufficient to
implement the interpreter, debugger, error
handler and s0 on. We also added a multi-
level eut operation. Furthermore, we added
a bind-hook operation and an exception-
hook operation like the freeze operation of
Prolog-I1.

For extension of the data type, we dis-
cuzsed the necessity of such data types as
strings and vectors. We added these data
types and also buili-in predicates to handle
these data types. These data types, espe-
cially vectors, are often used to implement
a variety of operating system control tables.

For the low-level built-in predicates, we
had to add many special built-in predicates
to access and contrel hardware resources
such as various hardware registers to control
and test the CPU, memory and /O devices.
These special predicates are mainly used in
the kernel operating system, namely, the
memory manager and the device handiers.
Adding to these predicates, we included the
usual arithmetic and logical operations, e.g.
integer and floating-point operations.

Another discussion on KLO design was
about the level of the KL0O. The level of
the KLO could have been dezigned to be as
high as the usual prolog level or as low as
the intermediate code of DEC-10 Prolog, in
which source programs are compiled in the
intermediate codes which are interpreted by
a virtual software processor called the PLM.
(Warren 1977)

We have designed the level of the KL0
to be as high as the source program of DEC-
10 Prolog because we expected to have more
room to introduce firmware and hardware
mechanisms to enhance the processing speed



of the KLO.

We started the design of the KLO in
July 1982 and the specifications of the KLO
(first draft) were finalized by a team of
three ICOT researchers around the end of
November that year.

2.2 Design of Main Components

The function and performance goals of
the main components were designed depend-
ing on various factors. Some examples are
the time span to complete the development,
and the technical difficulty of attaining these
goals, the usable man-power, the anticipated
technical skills of the researchers and en-
rineerg, and so forth.

To provide the hardware system to soft-
ware people whe had to develop the SIM's
operating system and programming system,
a part of the 5IM fotal system was separated
as the basic hardware system which had to
be developed as soon as possible. Then we
divided the SIM hardware system into two
parts, namely, the basic hardware system
and the extended hardware system.

2.2.1 Basie Hardware System

The basic hardware syztem was planned
so that the development would be completed
before the end of 1983, This system includes
the PSI and 1COT-Net.

Thus, 2 team for designing the PSI, con-
gisting of six ICOT researchers, was formed
around the end of August 1982, This team’s
aim was to design both PSIs firmware and
hardware systems. It started its activities
with the purpose of making the PSI a super
personal computer equipped with innovative
I/O equipment like a bit-mapped display
and LAN system. The team also planned for
the P51 to attain the same level of perfor-
mance as DEC-10 Prolog on the DEC 2060,
however, the available memory space had to
be much larger than that.

First, the team tried te draw a rough
sketch of the PSI's architecture and hard-
ware organization, the KLO interpreta-
tion mechanism being implemented with
firmware, the development support system
(ineluding a minicomputer to be used as a
workbench), and so forth. The architecture
design began with the design of an internal
representation of the KL0O, namely, the data
format in the memory and also the interpre-
tation mechanism.

We had a discussion and found out
that the mechanisms for multi-process
support combined with I/0O control and
memory management related to garbage
collection were also interesting, but very
difficult, research problems. We decided to
provide some hardware support for short-
ening process switching. However, we did
not attach a front-end processor like some
Lisp machines. This was because soff-
ware researchers want to keep the chance
to write very low-level control programs like
device handlers in the KLO so that they can
evaluate the descriptive power of the KLQ.

For the memory management mecha-
nism, we did not include the virtual memory
system. This was because we could uze
brand new 256K bit memory chips and
the 40-bit 16M-word main memory would
cecupy less than ome third of the single
cabinet. We estimated that the 18M-word
would be suflicient for most application pro-
grams. This made it possible to use the
simpie slide compaction type garbage collec-
tion method.

Along with the design of the PSI,
the design of the ICOT-Net was dene by
another team. ICOT-Net is an CSMA/CD
type network like the Xerox Ether-net. [t
uses a microcomputer controlled adapter
called LIA (LAN Interface Adapter) for each
node computer. The LIA handles low-level
protocols so that the computer, e.g. PSI,
can be freed from such low-level processing

— Fl—



as retransmission of missing data.

Work on this design phase was just like
doing a jigsaw puzzie. This is because each
member of the team tried to design some
parts of the PSI while observing its total
image and adjusting the boundaries of each
part. The functional gpecifications of the
PSI (first draft) were made in December
1982. The final specification of these are
described in the next section.

