A Sorted Generalization for Legal Reasoning

Makoto HARAGUCHI and Tokuyasu KAKUTA

Department of Systems Science, Tokyo Institute of Technology
E-mail: makoto@sys.titech.ac.jp, kaku@sys.titech.ac.jp

1 Introduction

This paper presents a reasoning system that performs
analogical reasoning for legal rules under an order-
sorted representation. Analogy is often used in the do-
main of law to derive an appropriate conclusion for a
particular case not covered by any legal rule. For such
a case, lawyers are considered to find a legal rule whose
regquirement is similar to the case with respect to some
significant points. Then the rule is analogically applied
to the case for which the same or a similar conclusion
of the rule is derived.

To develop 2 system for reasoning by analegy in law,
it is necessary to have knowledge for deciding the simi-
latities at a conceptual level. This is because both legal
rules and cases are described in terms of legal concepts.
It is well known that a taxonomic hierarchy on legal con-
cepts is ugeful for this purpose. Those concepts with the
same super concept in the hierarchy can be understood
as similar ones. From a logical point of view, such a hi-
erarchy is represented as an ordered set of sort symbals
denoting concepts. Then our legal rules will be repre-
sented as well-sorted formulas of an order-sorted logic
with the sort hierarchy.

The purpose of this paper is first to show that the
order-sorted logic [9, 11] is more appropriate in repre-
senting legal rules than a standard unsorted logic. Es-
pecially a new symbol system is introduced to consider
a predicate that takes another predicate instances as its
arguments. Such a predicate frequently appears in legal
texcts, as shown in Section 2 and 3. A similar symbol
system based on unsorted Horn logie ean be found in [§]
in which predicates have their identifiers to be referred
by other predicates. Since the notion of identifiers goes
beyond the scope of semantics of first order logic, it is
hard to understand what the identifiers mean. On the
other hand, it is not a difficult task to have a formal
semantics based on sorted Herbrand models, although
the present paper does mot concern such a model the-
ory. In addition to the model theoretic aspect, it is
widely known that the sorted logic or a typed system
can well control the inference processes because of its
type-checking mechanism. The system presented in this
paper also enjoys this property.

The second purpose of this paper is to show a com-

putational method for analogical reasoming for legal
rules nnder the order-sorted representation of legal
knowledpe. Although we can find many studies (see
[18, 16, 17, 20] for instance) on computational analogy,
few studies which emphasize the importance of sorted
representations are found. In [19], an idea of using a
type theory for analogical reasoning is described. How-
ever the details of how we make use of the typed knowl-
edge in analogical reasoning and what operations are
necesgary to realize the idea are not fully developed.
This paper, on the other hand, tries to present a set
of concrete computational operators for doing that for
legal rules based on our order-sorted representations,

The analogical reasoning in this paper can be viewed
as & combined process of both deduction and generaliza-
tion along the sort hierarchy. We classify the generaliza-
tion into the followings: extension of the applicability
of legal rules, generalization of predicates, and abstrac-
tion of individual objects or acts. These three types
of generalization are carried out by the corresponding
three generalization rules: sorted generalization, predi-
cate generalization and term generalization. All of these
are applied to goal clauses of a standard deductive in-
terpreter for order-sorted Horn logic.

At firet, the sorted generalization replaces a variable
appeared in a rule to another variable of more general
sort to eliminate type errors occurred in applying the
rule analogically. Although the applicability of rules is
restricted to sorts of variables, the sorts are now ex-
tended by the generalization. Thus, our sorted gener-
alization produces a rule with wider applicability than
the origingl one. Moreover, it is easy to compute the
generalization and therefore to apply the rule analogi-
cally, since the sorted generalization is determined by a
simple algebraic operation for our sort hierarchy. Com-
pared with the previous study [5] on analogy in law,
which concerns the same legal case as this paper does,
a great computational reduction is achieved due to the
algebraie operation.

The term generalization, the second generalization
rule, abstracts an individual instance of a sort to a vari-
able of more general sort. The variable is then instan-
tiated to amother instance of a more specific sort. The
latter instance is treated as a candidate for an analogue
of the original one. This is because their sorts share

61

the generalized sort as their common super sort. Thus,
the term generalization fogether with the instantiztion
is used to find an analogue.

Finally, the predicate generalization has an effect of
replacing a predicate with another one of more general
extension. In contrast with the first two generalization
rules, it does not depend on our sort hierarchy. A logical
structure of (ebject-level) rules completely determines
the generalization. Technically speaking, the gemeral-
ization of this type is necessary to eliminate some type
errors invoked by term generalization.

In the research field of machine learning, we can find
many studies on generalization. Especially the notion of
absorption, defined in [4, 13], becomes important also
in this paper to realize the generalizations along the
legal taxonomy. Our sorted generalization is 2 natural
extension of the absorption. The basic idea thus comes
from [4, 13]. Similarly both the predicate peneralization
and the term generalization can be kinds of absorption,
if we translate the sorted representations into unsorted
ones. However, the process of contrelling how we apply
the absorption is strongly constrained due to the sort
information given by our sort hiera.n:hy, as we will see
in Section 5. This point distingurishes this paper from
Lthe others.

We organize this paper as follows: In Section 2, a
preliminary definition of erder-sorted logic is described,
and then a symbol system for representing legal rules is
presented based on the arder-sorted logic. In Section 3,
a legal rule appeared in Japanese Civil Code and a real
case for which the rule has been applied analogicalky are
presented and analyeed. All the necessary knowledge
to realize the analogy is shown and is also represented
as sorted clauses. Section 4 is devoted for presenting a
general explanation of what is our sorted generalization,
This section is just technical, and does not concern legal
aspects. In Section 5, the three generalization rules as
well a5 some control rules are presented. Some examples
to show why the rules are needed and how they behave
are described. In the final section, some future works
are discussed.

2 An order-sorted representa-
tion of legal rules

We first present preliminary definitions of order-sorted
logic, and then introduce a new symbol system under
which legal rules are represented.

