5 A L7 — THfED LSI-CAD ~®Jn A
Applications of the Time Warp Mechanism to LSI-CAD

A =00

Yukinori Matsumoto

SHERR () IR HBE TR
SANYO Electric Co., Ltd.

B

BEWMI oy F0d2y bO—ME LT o, EFLSICAD B E 4 f 40— YHRAEOFE 8+ L_ &
TLT~7RBL, ECEFS AL P2l a rORNTRREE LTAVORTEL, FRETIE, BEYIal—23
DA, FOHRLLHEL LTLSIRBERI B, The s f A7 7BBLEEL, 2oRHBE0OEHL L7, BE
Lalb=2a ~O@HIZEVTI, a) DRty Zd—riny FIINEERE: 20HE. b) R0BNTESREOLE. ©
THRECEAT ST BB, T ey b — S A U (AdaptiveTime-Ceiling) TREL., +OHRLF
WLz T, MANFESLFRTOFEEECLEEY ia -7 EOBBRBET SV, 744 = RO ST T L
2o —%. EF LEI AR~DMATIE, ¥ L0 - FERELFHANFED—2 L LTRBF T £LT, ¥4 47— 7SRO
HARDIZLY, HE Ly IFEAROERBSINATIEZ L, BEY, BREOITHESREL <, L) s RERA s
EHTELZIEFEIEL,

Abstract

This paper overviews the research of applying the Time Warp mechanism (TW) to LSI-CAD, which has been made
during the Fifth Generation Computer Systems (FGCS) project. TW is a well-known technique for time-keeping in
Pasallel Discrete Event Simulation. In our research, not only logic simulation but also LSI routing — a new application
of TW — were chosen as target problems. In the development of a logic simulater, an antimessage reduction mechanism
and the Adaptive Time-Ceiling technique were proposed and embedded in the simulator. Evaluation showed that both
techniques greatly reduced the rollback averhead. In addition, We compared TW with the synchronous and conservative
mechanisins to show that TW is the most efficient one. On the other hand, by applying TW to LS5I routing, we
demonstrated the wide applicability of TW. TW not only solved the problem of conflicts belween nets but also enhanced

the routing speed more than a conventional parallel routing approach.

1 Introduction

As the progress of LSI integration, considerable
amount of time is consumed in LSI design. There-
fore, speeding up LSI-CAD tools is highly required.
Parallelizing LSI-CAD tools is one of the most likely
approach to acceleration.

In parallel processing, synchronization is the indis-
pensable operation for guarantecing correctness. In
some problems, such as numerical analysis and image
processing, sufficient parallelism can be extracted by
mean of static analysis. In these applications, nsu-
ally sophisticated synchronization techniques are not
needed. In the other problems, however, only poor par-
allelism can be extracted statically. Moreover, naive
and frequent synchronization temds Lo sacrifice effi-
ciency. Many problems in LSI-CAD, such as logic sim-
ulation and LSI routing, belong to the latter class.

Logic simulation is a typical application of discrete
event simulation. The time keeping mechanism, which
is & kind of synchronization to control event execution
order, is at the heart of problems in parallel discrete
cvent simulation. The mechanisms broadly fall into

three categories: synchronous, conservative and opti-
mistic approaches(3].

Any clear conclusion about superiority among them
was not given so far because each has individual short-
comings. Synchronous mechanisms have poor potential
of exploiting parallelism. Only events with the same

timestamp can be executed in parallel[12]. Conserva-

tive mechanisms tend to deadlock when circuits have
feedback loops. A lot of computational power is needed
to avoid this[9]. Optimistic mechanisms expend some
computation power on rollback processes [4].

We, however, expected that the Time Warp mecha-
nism, an optimistic technique, could be the most suit-
able for logic simulation by adding some new devices
to reduce rollback overheads.

For efficient paralle] LSI routing, high parallelism
should be extracted not only by parallelizing the search
phase but also by concurrent routing of multiple nets
{terminals to be connected). In concurrent routing of
multiple nets, the router must avoid conflicts between
different nets. In other words, any two nets can not
occupy the same space on a routing layer. This leads to
a bottleneck and js currently the most serfous problem

117

in parallel L8I routing.