After this, we entered the detail design
phaze of the PSI. In this phase, we started
the design of the micro-interpreter, namely,
the microprogram to interpret the KILO,
and the micro-instruction format. Along
with this, detailed design of the main hard-
ware modules like the data path and the
sequencer of the CPU, memory controller,
etc was dome. The specifications of the
micro-instructions (first draft) were made in
April 1983. From the middle of this stage,
manufacturers were asked to join the SIM
project. The final phaze of this design was
carried out by a joint team of ICOT mem-
bers and manufacturers.

The design of PSI firmware, namely,

the KLO micro-interpreter started along
with the hardware design. The first design
step was to determine the internal repre-
sentation of the KLO, namely, the machine
instruction format of the KLO and its in-
terpretation mechanism. This mechanism
could execute KLO programs as fast as pos-
sible and efficiently implement severa] aug-
mented control predicates such as bind-hook
and multi-level cut operations.

We made many sample programs to
verify algorithms for such basic operations
as unification, execution control and stack
manipulation. In this design process, we
often referred to the implementation of
DEC-10 Prolog. We flzally decided to adopt
the structure sharing algorithm and use four
stacks, As we extended the data types,

methods to handle the heap data area were a
little different from those of DEC-10 Prolog.

The other firmware modules we had to
design were mechanisms to support multi-
process control, memory management to
implement muitiple virtual stacks, 1/O con-
trol including interrupt handling, and so
forth. Some effort was required to har-
monize these low level mechanisms with the
interpretation mechanism of the KL0O.

The design of these mechanisms was
deeply related to the hardware design.
Furthermore, the design of the KLO
proceeded in parallel with these design
effort. Detailed design of the PSI firmware
systemn was completed around the end of
January 1983. After this, the design of
firmware development started.

2.2.2 Extended Hardware System

The extended hardware system was
aimed at enhancing the SIM system’s
capability to cope with larger software ex-
periments requiring more processing power.
Another goal was to enhance input and out-
put capability to handle drawings, pictures
and zo forth.

In the conceptual design phase of the
SIM system, we investigated future needs
for processing power and memory capaeity.
We concluded that some application systems
would require much more processing power
than the DEC-10 Prolog one. Thus, we
made plans to develop a faster hardware
processar.

Here we aimed at the development of
the fastest possible processor having the de-
velopment a more research oriented than
that of the PSI, that is, one permitting more
risk. However, we hoped that this proces-
gor would be applicable to some larger scale
software experiments than PSI could not
cope with,



In the conceptual design phase, we had
two types of machine organizations. One
was an upward-compatible machine to the
P8I and the other was the backend high-
speed processor of PSI. After a series of dis-
cussions including members of a manufac-
turer we determined that this machine was
the backend processor of the PSI, mainly be-
cauge this type of processor could eliminate
gquick process switching and input and out-
put control. Thus, the design could be con-
centrated on the speed-up of the processor.

We tried to introduce a different ap-
proach from the P5I, namely, a different
interpretation method based on ztructure
copying, a different machine instruction
set, different architecture, and different
device technology. Important differences be-
tween the high-speed processor and the PSI
were that the interpretation mechanism was
based on structure copying and the level of
machine language was lower than that of the
F5I so that it compiler could make greater
optimization for the speed-up of program
execution.

In spite of these differences, we devel-
oped the language so that it could sup-
port a subset of the KLO, ineluding impor-
tant built-in predicates. Hardware oriented
buili-in predicates were, of course, different
between the high-speed processor and the
PS1. Thus, most uger programs written in
ESP could be run on this processor by using
its compiler.

For the hardware design, we decided
to use CML (Current Mode Logic) circuits
for the speed-up. In addition, we tried to
intreduce pipe-lined local parallelism in the
CPU of the processor.

These had produced several research
problems in functional design and made
production more difficult. Thus we had to
spend several months on functional design
because we needed a detailed design of the

important parts of the interpretation mech-
anisms and hardware modules to verify the
feasibility of the functional specifications.

The functional specifications of the
hardware system (first draft) were made
around the end of November 1983. After
that, a detailed design followed and it was
almost completed in May 1984. In these
design phases, most detailed work was done
by the manufacturer.