2.1 Preliminaries

It is necessary to have & large taxonomic hierarchy to
describe legal knowledge. The hierarchy consists of legal

conceptual classes linked with 154 relations . Accord-
ing to & standard logic, each IS4 link is represented as
a definite clause. Tor instance, a clause meaning that
5 is a subelass of 5 can be written as:

Vo, s (2) — s2(z),

where s3{z) is true f = is an instance of the concep-
tual class which s; denoctes. Some studies [10, 11, 9]
have already pointed that it is unnatural to have 754
relations in the forms of logical rules as in the above,
For instance, suppose we have another clanse express-
ing thal = is a subclass of 33. In order to conclude a
fact that sy is also a subclass of &3, we must apply in-
ference rules like Modus Ponens. However the fact is a
direct consequence of the Lransitive law of partial order-
ing, provided we have the taxonomic hierarchy in the
form of partially erdered zel. From this simple abserva-
tiom, each conceptual class and the taxonomic hierarchy
are now formalized as a sort symbol and a partially or-
dered set {5, <) of sort symbols, respectively ([11],[9]).
In what follows, the statement that s, is a subclass of
&y 15 denoted by s < 84,

Each non-logical symbol is supposed to have a cor-
responding sorted specification. A function symbal
f of arty n has its sorted specification written as
151,08, = 8, which means that the function (de-
noted by) f takes instances of 5;,..., 5, and returns an
instance of 5. Similarly, a predicate symbol p of arity
n has its sorted specification p : 8y, ..., 5y, meaning that
the predicate p is defined for n-tuples whose j-th argu-
ments are instances of 5;. Moreover any variable z is
assumed to have its sort 2, and is written as = : 5. The
sort s specifies the range of possible instances for the
variable & to have.

Given these sorted specification of symbols, fi] of a
term £, called a principal sort of 4, is defined by:

{1) If { is & variable = : s then [t} = .

{(Z) I t= flty,...,tn) for some §:8y,..,5, =2 (n>
0}, then [f] = =.

Moreover, a first order term ¢ is said to be well-sorted
if, for any subterm f(1y,..,¢s) with a specification f :
B1yeey 8 = 4, [t5] £ 55 holds for each j. An expression
t ¢ & denotes that { is an well-sorted term such that
[t] < & Similarly a substitution § = {z;/t;}, which
replaces the variable =; with the term {;, is called well-
sorted, if £; is well-sorted and {t;] < [r;]. Thus, by the
well-sorted substitution, possible instances of a variable
z ¢ 5 are restricted to well-sorted terms of sorts &' such
that &' <4,

Given a sort hierarchy (5, <}, a unification that takes
the sorted information into account is called an order-
sorted unification. Intuitively speaking, the order-
sorted unification matches two or more well-sorted

TAlthough there exist several ways of explaining 54 relation
|12i, this paper interprets it as "is.asubclass_of™.

-]

terms and forms them into a single well-sorted term,

where the matching is done by applying well-sorted sub-
stitutions. For instance, suppose we have an ordering
in which &8 < & and s < #; hold for sorts s, 5, and
ss. Then the terms x; : 5 and T3 : 8 can be unifi-
able, since they become the same well-sorted term = : &
by the well-sorted substitution {zy/z,2z2/2}. On the
other hand, if 5; and #; has no commeon subsort, then
the order-sorted unification fails.

Formally a unifier T for a set F of well-sorted terms
is & substitution such that e;7 = ep7 for all ¢, e, € E.
An order-sorted unifier for & set of well-sorted terms is
defined as a unifier of the set that is well-sorted. Fur-
thermore, for order-sorted unifiers) and #; of a set E
of well-sorted terms, an ordering 8 < #; is defined as:

& = #, iff there exists an well-sorted sub-

stitution 7T such that =f;7 = =zf; for any

variable x in B
In this case, we say that the substitution 8y is more
general than #s. It is well known that, for a set of well-
sorted terms that have an order-sorted unifier, there
always exists & maximally general order-sorted unifier
{mgosu, for short), provided our sort hierarchy is finite
{[11]}). An order-sorted resolution is now defined as the
standard resoluetion for well-sorted clauses, where all the
unifiers should be mgosu., For more details, see [0] for

instance.

2.2 A symbol system

Legal rules generally govern human’s individual acts
and events in our social life. Their effectiveness and the
validaess depend on what properties they have, what
legal concepts they belong to, and what relations hold
between them. Since our order-sorted logic is basically a
first order logic, the properties and the relations should
be formalized as first order predicates that take individ-
ual acts as their arguments. By the same reason, once
we decide to adopt order-sorted representations, the in-
dividual acts and their legal conceptual classes must be
expressed as well-sorted terms and their sorts, respec-
tively. Thus, they are distinguished at symbol level. In
mest legal texts, however, the individual acts and their
classes are sometimes confused at symbol level, For in-
stance, consider the following sentence in the form of

natural language:

a contract that is made by a person ¢ with a
person b for an object ¢ is a contract.

The first occurrence of the term "contract” given an
indefinite article denotes an individual contract whose
attribufes are specified by the phrase followed by the
relative pronoun. Thus, it works as a name for somes
individual act. On the other hand, "is.a" is a copula
that connects the individual contract and a class named

"eomtract™. The second occurrence of "eontract”™ there-
fore works as a general name. A symbaol systern defined
now in Lhis section distinguishes each individual name
from a general name. For this purpose, a sort symbaol
and a functor are associated with a legal conceptual
class on actions, Formally we need the following defini-
tion.

Definition 1 (Sorts of Event Type) We first as-
surne that we have a designated sort symbol event
our sel 5 of sorts. Each sort 5 more specific than event
is culled a sort of event type. Otherwise, 5 is called a
sort of object type *. We assume the greatest sort object
amaonyg sorts of object type. A fenctor [whose codomain
sort & is event type is called an evend formalion funelor
for 5. If there exists the unigue event formation functer
f for s, [iz rather denoded by s_f.

For instance, the sort contract {< event) is supposed
to have the unique event formation funetor

contract.f : person, person, chject — condract |

meaning that an instance of contract is determined
by specifying two persons and an object for the con-
tract. Then, given constants a : person, b person and
tmm_X : object, the sentence we have examined in the
preceding page corresponds to the following well-sorted
ferm:

contract_f(a,b,imm_X) : contraet.