As mentioned in [-li]1 the Time Wa.rp mechanism can
be regarded as a distributed synchronization technigue.
The key feature of the mechanism is that it exploits
high parallelism in target problems with speculative
computation, while a speculation error once occurs, it
is corrected by rollback operations. We consider this
feature of TW contributes to dynamic detection of the
concurrently-routable nets,

Qur research has been made based on the above con-
sideration, focusing on the points shown below: 1: how
to reduce the rollback overhead? 2: how is the advan-
tage of the TW against the other time-keeping mecha-
nigms? 3: how to apply TW to LSI routing?

This paper organized as follows: Section 2 overviews
the Time Warp mechanism. Rough information on our
hardware/software platform is given in Section 3. In
Section 4, our experiments concerning logic simulation
is shown. Also, experiments about LSI routing is re-
ported in Section 5, Section & sumimarize this paper.

2 The Time Warp Mechanism

Figure 1: A pmblem model which the Time Warp
mechanism: targets

The Time Warp mechaniam (T'W)[4] is an optimistic
technique for distributed synchronization, which pre-
serves the cause-result relationship in a distributed
manner.

Agsume-a model where several objects change their
states by exchanging time-stamped messages (Figure
1). Also assume that there is a causality constraint
that messages must be evaluated in timestamp order
at each object.

In TW, an object optimistically assumes that mes-
sages will arrive in timestamp order. As long as they
arrive chronologically, each object can correctly eval-
uate received messages while recording the history of
messages and states.

In realify, however, sometimes messages may arrive
at an object out of timestamp order. In such cases,
the object rewinds its history (this operation is called
rollback), and makes adjustments as if the messages
had arrived in the correct order. If there are mes-
sages which should not have been sent but have already
been sent, the object also sends anti-messages to can-
cel them, The rollback operation allows TW to remain
within its constraint.

On the other hand, Global Virtual Time (GVT)

118

should sometimes be updated for memory manage-
ment. Details are presented in [4].

3 Machine and Programming
Language

Our programs were written in concurrent logic lan-
guage KL1 [15] and were implemented on the Parallel
Inference Machine Multi-PSI and PIM/m([14, 10].

KLY supports data-flow synchronization. This is
a powerful feature for describing concurrent objects
which act cooperatively to get a solution. In addition,
a dynamic memory allocation mechanism and garbage
collection mechanisms similar to LISP are supported.
KLl allows programmers to be free from troublesome
memory management [e.g. the history management of
TW). '

The PIM/m is one of the target machines of the
FGCS project, whereas the Multi-PSI is a prototype
of PIM/m. Both are MIMD machines with distributed
memory, where processing elements (PEs) are con-
nected to sach other by & 2-dimensional mesh network.
For PIM/m, up to 256 PEs can be connected, while 64
PEs for the Multi-PSI.

4 Gate-level Logic Simulation

4.1 Specification

Our logic simulator simulates eombinatorial cirénits
and sequential circuits that have feedback loops. It
handles three values: Hi, Lo, and X (unknown). A dif
ferent delay time can be assigned to each gate (nominal
delay model). Functions are the minimum set for the
experiment, but they can be expanded easily { handling
more signal values, etc.).

4.2 Antimessage Reduction

In our simulator, the message streams of KL1, where
the order of messages are maintained, are used. In this
environment, an optimization of reducing antimessages
can be applied as deseribed below.,

to be cancelled

Figure 2: Reduction of antimessages

Figure 2 shows that object A sends several messages
to object B. Assume that M, Ma,.., M, are messages
and AM is an antimessage. Also assume My, Ms, .., M,
all satisfy the following three conditions:

o My, M, .., M, were sent before AM,

e My, My,., M, were sent along the same channel
that AM is sent along,

e My, Ms,.., M, have lime-stamp values greater
than or equal to AM.

When B receives AM, obviously object B can know
that M,, My,.., M, must be cancelled but no other
messages must be cancelled, by checking their senders,
arriving order and timestamps.

4.3 Circuit Partitioning

For efficient parallel simulation on a distributed mem-
ory machine, a load distribution scheme is essen-
tial. We propose a new partitioning strategy called
“Cascading-Oriented Partitioning” {or COP).