- 2.2.3 Software System

Development of SIM’s software sys-
tem began with conceptual design of the
SIM programming and operating system,
SIMPOS. Development was carried out so
as to achieve a personal operating system
having sophisticated functions for gmoothly
performing man-machine interactions =as
well as to facilitate constructions of a dis-
tributed system by connecting many PSI's
via 8 LAN system (ICOT-Net) in addi-
tion to ordinary functions of recemt per-
gonal computer systems. Furthermore, an
efficient programming system had to be built
using these functions including an editor, a
language processor, a debugpger and many
utility software modules.

Though the functional goal of SIMPOS
was as high as the innovative operating sys-
tems of super personal computers like LISP
machines, there was another risky condi-
tion, that is, it should be written in a com-
pletely new language which had not been
precisely designed. And also it was an-
ticipated that most members of SIMPOS de-
velopment team would not be familiar with
this language.

Until the end of 1982, most effort made
was in the design of functional specifications
of important software modules and subsys-
tems such as a window system, file sys-
tem and editor, and for designing the
module structure of the kernel operating



system based on the object oriented con-
cept. Adding to these design efforts, primi-
tive functions to control hardware systems
and implement the kernel operating system
were selected and added as builtin predi-
cates of KLO,

The funetional specification of SIMPOS
were summarized around the end of March,
1983. The design work of this stage was
done by a team of less than ten ICOT mem-
bers.

Almost in parallel with this work,
the design of the system description lan-
guage, ESP, had begun considering the
specifications of KLO and salso requirements
imposed by SIMPOS’s design philosophy.
One of the interesting points of discus-
sion was how to introduce modularization
functions in ESP so that SIMPOS could
be smoothly programmed and debugged.
After a series of discussions, a class system
with a multiple inheritance mechanism was
adopted as the ESP’s modularization mech-
anism. The ESP specification (first draft)
were made in July, 1983,

From April, 1983, all the ICOT mem-
bers related to the SIM project were
gathered in one section of the ICOT research
center so that the activities from software
te hardware eould be more smoothly coor-
dinated.

From June, 1983, the SIMPOS devel-
opment team was expanded to be about
30 people including 7 ICOT members and
detailed design was started. New members
coming from manufacturers needed to learn
many new things, namely, logic program-
ming, object-oriented programming, KLo,
ESP and so forth. They were somewhat dis-
oriented at first but were able to understand
the material after a few months.

They were divided into several small
groups for ihe purpose of starting the
detailed design of all the subsystems of

SIMPQS. As the first versions of the ESP
compiler and simulator were made on the
DEC 2080 as a cross system in Angust
and they were available to actually write
small sample programs in ESP. The work
in the detailed design was to actually define
claszs modules and determine the inter-
face specifications required to implement
each subsystems. The detail specifications
of SIMPOS (first draft) were summarized
around the end of November, 1983,

2.3 Production of SIM

2.3.1 Production of PSI and LAN

The production of the PSI hardware
system was partially started around May,
1983 along with the detailed design of such
parts as memeory system and 1/0 bus in-
terface. To enhance maintainability, RAS
functions were added to make trouble shoot-
ing easier. The detailed specifications of
the hardware system were completed around
the end of June, 1983 and actual produc-
tion started. After this, minor modifications
and improvements were repeated and finally
a first PSI hardware system including 1/0
devices was brought to ICOT just before
Christmas, 1983. '

As one of the development support tools
for P8I, a minicomputer, PDP11 /23 was in-
troduced as a development support system
and was connected to the DEC 2060 via
DECpet. This minicomputer was named
SVP (PSI's supervisor processor) and was in-
tended to be used for hardware and firmware
debugging. It was later used for debugging
the kernel parts of SIMPOS, for example, an
IPL (initial program loading) program.

2,3.2 Firmware Development of PSI

The first very important task in the
firmware development was to develop an
easy-to-use micro assembler and a powerful
micro simulator to write and debug micro-



programs. It was requested that the micro
assembler could permit high-level language-
like expression and detect coding errors as
precisely as possible.

It was determined that a general pur-
pose micro assembler should be written
in Prolog. General purpose micro as-
semblers usually lack precise error detee-
tion mechanisms because of their inability to
defining the details of constraints unique to
a specific micro architecture. However, for
cur assembler, Prolog interpreter could be
regarded as the kernel part of the assembler
processor. Thus the architecture definition
could be written just like a Prolog program.
Then the constraints could be specified very
precisely. Thus, the result is an assembly
language of high readability with precise er-
ror detection capability.