The arguments a, b and imm X work as "attribntes”
or "features” of that term of contract. To get the at-
tributes from a term of event type, we consider the
following "attr"-predicates. For each event formation
functor f: 814y 8 — &, We assume a unit clause

attr{f{ Xy : 81,y Kn b 80)y B0 A4}

where a; is an attribute name ? (or a feature name)
associzted with the j-th demain sert s.j of f. For in-
stance, using an atinbute name agf2, one of the attr-
predicates for confract_f can be written as:

attr{conéract, f(X : peraon, ¥ : person, Z :
object), agt?, ¥,

meaning that the second agent of contract f{ XV, Z)is
Y. In what follows, the sorted specification for an event
formation functor f : &, ..., 8, — 5 with its attribute
TIATIIES fh y - oey @p 15 TRENET wTitten as:

fler:s1, oy Gnisa)is .

YPrecisely speaking, « is called a sort of object type, if ~(s <
event} and & £ label.

The attribute names are constant symbols of & designated
sort label. label is assumed to be incompareble to any other sort
in our sert hicrarchy. Moreswver it can be neither a domain sort
nor a co-domain sock of & functor as well as a predicate axcept
atir.

63

We understand this expression as a statement that a;
of f is 5_7 and that f forms an instance of 5. The snrteé
specification for contract_f can be now wrilten as:

condract.flagtl ; person, agil ; person,
obj : nirjed] : condract.

In contrast with the usual first order terms, any term
of event type is a theoretical being, and is not assumed
to always have a real denotation. In order to desig-
nate something specified by such a term really happens,
we introduce & special predicate oc : event . For in-
stance, an atomic formula oc{contract.f(a, b, ¢)} means
that the contract made by ¢ and b for e really occurs in
a world we are going to axiomatize.

A guery is an well-sorted goal elause. — oefX :
law ful_act) is an example meaning the question "Does
some lawful act X ocour?”., Our order-sorted resolu-
tion directly solves this goal by finding an order-sorted
unifier

8= {X : low ful_act{contract_fa, b e)],
provided cur sort hierarchy includes

contract < juristicact < low ful_act
< human_act < event,

3 Analogical reasoning for legal
rules

Now we are ready to show a legal rule, Clause 2, Article
G4 of Japanese Civil Code, which judges have applied
analogically for many cases. For Article 94 is normally
considered to concern the difference between external
appearances and real intentions of comtracts, we de-
scribe the article in a simplified form so that we can
understand how the article is applied to resolve con-
flicts on contracts ®.

Clause 1: A contract with a false declaration of inten-
tion made by a party to the contract is null and
void.

Clause 3: From the nullity of the contract in the pre-
ceding clause, one cannot set up against a person
in good faith, who does not Enow the falsity that
the declared intention is different from the real in-
temtion.

According to Clause 1, the contract with the false
declaration of intention is null for the party to the con-
tract. However the nullity is not applied to the other
person, provided he believes the false declaration with-
out knowing its real intention. The right of the person
will be protected by Clause 2.

AThe use of ac predicate is introduced in [12] for an unsorted
case to analyze higher-order ISA relations.

5The ariginal articls is stabed more abstractly, and requires a
centract to be made in collusion with its parties.

The Gfauaigﬂ] for instance, can be encoded in the form
of order-sorted representation followed by its sorted
specifications:

Rule 1 {Articlefd, ClausaZ)
oc{Ctretl : contract),
attr{Ctretl, agtl, X)), atlr{Ciretl, agi2, ¥)
attr{Ctrctl, obj, (hject)
oo Falsity : falsity), attv] Falsity, obj, Ciretl),
oc(Ciret? : contract), attr{Clrct?, agtl, 1),
attr{Ctret?, agt?,), abte(Ctrct?, obf, Object),
pood_faith{E, Falsity)
= cannot_set_up{ X, T, Cirell)

Sorled Specifications:

contract.flagtl : person,agi? 1 person,

obd : object) : controct.
comtract £ juristicoct < low ful_act :

= human _act < event.
good. faith : person, event, person % object,
cannot.sef.up : person, person, coniraci.
falsity. f(obi : humanact) : falsity < event.

Bule 1 is conecerned with two contracts, Cirefl and
Ctret?, The variable Falsity will be bound to the falsity
of the first contract Ciretl, as we see in the next sec-
tion. The atom cannot.set up/X,Z, Ctretf) means that
X cannot claim the invalidity of Ctret2 which £ made.

The meaning of falsity iz clarified by the thecry in-
terpretation rule 2, which states that a contract is con-
cleded as false if the represemtation and the state of
affairs are different.

Rule 2 (Falsity of Contracts)
oo Ctret ¢ contrae)
repr.of ctret{Clret, ReprCts),
soa.0f clrct[Ciret, RealC'ts)),
ReprCts # RealCls
— nc(fnln'!y-_ﬂ:ﬂird}}.
Soried Specifications:
(repr_of _ctret : confract, top.),
{soa.of ctret @ contract, top.)
Abbreviations:
"repr® :

The predicate good_foith is defined as follows:

{oef Eve)— > not{know(Agt, Evt}})
— gnﬂdjnﬂh(_.dg’! : person, Eol ¢ Er.'m!:l

representation, "sea®: stale of affairs.

where not and A— > B are a negation defined by
negation as failore rule and a built-in prediate mean-
ing "if A then B", respectively. The predicate know :
person, top ® is defined so that an atom know(Agt, Evt)
succeeds iff the Evt, which will be bound to a term of
event type, is proved under the set of facts Agt knows.
We use an auxiliary predicate know.fact : person, top.
All the possible instances of know_fact as well as roles
for inferring "knowing” rvelations are initially presented
in our fact database, as shown in Fact 1. According
to such a representation of facts, the predicate know is
easily realized as a kind of meta-interpreter of Prolog.

t top is the least upper bound of event and object.

64

Now we present a legal case for which Clause 2 of
Article 94 is applied analogically. In the case, since p.b
sold the house to p.c without its real cwnership, p.a,
who was the real owner, claimed his ownership right.
However, the judge approved that p.c had the real own-
ership right by legal analogy.