COP consists of two phases. In the first phase,
cascade-formed clusters of gates are generated by trac-
ing the gate connection straightforward from the pri-
mary input of the circuit. In the second phase, small
clusters containing very few gates are merged into ad-
jacent large clusters, whereas extremely large clusters
are cut into several smaller clusters to avoid load im-
balancing. :

Clusters generated are finally assigned to PEs at ran-
dom, while making each PE contain a roughly equal
number of gates,

4.4 Evaluation of the Logic Simulator

Speadup

51494
Bd
Mo. of PEs

148 18 3z

Figore 3: Speedup

w GVT updating
0 InsarPE Gom.
o FRolback

w Evaluation & Scheduling
far Rewouand Meg

. g Evaluation & Scheduling
far Achual Msg

51494 s53TE S5234 s73207 Clrcuils
Figure 4: Percentage of time for each process (64PEs)

Four sequential circuits, presented in ISCAS'89[1],
were simulated on the Multi-PSI. We measured the

Table 1: Parallelism and modified speedup (64FPEs)

Circuits || s1494 | s5378 [s9234 [s13207 |
Parallelism 18,88 | 35.52 | 17.95 | 43.24
Modified speedup || 3.96 | 28.62 | 12.51 | 35.66

Table 2: Antimessage reduction ratio{64PEs)

| Circuit [51404 | 55378 | =0234 [13207

Reduction ratis || 0,381 | 0.498 | 0.892 | 0.700
| | 0.381 | | |

gpeedup, absolute performance and overheads, such as
rollback and inter-PE communication.

Figure 3 indicates speedup. Figure 4 shows the per-
centages of each process cost!.

In the best case, vsing 64 PEs, our system attained
approximately 100K events/sec performance and 50-
fold speedup, a fairly good result. But in some cases,
comparatively poor performance and speedup were
measured.

4.4.1 Parallelism Analysis

In order to ascertain the canse of limited performance,
we created an environment wheee the eost for nonessen-
tial processes, such as rollback and inter-PE communi-
cation, can be virtually ignored. We, then, measured
the speedup of each problem for 64 PEs. We now call
this speedup “parallelism”. The parallelism suggests
the upper limit of actual speedup of each problem.

Furthermore, we removed the cost of releasing the
history area® from the actual execution time, and re-
caleulated the speedup. We named the re-calculated
value “modified speedup”. The parallelisn and the
modified speedup are compared in Table 1.

For the cases of s5378, 59234 and 513207, the par-
allelism is close to the modified speedup. This means
that the cause of the poor performance was a lack of
parallelizm. We conclude that our system could show
good performance as long as target problems have suf-
ficient parallelism.

With respect to the exceptional case, s14%4, as Fig-
ure 4 shows, a considerable percentage of the messages
are rewound, and that causes further suppression of
speedup.

4.4.2 Ewvaluation of Antimessage Reduction

We estimaled the number of antimessages assuming
that our antimessage reduetion mechanism was not em-
bedded, and compared it with the actual number of
antimessages generafed.

Table 2 shows the reduction ratio when 64 PEs are
used. Here, the reduction ratio is defined as No/N.,
where N, is the actual number of antimessage gener-
ated, N, is the estimated number. The comparison

1These are the average values for 64 PEs.

The cost causes super-linear speedup.

119

shows that our reduction mechanism worked very ef-
fectively.

4.5 Empirical Comparison with Other
Mechanisms

For the purpose of comparing TW with others on the
same machine, we further made two simulators; one
uses the synchronous mechanism and the other uses
the conservative mechanism.

4.5.1 Synchronous Mechanism

In the synchronous mechanism, a centralized time
keeping mechaniam, called a time-wheel, is used. In
our synchronous simulator, each PE possesses a time-
wheel. The time-wheel manages gates assigned to the
same PE. All time-wheels synchronize globally to ad-
vance their clocks one step further.

4.5.2 Conservative Mechanism

In conservative mechanisms, deadlock is the most sig-
nificant problem [#, 13]. Using null messages is one way
of avoiding deadlock. Then, however, another problem
arises wherein a large number of null messages are gen-
erated. .

In order to suppress the rapid increase of null mes-
sages, we adopted a mechanism by which consecutive
null messages at the same input of a gate can be re-
duced to a single null message.

4.5.3 Comparison Results

Perfarmance
(K svents/eec)

100

Synchronous

Congarvative

LI 5 Nl:-.arPEsH

Figure 5: Performance Comparison (events/sec)

Figure 5 compares simulator performance when cir-
cuit 513207 was simulated under the same conditions
(load distribution, input vectors, etc.).