For a micro simulator, the main require-
ments were a powerful debugging ability and
also an easy-to-use human interface. The
basic philosophy of the design was that the
simulator’s debugging environment should
be more efficient and eomfortable than that
of the real machine with the SVP. Our sim-
ulator was written in PASCAL using about
6000 lines. Its first version became available
on the DEC 2080 at the end of June, 1983,

The detailed design and production of
firmware for the PSI, namely, a micro-
interpreter of KLO, were carried out in
parallel.

As KLO included more than 100 built-
in predicates, some simple buiit-in predi-
cates were quickly designed and pregram-
med, however, the kernel parts of the micro-
interpreter, such as a basic control module
and unification module, required a longer
design time. The specifications of the PSI
firmware (first draft) were completed at the
end of August 1983

The coding and debugging of micro-
programs were almost done on the DREC

— T -

2060 uwsipg the micro assembier and sim-
ulator which were improved several times
and had become very comfortable and reli-
able tools. The first small subset of the
microprograms had been debugged on the
cross system, namely the DEC 2080, at the
end of November, 1983 and given te the
hardware people of the manufacturer for
testing the hardware system of PSI. Most
part of the microprograms, except for some
microprograms to control process switching,
memory control, garbage collection and so
on, had been debugged on the cross system
before the end of February, 1984,

Along with the firmware development,
a PSI hardware moenitoring program on
the 8VFP, which is an firmware debugging
aids on SVF, had been made around the
end of January, 1984. Thus, the firmware
debugging using the real machine ztarted in
February and first subset of micropropgrams
for SIMPOS debugping was completed at
the end of the month. This enabled the op-
erating system people to start debugging of
the IPL program.

Almost all the microprograms required
for BIMPOS development had been com-
pleted around the end of March, 1984. The
total number of microprogram steps was
about 12K. The firmnware development team
consisted of 12 people at its peak and in-
cluded 3 ICOT members. However, some
of them were converted from the hardware
design team. '

2.3.3 Production of extended hardware sys-
tem

The production of the high-speed
processor was partially started before May,
1984 and currently is still in progress. The
firmware development of this processor was
started in March, 1984, The hardware
production is scheduled to be completed by
the end of 1984,



In the development of this processor,
a VAX 11/780 and a VAX 11/750 have
been used for the development of hardware,
firmware and software systems. Many de-
velopment suppert systems have been devel-
oped. This procezzor is currently connected
to the VAX 11/750 as its supervisor proces-
sor. Hardware and firmware development
support systems were mainly written in C-
language and built on the VAY 11/780 sys-
tem. Software development support systems
are alzo being built on thiz system.

The development of this processor is
scheduled to be completed in March, 1085
and it is expected that the evaluation of itz
new features both in firmware and hardware
will produce many new methods to speed the
execution of logic programming languages.

2.3.4 Produciion of Sefiware System

Production of SIMPOS bepan with
sample coding of impertant modules around
November, 1983 and was accelerated by
the completion of the detailed specifications.
The specifications of ESP and alzo the cross
software development system on the DEC
4060 had been improved several times ac-
cording to the requirements for handling
larger class modules and for enhancing per-
formance.

Around the end of 1983, the design and
coding of the IPL program were started fol-
lowed by finalization of the specifications of
hardware, firmware and the kernel operat-
ing system of SIMPOS., The IPL program
included many modules of the kernel op-
erating system and alse run-time support
routines of ESP. Most parts needed to be
debugged on the actual PSI firmware and
hardware systems. Thus, it was not so large
but was a complex system, and its debug-
ging was completed at the end of April 1984.

After this, using six PSI machines and
the cross system on the DEC 2080, the

production of SIMPOS proceeded somewhat
smoothly and the window subsystem be-
came operational in July. As it was the most
complex subsystem in the kernel operating
system, realization of the goal was in sight.

This system was very impressive and it
was found that the window system could be
used as 4 kind of test program to measure
the system’s total performance. At the
beginning of July, the response time of the
window system was quite slow because some
built-in predicates were not implemented in
firmware, thus supported by software, and
many moduoles in the kernel operating sys-
tem were not designed to attain the best
performance.

This result seemed to be natural be-
canse the most attention had been paid to
building SIMPOS safely in a short period
with inexperienced pecple. Thus, we tried
to investigate the possibility of improvement
and actually improved some modules of the
firmware and the kernel operating system
in parallel with the production of software
modules of the programming system.