Clase of a petition against registration of passage of &
house’s title ({O)Mo.107-1951 judgment of the second
pretty bench, Aug. 20th 1951)}

Case: After poo bought a house, which po owned, from p_o,
he approved the regisiration of passage of title from
poo to p.b without his 'real intention of the passage.
Registered the passage of title, p.b sold the house to a
good faith, p.c, who did net know the real intention of
p.a and only know that pb registered. p.c registered
the passage of cwnership title. p_a elaimed that pe
must do cancellation procedure of passage of title and
others because the ownership of the house in the case
should belong to p.a, and p.b and pe did not have the
ownership of the house,

Judgment: By analogical application of Clause2, Art. 94
of Japanese Civil Code, the nullity of the registration
of 'B" cannot be set up against the good faith pe,
who did not know the real intention of p.e, so that p.a
cannot claim that p.e must do cancellation procedure
of passage of title and others of the registration.

We represent the legal case by a set of facts approved
by the court.

Fact 1 (Facts representing the legal case)

Relations: .
oesale_of immovables_f{po, pa, imm X)),
ownership{p.a, imm_X).
oe(reg.of ptitle_fp.o, pb, imm_X).
oc{reg_fiph, imm X))
oe(approval_f(p.a, reg_of_ptitle, f{p_o, p_b, imm _X])).
oef{sale_of_immovebles_f{pb, p.c, imm X))
oo{regof _ptitle_f{p b, pe, imm_X)).
kmow_fact(p_ec, regof_ptitla_f(po, p.b, imm. X}).
Enow_fact(pe, reg_fpb, imm XJ)
know_fact(p.c, sele.of fmmovables_f{p.b, pc, imm X }).
Enow. fact(p.c, reg-o f ptitle_f(pb,pe dimm_X).)

Sorted Specifications:
poo,pa,pb,pe 1 person. immX : house.
owrmership 1 perason, object,
vegof_ptitle_flagil : person,agl? : person,oby : imm._prop)

: regaof.ptitle

house < fmm_prop < prap < oebject
reg.flagt : person, obj ; imm.proprop) : reg
rag.of_ptitle < reg < guarsi-jurifstic_act £ law ful_oet
zale_of imm < sole < human.act
approval_flagt : person, obj : human_act) : approvael < event
sale_of imm_f{agil : person,agil : person, obf ; imm-prap)

: gale_of _imm
Abbrevigtiona:
agt: agent prop: properiy reg: regislration
imm prop: immovable property ptitle © passage of Lilles
prop: properiy

sale.of imm: sele of immovabls properites
reg-of _ptitle: regisiration of passage of titles

Rule 1 and the case represented by Fact 1 concern
contracts and registrations, respectively. The judges

thus seems to have applied a rule on contract to a case
of registration. Moreover, the notion of falsity that
Article 94 mentions is restricted to the falsity of con-
tracts, as defined in Rule 2, Hence, for the analogy the
judges used, the following conceptual operation might
have been performed:

(1) The rule about contract is generalized so that it
can be applied to registrations.

{2) The registration instances in Fact 1 are treated as
analogues of contract instances.

{3) The notion of falsity bound to the class of contracts
is peneralized to more general notion of falsity that
covers registrations.

It suffices to have three gemeralization rules, intro-
duced in the next section, to realize both (1} and (2). In
addition to these generalization rules, we need to have
a knowledge used to judge the falsity of registrations
(3) . Such knowledge can be supplied by the fallowing
rules: : .

Fule 8 (Knowledge of Registration)
oo Regp : reg_of_ptitle)),
attr(Regp, agentd, Agt), atir{ Regp, object, 08}
— reproof_regl Regp, Agt).
ool Regp : regof_ptitle), attr{ Regp, object, Obj),
oumership{Agt, Ok}
— gou_of_regl Regp, Agt).
reproof_ctret{ X : confract, ¥ : top) — repr{ X, V).
eoa_nf ctret(X 1 contract, ¥ : top) = soalX, V).
repr_of _rag(X : registration, ¥ : fop) — repr(X, V).
eoa_of _reg(X : registration, ¥ ! top) = soa{X,¥ L
Sorled Specificationa:
repr ; hurmnan_acl, top. soa : human_oct, fop.
repr-of.reg : hurnan act lop. son_of veg @ humaen_act, fop.

The falsity rule 2 have two predicates: one
is soa.of-ctrct (state of affairs) and the other is
repr_of _ctret (representation). The rule 2 decides the
falsity of a contract if the arguments of sea_of clret
and repr.of.ctret are different, Since Rule 3 on reg-
istrations can decide both zoa.of reg and repr_of _reg
for registrations, a rule obtained by generalizing the
falsify rule 2 for contracts will succeeds for our case of
registrations with an aid of Rule 3. All the techniques
carrying out such a task will be presented in the next
gection.

4 SG-Generalization

In this section, we present a formal definition of sorted
generalization. Furthermore, a kind of SLD-refutation
equipped with sorted generalization is alse presented.
We will show in Section 5 that the extended refutation
works as a basis for legal anzlogical reasoning.

63

4.1 Sorted Generalization

Our generalization iz simply defined as a substitution
that replaces a variable of some sort with ancther vari-
able of more general sort.

Definition 2 (5G-generalization)

1. A substitution @ == {z;/y;} replacing variables with
variables is called o SG-generalization, if [z;] <
fw;)-

2. Let Eq be a unifiable set of well-sorted terms. Eq is
said to have a SG-solution or fo be a SG-unifiable
set, if there exists o SG-generalization § such fahi
Egf has at least one myosy v. In this cose, 87 is
called o SG-solution for Bq.

:From the definition, a SG-unifiable set is also unifi-
able, although it may not have any o.s. unifier. In
such a case, the SG-unifiablity means that the set of
terms becomes unifiable under our sort hierarchy, af-
ter generalizing sorts of some variables that make our
sorted unification fail. Therefore, in order to analyze
SG-unification, we need to know conditions under which
sorted unifications fail.

Definition 3 [Walther [11]) Let Eq be o unifiable set
of termas.

1. A binary relation ~ befween ferms is defined as:
trvs &t and & are unifiable by some mgu of Eq.

Clearly ~ is an equivalence relation.

2. An egquivalence class M for ~ i5s called a SU-
equivalence clags, if 1 contains af least one variable
and its number of elements is greater than or egual
to 2.

Proposition 1 [Walther [11]) A set Eg of w.s. terms
has & mgosu iff, for each SU.equivalence closs M for
Eg, a mazimal lower bound of {[t]|t € M }ezists.