The synchronous mechanism showed good perfor-
mance using comparatively few PEs, however, the per-
formance peaked at 16 PEs. Global synchronization at
every tick apparently limits performance,

The conservative mechanism indicated good speedup
but poor performance: using 64 PEs, only about 1.7
k events/sec performance was obtained. We measured

the number of null messages generated during the sim-
ulation, and found that the number of null messages
was 40 times as many as that of actual events! That
definitely caused the poor performance.

This comparison substantiates that TW provides the
most efficient simulation of the three mechanisms on
distributed memory machine such as the Multi-PSI

4.6 Adaptive Time-Ceiling
4.8.1 Time Window

In the original Time Warp mechanism, a message is
eagerly evaluated even if its fime-stamp is extremely
large. Such a message, however, will probably be re-
wound later. Time Window(2, 11] is a technique to sup-
press the evaluation of messages with extremely large
timestamp.

Although Section 4.4 reports that rollback overhead
was not large, it may become serious problem when us-
ing more PEs. Therefore, Time Window is considered
a non-trivial technique.

Parlormance

¥

* a

= Window Size
Figure 6: Time Window size va. performance

In Time Window, how to know the optimum Time
Window size is the most important but difficult ques-
tion because the optimum size depends on target prob-
lems. Figure 6 is a rough sketch of the relationship
between the Time Window size and similator perfor-
mance, In some applications, the relation is described
by Curve A. There is no need to intreduce the Time
Window or, if used, the window size should be large
enough, as indicated by a downward pointling arrow.
In another application, however, the relation is shown
by Curve B. The appropriate size should be at the point
where there is an upward pointing arrow.

4.8.2 Strategy for Adaptive Decision

Here, we call the upper bound of Time Window Time-
Ceiling {TC). Also, we call the window size T'C height.

Adaptive Time-Ceiling (ATC)[8] is 2 new mechanism
which adjusts the TC height at runtime. = The cur-
rent performance of the simulator and the frequency
of speculation error occurrence give useful information
for adaptive changes of the height. A strategy for the
adjustment of the T'C height is shown below. Here, we
asaume that the TC height can vary within a set of
discrete values’. An example of the table is shown in
Figure 7. Also, we assume that the initial TC height
is zet to the minimum value.

*These values shauld be given in an exponential manner.

120

Curment height

[1]2[a] Jei]es]1o0|11a]

Candidates for the new beight
Figure 7: Table of Time-Ceiling heights {an example)

Parlammanss Pedfarmance

Last & samples
'f—-
____:__,1—'-_""1
: Haight

e heaght should be larges,
Figure & Adaptive decision of the Time.Ceiling height

New haight should ba smalar,

The algorithm is:

IF R,,, > Threshold THEN
The TC height is moved to the smaller side.

ELSEIF K >0 THEN
The TC height is moved to the larger side,

ELSEIF K <0 THEN
The TC height is moved to the smaller side.

where Ry, is the current frequency of speculation er-
ror occurrence. Here, we define the ratio of rewound
messages to non-rewound messages as the frequency of
speculation error oceurrence. K is the gradient of the
least-squares approximation line for the last N samples
(Figure &).

4.8.3 Ewvaluation of ATC

- We experimented with six sequential circuits of I5-
CAS"80 benchmarks on PIM/m using up to 256 PEs.
Figure 9 shows the performance vs. the number of PEs.

Sometimes performance was fairly good even with-
out ATC, and for these cases, ATC decreased perfor-
mance a little. In other cases, ATC enhanced per-
formance. We can sce that the maore processors that
are available, the higher the effectiveness of ATC. In
fact, in our experiments, ATC showed the greatest ef-
fectiveness, 37% improvement in performance on aver-
age, when using 256 processors. This is quite natural
because the frequency of speculation error cceurrence
grows as the number of processors increases.