By the modification of the kernel oper-
ating system and the addition of firmware
supports, for example, a clause indexing
support, the response time could be im-
proved greatly enough to be a usable tool.
Through this investigation and improve-
ment, it was concluded that the KLO should
be extended to include built-in predicates
which support a part of the run-time sup-
port routines of ESP, namely, routines to
support a method call and slot access.
Currently we are making this extension and
it is expected that more improvement will
be attained.

SIMPOS is still under development.
The SIMPOS development team currently
consists of more than 40 members including
6 ICOT members, It is difficult to tell the
size of SIMPOS, however, the total size is



approaching 90K ESP lines.

3 MAIN COMPONENTS OF SIM

1.1 Basie Hardware System

Ag the details of PSI's firmware and
hardware systems are described in other
papers, the main features of its architec-
ture and hardware systemn are summarized.
(Taki, et al. 1984) (Yokota, et al. 1984)

3.1.1 P51 Architecture

{1) Tag architecture: All memory cells are
40 bits congisting of an & bit tag and 32
hit data fields.

(2) Micropregrammed control: Compiled
internal KLO codes are to be executed
by a microprogrammed interpreter.

(3) Hardware stack mechanism: Main
memory is divided into 256 logically
mdependent areas, each of which can
be used as stack or heap area and a
demand-based page assipnment mecha-
nism ig provided.

(4) Multiple-process support: Up to 63
hardware-supported processes are avail-
able.

(5) I/C bus: A standard IEEE 796 bus is
used.

(6) LAN: An CSMA/CD type similar to
the Ether-net. Transmission speed is 10
Mbps.

3.1.2 PSY Hardware

{1) Execution speed: about 20K LIPS
(Logical Inference Per Second)

i2) Micropi‘ogram store: 64 bits x 16K
words

{3} Machine cycle time: 200 nano second

(4) Memory capacity: 40 bits x 16M words,
using 256K bit chips

(5) Cache memory: 40 bits x4K words x 2

(6) Device technology: Mainly TTL for

CPU and NMOS for main memeory

3.2 Extended Hardware System

The extended hardware system is still
under development. The main features are
described. '

3.2.1 High-speed Processor Module

(1) Machine language: Based on a stack
oriented instruction set, the level of
which is lower than the one of PSIL
(Tick, et al. 1984) It will include
more than 170 built-in predicates. It is
designed to be able to support KL0 and
ESP. -

(2) Interpretation mechanism: Based on
structure copying and uses three stacks.

{3) Tag architecture: All memory cells are
36 bits consisting of an 4 bit tag and 32
bit data fields or an 7 bit tag and 29 hit
data fields.

(4) Microprogram control: The machine
language is. interpreted by a micro-
programmed interpreter.

(5) Memory management: Main memory
is divided into 8 logically independent
areas, each of which can be used as stack
or heap area, and a demand-base page
assignment mechanism will be provided.

{6} 1/0: Designed to be connected to PSI
via its supervisor processor.

(T) Execution speed: about 200K LIPS

(8) Microprogram store: 80 bits % 11K
words :

(9) Machine cycle time: 100 nano see.
(10) Memory Capacity: 36 bits x 64M words
(11) Cache memory: 36 bits x 8K words

(12) Device technology: Mainly CML for
CPU and NMOS for main memaory.

The design of this processor still in-
cludes many research items to be studied.
Thus, some of these features may possibly
be modified because of the experimental na-



ture of this processor, however, it is expected
that it will attain more than 200K LIPS.

3.2.2 Specialized I/0 equipment

To provide a facility for handling pic-
tures a specialized work station for picture
input and output is being developed. This
work station includes a high resolution color
display and a color printer for picture output
and also a TV camera and a FAX for pic-
ture input. It is controlled by micro proces-
sors and supports graphic functions using a
specialized chips. The work station will be
connected to PSI's /0 bus and can be used
for experiments using pictures,

3.3 Software System

The details of SIMPOS and its system
‘description language, ESP, are described in
other papers. (Chikayama, 1984) (Yokoi, et
al. 1984) SIMPOS is still under develop-
ment. Thus, a profile of SIMPOS is given.

(1) A personal operating system with multi-
process support,

{2) Its module structure is based on the ob-
Ject oriented concept.

(3) Man-machine communications are made
through the window subsystem which
includes input and output of Japanese
character. Thus, in the SIMPOS world,
all characters are expressed in 18 bits.

(4) The network subsystem enables a user
to access remote resources such as
remote processes and files.

{(8) Tts programming system includes a
library module including an ESP com-
piler and linker, an interpreter and
debugger, a structured editor, and so
forth.