;From this propoesition, a unifiable set that is not o.s.
unifiable has a SU-equivalence class whose sort set has
no lower bounds. We say that such a SU-class violates
sort condition. The algorithm we present here operates
on such SU-classes, generalizes sorts of variable that
canses the violation of sort condition, and then makes
the original set of terms unifible in the sense of order
sorted unification.

The algorithm consists of two components: The
first one is for SU-equivalence classes of only variables.
The second one is for $U-equivalence classes containing

proper terms i

S8G-generalization A; for SU-equivalence class of
variables:

T A term that is not a variable.

procedure sg_for variables(Z, Z)
input: a n-tuple & = (z1,..., 2,) of variables such that

[£] = {[=1], -, [2=]} has no lower hounds.
begin
il n =2 then
begin

let {z},25) be the first pair in the enumeration such
that
(1) [z7] <[] holds for § = 1,2 and
(2) {[=1], [z2]} has a lower bound;
retrun((24, 23))
end;
call sg-for.variables({z1, 0. #am1 by {21 00m Zne1 1
choose a new variable z., of mib{[s], ... [#h—1|}};
choose a new variable z..5¢_up such that
(1) [2nestosp) 2 (za],
{2) [Zncat_up] 2nd [zyp] has & lower bound, and
{3) [znestup] is minimal wart (1) and {2);
return{i{zl, .., &5}
end

Figure 1: An Algorithin A; for 5G-generalizing SU-
class of variables

& problem specification:
CGiven: a n-tuple & =
that (2] = {[z1],..-
Find:

{21,y Zn)| of variables such
[2a]} has no lower bnuq'ds.

& minimal n-tuple of variables ' = (=1, ...
such that

(1) [}] 2 fz5] for &l j, and

{2} [2'] has a lower bound,
where the minimal n-tuple of variahles iz deter—
mined by the quasi-ordering defined as:

Zn £33, $, (8] S 2] holds for any

120)

¢
LS PR

i-
The desired SG-generalization # is then ‘defined as
0 ={z/%1 <j<n}

method: apply the algorithm in Fig. 1, where we as-
sume an enumeration of pairs of variables such that
(®1,3) is enumerated faster than {w3,yz) whenever
(®1,81) < (®2,%2). We use this enumeration o find
every possible candidates of variables to which original
variables are generalized. Moreover, in the algorithm,
we use & non-deterministic instruction ¥ choose < object
= guch that < condifion > " that seleets arbitrary ob-
ject satisfying the condition.

5G-generalization A; for SU-equivalence class of
terms:

Let z;, i and M = {z1,...; 2, t1,...,tm} be & variable, 2
proper term and a SU-equivalence class vielating the sort
condition, respectively. For M is unifiable, [t;] = ...
[tm] = # bolds for some sort s & §. Hence there exisis
at least one variable, say z;, such that [z;] = s does not
held. For any such a variable =;, take a minimal upper-
bound #; = mub{s, [2;]}, and introduce a2 new variable z;
of 5;. Then the desiced SG-generalization is defined as a
substitution replacing =; with =;.

66

N

1 5]
Figure 2: A simple sort hierarchy

The SG-generalization # that makes Eg o.s. unifi-
able is now simply defined as a union of substitutions.
Let M, ..., My be all the SU-equivalence relations vie-
lating our sort condition. For each Mj, if it contains
a proper term then apply A; else apply A;. This pro-
duces 5G-generalizations #y,...,%. Then the final 5G-
generalization is defined as:

Proposition 2 Let Eg be a unifinble set of w.s. termas
If Eq has o SG-solution, then #p, i a minimal 5G-
generalization such that Egfg, has mgosu.

4,2 SLD-resolution equipped with SG-
Gencralization

Before describing the extended resclution, let us exem-
plify some problem found in applying SG-generalization
to the standard resolution principle.

Suppose we have a sort hierarchy shown in Figure 2,
goal clause +— p(z : 5) and a fact p(b), where bis a
constant symbol of sort sa.

Sinee 83 is not a subsort of 5, our order sorted unifi-
cation fails. If we generalize the sorf sy to the common
super sort s, then our order sorted unification succeeds,
and an empty clause is derived with an answer substi-
tution {z/b}. This is performed by 5G-generalization
{z : /2 : s} followed by an order sorted unification
fz : 5/b: 53}. However our standard operational se-
mantics for goal clauses has changed, since the sort of
variable in goal clause is generalized. The criginal goal
means & question "Is there some instance of 5 satis-
fying p". On the otherhand, the obtained answer says
that "that instance you desire is 5", net an instance
of ;. This kind of question-answering seems semanti-
cally confusing. For this reason, our SG-generalization
is prohibited from generalizing sorts of variables in goal
clanses. Only variables in rules or facts are allowed fo
be generalized. Under this restriction, we now describe
our extended SLD-refutation equipped with a function
of 8G-peneralising variables in rules.

Extended SLD-Resolution: Basically our extended
resolution is the order sorted SLD-resclofion that we
have briefly described in Subsection 2.1. In addition o

that, we allow to use S5G-generalization before applying
order-sorted resolution, provided o.e. unification fails.
More formally speaking, our derivation is a finite se-
quence Gg, Gy, .., Gn of well-sorted goal clanses with a
sequence < Ry, 8 >,..,< Ry, 0, > of pairs of defnite
clauses R; and substitutions #;. The latter sequence
of pairs should satisfy exactly one of the following two
conditions:

(C1) [standard o.s. SLD-resolution):
The head B; of R; and a selected atom A;; in
7;—1 is 0.5. unifiable. #; is their mgosu.

(C2) [restricted SG-generalization followed by stan-
dard resolution]:

1. B; and A;_; is not o.s. unifiable,

2. 8; = ro for some SG-generalization T and o.s.
substitution o satisfying the following require-

ment)
7 is a possible output of our 5G-

generalization algorithm for B; and
Aj.y such that zr = =z whenever
ot .1 = 28 ..l for a variable
z appeared in the top goal Gy,

3. ¢ is mgosu of B;7 and Aj_y7.