These results show that the ATC overhead is not so
large, and ATC is, on average, effective for obtaining
near-optimum performance,

5 LSI Detailed Router

5.1 Background

In order to exploit high parailelism in LSI routing, it
is required to route multiple net in parallel. Conflicts
between nets, however, must be avoided,

121

1008
'
mw 120 =5 TR 256
- s3B417 EI85H4
0
B0
i
1003 :
TN 258 M ez e m 256
Padormance with ATC ----=----- Performance without ATG

Figure 8: Effect of ATC on performance

A static analysis[18] detects some of nets which can
be concurrently reuted without conflicts, as shown in
Figure 10. Here, each bounding box shows the global
route. Detailed routing for each net is performed
within the bounding box. In this example, Net A and
Net B ean be routed in parallel, because these do not
overlap in terms of the bounding box. On the con-
trary, the bounding boxes of Net A and Net C overlap.
Therefore, they can not routed concurrently,

However, consider the case shown in Figure 11,
where the bounding boxes of Net X and Net Y overlap
with each other. But after detailed routing, we can find
that their connection paths do not conflict at all. This
means Net X and Net Y could be routed concurrently
in reality. Unfortunately, static analysis never extracts
this sort of parallelism because we can not know the
connection path before detailed routing.

Speculative computation, based on an optimistic as-
sumplion that Net X and Net Y ecould be routed con-
currently, expleits this kind of parallelism af runtime.
Of course, in some cases the assumption may be wrong
and multiple nets conflict with each other, trying to oc-
cupy the same space. In this case, one of the conflicting
nets (e.g., which has the highest priority) is permitted
to occupy the space. Other nets are obliged to search
the alternative paths again.

We expect the optimistic assumption is correct in
many cases, and high parallelism can be exploited. The
framework of TW makes for runtime parallelism esx-

.: : Bpunding booes which include e
gzl routes dr eorresponding nats.

®a ; Terminals o be conneciad

Mt &

Met A

NetB

Figure 10: Examples of nets which can be routed con-
currently in the static analysis approach

[: Bouning bexas which inchada the
hisksl raubes for comeeponding nets
& & - Termina's 1o ba comecied.
e = G gcion patis:
{the resalt of detailed routirg)

Figure 11: Examples of nets which can be routed con-
currently by runtime parallelism extraction

traction.

5.2 Basic Routing Algorithm

Now, we assume the following routing models:.
o Manhattan wiring model on two layers

¢ Two-terminal net model

We adopted a rectangle-based algorithm{15] as the
basic routing algorithm. In this algorithm, each layer
is represented by a set of rectangular tiles as shown in
Figure 12.

Herizontal tayer
Figure 12: Free spaces represented by rectanguniar tiles

Vertical layer

{Stnte iransiEon by spitting).
Figure 13: State transition of an object

5.3 Object-Oriented Modeling

Hereafter, we call our router the Time Warp Houter
{TWR). For-the ease of embedding TW, we modi-
fied the rectangle-based algorithm based on an object-
oriented model.

In TWR, tiles are modeled as objects. Each object
corresponds to either an terminal or a free space. We
call the former object @ ferminal object, while the latter
i space objecl. A space object has a state that repre-
sents the current free area within it. The initial state

iz the whole area of the object. As the routing process
proceeds, some parts of the free area become occupied
by nets. In this case, the state changes with splitting
into several segments, regarding the oceupied areas as
new obstacles(Figure 13).

Objects communicate with each other to perform
routing. Search, Terminate and Troceback messages
are used for communication.

The routing algorithm is divided into two phases; the
search phase and the state-update phase.

In the search phase, a Search message is sent
from the start terminal object. Then Search mes-
sages are transmitted among objeets according to A¥
algorithm|5, 17]. If a connection path exists, the target
terminal object receives a Search message. Then, the
state-update phase starts. In this phase, first, & Termi-
nete message is broadcast in order to stop transmit-
ting unnecessary Search messages. Then, a Traceback
message is sent from the target terminal object, tracing
back the footmark of the received Search message. By
doing so, the connection path of the net is determined
in detail, and states of objects related to the path is
updated.

For the purpose of performing the search phase ac-
cording to the 4* algorithm, the cost function f is at-
tached to each Search message. All Search messages
must be controlled to be evaluated in the f order. In
TWR, this control is realized by TW with the appro-
priate definition of time as described below.