All the SIMPOS software modules are
written in ESP. ESP will become a standard
language not only for system programmers
but also for SIMPOS users.

4 FUTURE PLAN
4.1 Improvement of SIM

The most important goal of the SIM
project is to produce a usable tool providing
researchers in the FGCS project with a logic
programming environment.

Although some parts of the SIM project
are still in progress, this goal will first
be attained by ‘the basic hardware sys-
tem, namely, PSI and ICOT-Net , and the
software system SIMPOS. These systems
will be released to the researchers in the
intermediate stage. However, even these
systems will require modifications and ex-
tensions, e.g, extensions of utility software
packages, addition of I/O devices.

The extended hardware system will also
needs many modifications and extensions so
that it can be stable and reliable az much as
the basic hardware system. Thus, the efforts
to improve SIM system will continue in the
intermediate stage.

4.2 Parallel Software Development Support

As the most important research prob-
lem in the intermediate stage iz the de-
velopment of parallel processing systems.
Currently, a parallel logic programming lan-
guage called KL1 is being designed in ICO'T.
To implement an experimental language
processor and simulator for the KLI, a
parallel hardware system which is stable and
easy-to-use will be needed.

Therefore, a small scale multi-processor
system is planned to be developed using the
P5I. This system will be consisted of several
tightly coupled PSIs, each of which sup-
ports the KL1 by extending its firmware.
As the PSI is a sequential machine, a part
of KL1 programs will be sequentially ex- -

ecuted, however, some other parts can be

executed in parallel. It is expected that this
system will be effective to study a method



to divide a program into parallel proces-
sable modules, and to estimate communica-
tion cost between parallel processes, and so
forth.

5 CONCLUSION

The SIM project is still in progress,
however, its goal is now in sight. The basic
bardware system, namely PSI and ICOT-
Net, and the software system, SIMPOS, will
be available az a nzable tool, although they

- will need various improvements.

This project has already produced
many fruitful results, One of the results is
the one related to the KLO. Itz base has
been changed from DEC-10 Prolog to ESP.
Now, ESP is the standard language of the
FGCS project. Thus, the specifications of
the KLO are extended to support both logic
programming and object-oriented program-
ming concepts.

Next result iz that this project has
answered to such a question like *Is it pos-
sible to write an operating system in Prolog
7. Although the object-oriented concept
is added to the logic programming concept,
ESP is proved to be very effective in writing
the operating system.

Furthermore, for a performance prob-
lem, this project has proved that ESP like
languages will provide architectual research-
ers with more room to introduce new mecha-
nisms to speed the execution. This research
effort iz directly related to improvement of
software productivity and reliability.

These research results will surely en-
courage future R&D of the FGCS project,

ACKNOWLEDGMENTS

The SIM project is carried out in very
tight cooperation between ICOT and five
manufacturers. The authors express their
gratitude to all the researchers and engineers

who jein in this project. Furthermore,
they express their thanks to Dr. D.HD.
Warren who established the base of Prolog
implementation and gave us many advices.
They also thank to many Japanese and for-
eign researchers for their fruitful advices and
comments.

REFERENCES

Bowen, D. L., et al, DECsystem-10

PROLOG User’s Manual, Department of

Artificial Intelligence, Univ. of Edinburgh,
1983

Chikayama, T., Unique features of ESP,
Proc. of FGCS "84, Tokyo, Nov. 1984

Taki, K., et al., Hardware design and im-
plementation of the perzonal sequential in-
ference machine (PSI), Proc. of TGCS 84,
Tokyo, Nov. 1984

Tick, E. and Warren, D. H. D., Towards
a pipelined Prolog Processor, Proc. of Int.
Sympo. on Logic Programming, Atlantic,
Feb., 1984 '

Van Caneghem, M., Prolog II Manual
D*Utilisation Groupe Intelligence Artifici-
elle, Faculté des Science des Lumminy,
Marseille, 1982

Warren, D. H. D., Implementing Prolog-
Compiling Predicate Logic Program, Vol.
1-2, DAL Research Report, No.39-40,
Department of Artificial Intelligence, Univ.
of Edinburgh, 1677

Yokei, T., et al, Sequential inference
machine: 5IM Its programming and operat-
ing system, Proc. of FGCS 84, Tokyo, Nov.
1984

Yokota, M., et al, A microprogrammed
interpreter for the personal sequential in-
ference machine , Proc. of FGCS '84, Tokyo,
Nov. 1984

_?.g_