It should be noted here that we never derive a goal
clause that is not well-sorted. If some candidate 5G-
generalization produces an ill-sorted goal clause, then
it iz rejected, and another SG-generalization is tried.
Thus the well-sortedness is kept during the whele pro-
cess of derivatien. Moreover the restriction on 5G-
generalization means that $G-generalizations should be
identical for any variable that is unified with some vari-
able in top goal clause Gy.

The following proposition summarizes the arguments
in this section.

Proposition 3 Given a set of definite clouses P, let
Ext(P) be the set {C8|C € P, § is a SG-generalization,
and CF is well-sorted }. Then Ezt(P) | a « there ex-
ists our extended SLD-derivation of empty clause from
A R,

5 Order-sorted generalizations

Mow we are ready to show how to utilize legal knowledge
and how to carry out legal reasoning in an order-sorted
symbol system for which order-sorted resolution and
generalization are applied.

First suppose that we try to construct a legal ar-
gument to protect the right of good faith person pc
appeared in the case presented in Section 3. Since the
plaintiff p_a claimed that p_c should do a cancellation
procedure of passage of title, it suffices to show that he
cannot set up pc with respect to the passage of title.

a7

Hence we first make the following goal expressed as an
well-sorted poal clause:

+— cannot_set_up(p_a,pe,
regoof plille_f(p b, pe imm X))

Our system is basically a backward reasoner just like a
Prolog interpreter. It first applies order-sorted resolu-
tion te a given goal clanse, whenever there remains an
atom in the goal clause with which some rule or a fact
can be resolved.

Control 1 Let « 4,,.., 4, be o given well-sorted goal
clause. If there exists an atorn A; with which some rule
or a fact con be resolved, then do order-sorfed resolu-
tion to produce the neri goal 8, If otherwize, apply 5G-
generalization followed by order sorted resolution for an
atom A; and a rule A — W .

In our example case , Rule 1 and the atom (1) are
unifiable. However they fails in order-sorfed unification
due to the type constraint for the third argument of
cannoi_set_up. Our 5G-generalization is tried so that
it weakens the type constraints and males the rule ap-
plicable to the atom. For this purpose, we use 5G-
generalizations described in Section 4.

In the present case, we have three SU-equivalence
classes:

My ={X : person,pa}, My = {Z : person,p_c},
Ay = {Ctvet2 : contract,

reg-ofptitle flpb, p_e,imm X},

Only My is the class viclating our sorted comdi-
tion. Since mub({contract, regof ptitle} is a single-
ton set {lawful aet}, so the Ctret2 should be re-
placed with a variable Law ful_act : law ful_aet. Thus
the desired SG-generalization is just #, = {Ctref2 :
contractf Law ful_act : lawful act}. Moreover, using

#y, our extended SLD-resolution has an effect of gener- -

aliging Rule 1 to the following rule, and then resolves
the latter rule with the original goal to produce next
goal clause.

Fule 4 {Article94, Clause2: generalized ona)
oc{Ctretl condract),
aftr(Ctretl, agentl, X @ person),
alir{Ctreél, agent2, Y | peraon),
alir(CircEl, agenil, Obj),
oo Falsity : felsity),
altr(Falsity, obj, Clretl),
ool Low fulact : low ful_aet),
attr{ Low ful_aet, agentl, ¥,
attr{Lew fulact, agentl, ¥ : pergon),
attr{ Lew ful_act, agantl, Obf),
good.faith(E, Faleity)
=+ cannot_set_up(X, Z, Law ful_ael)

S Mozmally the left most atom is selected, if there exist several
atoms that can be resolved with soma rules.

Clearly Rule 4 is applicable to our top goal {1). Hence
we have the following as the next goal clause:

— oaf{ Ctretl : confrast),
atte(Clretl, agtl, pa), attr{ Clretl, agt2, 1),

(1)

attr(Ciretl, agtl, Obj : object), (2)
ocl Falsity : falsity],

ativ{ Falsity, obj, Ciretl), [:3}
ec(reg.of ptitlef(pb, pc, imm_X}), (4}
attr(veg_of pitle_f(p.b,p.c,imm X),agtl,Y), ()
attr{rag.of_ptitle flp b pe imm X} agtd, pe), (8}

attr{reg_of_ptitle_f(pb, p.c, imm_X), object, Obj), (T}
good_faith(p.e, Falsity)

According to Control Ruole 1, every possible resolu-
tion is tried first. In this case, for the atoms (1), (2),
(3), (5), (6) and (7) are eliminated from the goal clause
from the unit clavses defining the aifr predicate. Fur-
thermore the atom {4) iz really a fact, so it s also elim-
inated. As a result, we have the following new goal
elause after several steps of order-sorted resolutions:

= pefcontract. f(p.a, pb, imm_X,
ec| falsity. flcontract. f (p.a, p.b, imm. XY, (8)
good_feith(p_e, falsily_ f{eontract f{p_a, pb, imm X))

Now from the legal theory rule in Rule 2, the atom
(8) is resolved, and the goal clause becomes:

— gcf{contract_f{p.a, p_b, imm X)),
repr.ofctret{contract . f(p.a, pb, imm X, Repr&is),
soa.of ciret{contract. f(pa, p.b, imm, X}, RealCls),

ReprCls £ RealCts,
good. faith{p.c, (9)
Faleity f{econtract f{p.a, pb,immy)}) (1e)

It should be noted here that every atom in the above
oal clause fails. Especially (10) cannot succeed from
definition of geod_faith, for

W{Eﬂﬂi’m-f{F-Q| F-br immx n

fails. From Controel Rule 1, we should apply Sorted
Generalization Rule. However, no rule is unifiable with
any abom in the poal clause, so Generalization Rule also
fails to produce & new hypothetical rule.

Thus we need ancther type of generalization to ac-
complish our task. Recall that our sorted generalization
tries to generalize sorts of variables appeared in a rule.
It is also possible to consider a “term generalization”
that generalizes a term to a wvariable of more general
sort. To investigate the condition for this type of gen-
eralization, let us consider a simple example. Suppose
we have sorts 8y, &4 of event type such that 53 < 55 and
two functors g @ 8y — 83, and f with its sorted spec-
ification f{I : 53) : #3. Then the following is 2 logical
deduction:

328y oe(f(a(2)))
iz : 84 321 57 ec(z) A attr(z, [, glz))

A8

The term f{g(z)) of sort 53 is replaced with a variable
z of more general sort 54. Hence 2 goal derivation from
= oc{fglz : 51)) to — oe(z @ 8), attr{z, L glz : 5))
should be & generalization of goal. Now we preset here
our second generalization rule under some additional
condition.