5.4 Definition of Virtual Time

As mentioned in Section 2, TW controls the action of
objects so that they evaluate messages in timestamp
order, This means that the timestamp represents the
processing order. Therefore, we define the key param-
eter fime to make the routing process proceed in an
appropriate order. ‘

The desirable computation order is as follows.

o For different nets, the message evaluation re-
lated to the higher-priority net should precede the
lower-priority net.

s For the same nets, Search messages should be
evaluated in f order to follow the 4* alporithm.

Fram the above consideration, we let the tuple of the
net number N and cost f, (NV,f), be a timestamp and
attach it to each Search message. For each Terminate
and Troceback message, the timestamp of the corre-
sponding Search message, just received by the target
object, 13 copied and attached.

Let T'5; be a timestamp (N;, fi). Timestamps T'5
and TS, can be compared according to the following
ritle.

IF - Ny< Nm THEN T5; < TSy
ELSE IF N} = Ny, and f; < fr, THEN TS5 < TS5,
ELSEIF Ny = N, and i = fr, THEN TS5, =T5,
ELSE T8 =TS8,

122

In TWR, objects evaluate messages concurrently un-
der the control of making messages be processed in the
timestamp order. As a result, the obtained path 1s
guaranteed to be the shortest. In addition, the rout-
ing results are the same as those when LSI routing is
performed entirely in a sequential manner.

5.5 Ewvaluation of TWR

We tested TWR on the PIM/m with 64 PEs and evalu-
ated it from two points of view; the advantage over the
static analysis approach and the influence of rollback.

In our experiments, two industrial LSI data were ex-
amined, Both data assume two layers and virtual grids
although TWR needs no grids. The net number was
assigned statically, and a severe consiraint concerning
the path length was put on each net.

Table 3: Testing data

!| DATAL DATAZ
Grid size 106 »x262 | 322389
B # nets 136 85
blocks (vertical) | 528 501
(horizontal) [528 440
space objects 1,274 1,288

5.5.1 Advantage of TWR

In order to clarify the advantage of TWR, we made
another parallel router which extracts parallelism by
static analysis, and compared it with TWER. Hereafter
we call this router the conventional router.

The conventional router is based on the same routing
meodel and algorithm as TWR. So, the routing results
is completely equal to that of TWE. The difference be-
tween these is that, in the conventional router, only the
nets belonging to the same routing unil can be routed
in parallel. Here, a routing unit is a group of nets which
are permitted to be routed concurrently by stalic anal-
ysis. Note that termination detection is needed before
the routing process of the next routing unit starts. Due
to the path length constraint on each net, the search
space is greatly limited. By using this information,
the conventional router estimates the bounding box
for each net and creates routing units, even without
the global routing result.

Figure 14 compares the relative routing speed.
Here, relative speed is defined as Trw r(1)/Trouter (V],
where Trouter(IV) is the execution time of a Router
([TWR or the conventional router) using N FEs.
Trw (1) is the execution time of TWR using one PE.

When using fewer PEs, the conventional router
worked faster than TWHR. This is because TWR con-
tains overheads of recording history. Using larger num-

Aelative speed DATA 1
20

Tha Trma WA FHousar

10

ia 8 16 T B4
Mo, of processars
Aelative speed DATA 2
=k —
F=—Tha Trma Wirg Focear
10| .

1
1 2 G4
e 18 3 No. of processors

Figure 14: Comparison of relative routing speed be-
tween TWR and the conventional router

DATA1 E E Aglled back messages
| L

10000G ¢ 150000
Totel Mo. of messages

DATA 2

0 50000

Figure 15: An analysis of the number of messages gen-
erated (using 64 PEs) '

ber of PEs, however, TWR greatly surpassed the con-
ventional router. For DATAL, the peak speed of TWR
was 2.3 times faster than that of the conventional
router. The cost of termination detection increases as
more PEs are used. This causes the limited speedup of
the conventional router. Thus, we conclude that TWER
is more scalable, and, is very suitable for large-scale
parallel machines.

5.5.2 Influence of Rollback

The influence of rollback greatly attracts our interest,
We measured the number of messages related to roll-
back, that is, the number of anti-messages and rolled
back messages. Figure 15 shows the number of mes-
sages related to rollback when nsing 64 PEs. This fig-
ure demotes that rollback influence was not very serl-
ous.

6 Summary

We examined the efficiency and applicability of the
Time Warp mechanism to parallel LSI-CAT), especially
to logic simulation and to LSI routing,

The antimessage reduction mechanism and sophis-
ticated cireuit partitioning were added to our parallel
logic simulator. As the result, the simulator showed

123

Figure 16: Routing Result (DATA2)

very good speedup of 50-fold on the Multi-PSI using
64 processors. Comparison with other time-keeping
mechanism were made to reveal that the Time Warp
mechanism is the most efficient.

For more processors, we proposed the Adaptive
Time-Ceiling for reducing the rollback influence. In our
measurement, embedding ATC led to 37% improve-
ment in speed on average, using 25§ processors,

We also showed a methodology of applying the Time
Warp mechanism to LSI routing. This is the first step
to showing the applicability of the Time Warp mech-
anism to a wide range of problems. The Time Warp
mechanism not only solved the problem of conflicts be-
tween mets but also enhanced the routing speed more
than a conventional parallel routing approach.

References

[1] Brglez, F. et al : “Combinational Profiles of Se-
quential Benchmark Circuits,” fnt. Symp. on Cir-
euits and Systems ‘89, ppl929-1934 (1959)

[2] Briner, 1.V, et al. : “Parallel Mixed-level Simula-
tion using Virtual Time,” CAD accelerators, North-
Holland, pp. 273-285 (1991)

[3] Fujimoto, R.M. : “Parallel Discrete Event Simula-
tion," Communications of the ACM, Vol 33, No.10,
pp. 30-53 (1990)

(4] Jefferson, D.R. : “Virtual Time,” ACM Trans. on
Programming Languages and Systems, Vol.7, No.3,
pp. 404-425 (1985)

[5] Kumar, V. et al. : “Parallel Best-First Search of
State-Space Graphs: A Summary of Results,” Prog.
AAADES, pp. 122-127 (1988)

124

(6] Margarino, A. et al : *A Tile-Expansion Router,”
IEEE Trans. Compuler-Aided Design, Vol. CAD-B,
No.4, pp. 507-517 (1987)

Matsumoto, ¥ and Taki, K.: “Parallel Logic Sim-
ulation on a Distributed Memory Machine," Proc.
1992 Buropean Conf. on Design Aufomation, pp.
76-80 (1992)

[7]

Matsumoto, Y. and Taki, K.: “Adaptive Time-
Ceiling for Efficient Parallel Discrete Event Simu-
lation," Proc. Western Multiconf, Compui. Simule-
fion — Object-Oriented Simulation Conference—,
pp.101-108 {1993)

Misra, J.: “Distributed Discrete-Event Simula-
tion,” ACM Computing Surveys, Vol.18, No.1, pp.
3964 (1986)

[8)

(9]

[10] Nakeshima, H. et al. : “Architecture and Fmple-
mentation of PIM/m,” Pree. Inl. Conf. on Fifih
Generation Computer Systems, pp. 425435 (1992)

[11] Sokol, L.M. et al. : “MTW: A strategy for schedul-
ing discrete simulation events for concurrent execu-
tion,” SC5 Multiconference on Distributed Simula-
tion, pp. 34-42 (1988)

(12] Soulé, L. and Blank, T. : “Parallel Logic
Simulation on General Purpose Machines,” 25t
ACM/IEEE Design Autornation Conference, pp.
166—170 (1988)

{13] Soulé, L. and Gupta, A. : “Analysis of Parallelism
and Deadlock in Distributed-Time Logic Simula-
tion,” Stanford University Technical Repord, CSL-
TR-39-378 (1889)

[14] Taki, K. : “Parallel Inference Machine PIM,"
Froc. Int. Conf. on Fifth Generalion Computer
Systems, pp. 50-72 {1992)

[15] Tsai, C.C., et al. : “An H-V Alternating Router,”
IEEE Trans on CAD, Vol.1l, No.8, pp.976-991
(1992)

[16] Ueda, K. and Chikayama, T.: “Design of the Ker-
nel Language for the Parallel Inference Machine,”
The Computer Journal, Vol.33, No.6, pp. 494500
(1990)

[17] Winston, P.H. : Artificial Intelligence, Addison
Wesley (1984)

[18] Yamauchi, T. ef ol : “PROTON: A Parallel
Detailed Router on an MIMD Parallel Machine,”
Prog. Int. Conf. Computer-Aided Design’01, pp.
340-343 (1991)