Generalization 1 (Term Generalization)
we have a goal clause

— oc ft1y.ustn)), Bs (11)

where f{l; : 81,00l 1 80) 2 5. Then find a super sort &'
of s * such that a goal clause defined by

Suppose

—oefy: &) A _R]utt:r'{y, .t)

is provable by standard order-sorted resolution. If this
succeeds with an answer substitution d, then remowve the
first atom oc(f(t1,....1.)) from the original goal {11)
and replace s all the occurrences in (11} with y§.

In the present case we are examining, the goal

ac(X : lowful_act), atér (X, agil, p_a),

atir{X, agtd, p_b), atir(X, object, imm_X) (12)

is generafed oe(contraet f{pa,pbimm X)) and proved

with the following answer 17:
8 = {Xfreg_of_ptitla_{a,b, imm_X)}

Thus we have the next goal clause from the original
goal (11), according to Generalization Rule 1:

= reproof ciret(regof ptitlet_f(p.a, pb, imm_X), ReprOts)13)
soaof otrotireg.ofoptitlet_f(p_a, p_b, imm_X), {14)
RealCls), (1)

ReprCis # RealCls,
good. faith{pc, faleity_f(regof ptitle_f(p.o, p b, immy)]

Since our term generalization generalizes a term to a
vaiable of more general sort, the replacement performed
by the generalization may introduce some type errors.
In the present case, the atoms (13) and (15) are not
well-sorted, because the domain sort of repr_of _ctret

? When thers exist several sorts &' satisfying the condition, we
assume Lo choose & minimal one.
105trictly speaking, we assume the following additional rules to
make the goal (12) succeed:

sc{reg.of plitle. f(X : person, ¥ : person, W ! imm_prop)
w— go(regof_ptitle_f(Y, 2 : pereon, W),
ownarship{ X, W).

This rule is used to derive a hypothetical fact on the registrations.
The registration of passage of title from ¥ to £ does not imply a
passage fram the real owner X to the nominal sowner ¥, However,
from the stondpoint of the third person £, it can be assumable
that the passage of title from X to ¥ was registered. Although
we should distinguish two types of facts under a framewark of
"abductive logic programming®, we leave this issoe as a future
work.

is contract. Thus we need to have a type error elimi-
nation rule whenever the term generalization succeeds
and some illegal terms become to appear in the new
goal clanse. The elimination is also carried out by a
generalization.

Control 2 (Type Check) We assume to check if a goal
clawse obtained by Generalization Rule 1 is well-sorted
or not, whenever it is applied. If some illsorled ex-
pression i8 found, then erecute Generalization Rule 2.
Precisely speaking, suppose oe(f(ty,...,t,)) is replaced
with yf in Generelization Rule 1 to produce the next
goal clouse G. Let Ay(ud),..., A.(yd) be all the ill-
sorted atoms appesred in G, Apply Generalization Rule
2, colled Predicate Generalization, to o set of atoms:
Ay (y8), .., An(y0).

The predicate generalization is originally introduced
in [|2]] as & kind of abductive goal reduction rule, and
is now extended so as to cope with well-sorted expres-
sions. The major function of predicate generalization
is to apply our (object-level) rules to the ill-sorted goal
clause to eliminate the ill-sorted expressions. Before
describing it formally, we present here an simple illus-
tration.

Suppose symbols a and b denote

eontract_f{p.a, pb, imm X} and
reg_of_ptitle_{f{p_a, p.b, imm X)),

respectively. Assume furthermore that an well-sorted
atom

(16)

holds as a hypothetical premise for predicate gen-
eralization. Recall that the ill sorted expression
reprof-cnirei(b, Ontref) i3 obtained from the premise
(16) by replacing a with b. To the contrary, our predi-
cate generalization first generalizes the premise so that
the replacement for a generalized premise B{a) pro-
duces an well-sorted expression B(b).

{PG1): B(e) is provable from (16}
(PG2): B(b) is well-sorted.

reproof_entret(e, Cntret)

iFrom the conditions (PG1) and (PG2), both B{a) and
B(b) are well sorted. Hence there exists a sort 5 such
that

{PG3): B(=z: s) is well-sorted, where x is a variable,

{PG4): contract < 5 and registration < s,

iFrom the syntactic assumption for our symbeol system,

there exist just two atoms as candidates of B that sat-
isfy (PG3) and (PG4):

ool falsity (X : law ful_act)),

repr(X : lowfulact, Cnérct)

(7}
(18)

69

iFrom the condition (PG1), we can conclude that the
atom (17) is rejected and the atom (18} is accepted.
As a result, our predicate generalization replaces all
the occurrence of ill-sorted atom repr_of _cnirci(h, Crtret),
appeared by Term Generalization, with the well-sorted
repr(b, Cntret).

As a result, we have:
repr(regof ptitlet_f(p.o, pb, imm_X), ReprCts),
soalreg.af ptitlet_fp.a,pb, imm_X), RealCts),
ReprCts # RealCts,
good_faith{p_c, falsity_f(

reg.of _ptitle_f(p_a, pb, immx)}

Mow it is clear that all the atoms in the above is
refutable by standard order-sorted resolution.

Finally we present the generalization rule in its gen-
eral form:

T,

Cleneralization 2 (Predicate Generalization)

Let Aj(a),..,An(a} be a set of well-sorted atoms,
where a is a term of event type. Furthermore suppose
Ay (), ..., An(b) is ill-sorted, where b is an well-sorted
term of event type. Then find a set of well-sorted atoms
Bi(a),...., Br{a) such that k < n, Aj(a),..,Aala) F
Bi(a),...., Bi(a), end By(b), ..., Bulb) is well-sorted.

i From the definition of predicate generalization, it is
possible to consider two kinds of computational rules.
One is to generate possible deductions until the ill
sorted expression disappears. The other one is to enu-
merate atom sets By (x), ..., Ba(z) that meet our syn-
tactic constraints, and then check if they are provable
or not. For our present example, these two methods
pay similar computational costs.

6 Concluding remarks

We have defined an order-sorted symbol system, repre-
sented various types of legal knowledge, and showed
how three generalization rules are applied. Now we
breiefly discuss some impertant issues not yet men-
tioned in this paper.

First the sorted generalization has been introduced so
ac to make & unification failure recover by generalizing
sorts of variables, For this purpose, we required that
the generalized sorts have their common lower bound
which will be a sort of unified terms after sorted gen-
eralization. Here we want to call the generalized sori
and the sort of unified term a generalization point and
& unification point, respectively. The process for our
sorted generalization thus involves finding the general-
ization points for which a unification point exists. Such
a process might become complex when we have a large
gort hierachy in which multiple super sorts are allowed
to exist. Hence we must have more efficient method to
compute the generalization points. The anthor is now

developing such an algorithm according to the following
strategy:

1. Mapping the sort hierarchy into a set of primitive
elements corresponding to minimal sorts in the hi-
erarchy. This transforms the hierarchy into a par-
tially ordered subset of a set boolean lattice.

2, Before finding the generalization points, computing
* candidates for the unification points by set theo-
retic operations.

3. Once such a unification peint is found, it is easy to
find the generalization peints by simple algebraic

operations.

The second problem we have to discuss is how we
handle hypothetical rules. The rules obtained by sorted
generalization is clearly hypothetical ones. In addition,
we have used another type of hypothetical rules in Sec-
tion 5 to infer hypothetical facts that are substantially
assumahble but are not explicitly recorded as approved
facts. Furthermore one may assert that even our sort
hierachy might be hypothetical. For instance, when we
are talking about some issues about some legal con-
cepts and cases, we may choose particlar super sorts
to emphasize some aspects of the concepts. In such a
case, other super sorts should be neglected or blocked
to prevent useless and harmful arguments. The studies
focussing their themes on such a problem is well known
as defanlt reasoing or as multiple inheritance.

Default reasoning is generally concerned with a situ-
ation that is incompeletly specified by a set of evidences
supporting hypothetical facts or rules. The problem is
to select some hypotheses from the evidences and to
conclude that they might hold in the situation. Some
evidence can distinguish some useful default rules from
the others, and blocks some irrelevant hypotheticl rules.
A mechanism which can behave in such a way is known
as conditional entailment [22}. In addition to the func-
tion of conditional entailment, some experimental envi-
roment under which we can get additional evidences to
test whether the hypothetical rules are relevant to the
situation or not seems to be necessary. The author is
now trying to design a system that is basically a con-
ditional entailement system but has additional function
to acheive such an experimental environment.

References

[1] Tanaka, H. (1874) Introduction to the study of pos-
jtive law (in Japanese}, University of Tokyo Press.

[2] Haraguchi, M. (1991} A form of analogy as an ab-
ductive inference, Proc. 2nd Workshop on Algo-
rithmic Learning Theory, pages 266-274, Japanese
Society for Artificial Intelligence.

70

(3] Haraguchi, M. (1992) What kinds of knowledge
and inferences are needed to realize legal rea-
soning? (in Japanese), Proc. 6th symposium on
knowledge representation and legal reasoning sys-
tem, Legal Expert System Association in Japan.

Muggleton, 5. and Buntine, W. (1988) Machine in-
vention of first-order predicates by inverting resolu-
tion, Proc. Workshap on Machine Learning, pages
330-352.

Yoshino, H., Haraguchi, M. Sakurai,5. Kagayama,5.
(1993) Towards a Legal Analogical Reasoning Sys-
tem: Knowledge Hepresentation and Reasoning
Methods, Proc, 4th ICAIL, 110-116, 1993

Yoshino, H. (1987) Legal expert system LES-Z,
Springer Lecture Notes in Computer Science, Logic
Programming '86 pages 34-45.

[7] Aoumi, Z. (1989) Iniroduction to Philosophy of
Law (in Japanese), Koubunn-dou.

4]

[5]

(6]

[8] Guarino, N. (1991} A concise presentation of ITL,
Proc. of Processing Declarative Knowledge, 141-
190, Springer-Verlag.

[] Beierle,C. et.al. (1992) An order-sorted logie for
knowledge represemtation systems, Ariif. Intell.,
55, 149-191.

[10] MNebel, B. (1990) Reasoning and Revision in Hybrid
Representation Systems, Springer LINAI, 422, 270
pages

[11] Walther, C. (1988) Many sorted unification,
JACM, 95, 1, 1-17.

[12] Waragai,T.(1994) A natural extension of predicate
calenlus in which ISA relation is expressible, Ph.D.
Thesis, Tokyo Institute of Technology.

[13] Muggleton, S. (1990} Inductive logic programming,
in Proc. 1st Workshop of Algorithmic Learning

Theory, pages 42-66.

[14] H. Gasyuu (1986) Analogy in law (in Japanese},
Unpublished Lecture Note, Legal Expert Systems

Association, Meiji Galuinn Univ., Tokyo.

Rouveirol C. (1991) "ITOU: Induction of First Or-
der Theories”, in Proceedings of the first Indue-
tive Learning Programming Workshep, Viana de
Castelo.

D.Greiner (1988) Abstraction-based Analogical
Reasoning, in Analogical Reasoning, in Ana-
logical Reasoming, Kluwer Academic Publishers,
D.H.Helman ed., 147=180.

[17) Indurkya,B. (1990) On the Role of Interpretive
Analogy in Learning, ALTS0, 174-188.

[15]

[16]

71

[18] Russell,S.J. (1986) Analogical and Inductive Hea-
soning, STAN-CS-87-1150, Dept. Computer Sci-
ence, Stanford Univ.

[19] Harao,M (1993) Generalized-knowledge acqui-
sition and reasoning based on similarity (in
Japanese), in Proc. of Tth Annual Conference of
JEAT, 4144,

[20] Dierbach,C. et.al.(1982) A formal basis for analog-
ical reasoning, Proc. HR’'S1, 138-150.

[21] Lloyd,J.W. (1984) Foundation of Logic Program-
ming, Springer-Verlag.

[22] Geffner,H. and Pearl,J. (1892) Conditional Entail-
ment: bridging two approaches to default reason-
ing, Artif. Intell 53, 200-244.

