Modeling Protein Families and Human
Genes: Hidden Markov Models and a Little
Beyond.

Pierre Baldi*
Division of Biology
California Institute of Technology
Pasadena, CA 91125
pfbaldi@juliet.caliech.edu
(818) 354-0038
{818) 303-5013 FAX

Yves Chauvin
Net-1D, Inc,
San Francisco, CA 94107
yveslinetid.com

Abstract

We will first give a brief overview of Hidden Markov Models (HMMs) and
their use in Computational Molecular Biclogy. In particular; we will describe a
detailed application of HMMs to the G-Protein-Coupled-Receptor Superfamily.
We will also derive a number of analytical results on HMMs that can be used in
discrimination tests, and data base mining. We will then discuss the limitations
of HMMs and some new directions of research. In particular, we will present a
new class of hybrid HMM/Neural Network architectures. If time permits, we
will conclude with some recent results on the application of HMMs to human
gene modeling and parsing.

Keywords: Hidden Markov Models, Neural Networks, Language Modeling, Protein
Modeling Multiple Alignments, Data Base Searches, Gene Parsing, Exons, Introns

+ and Jet Propulsion Laboratory, Caltech. To whom all correspondence should be
addressed. '

-]-

1 Introduction

Hidden Markov Models (HMMs) are a class of probabilistic and adaptive models
that has been extensively used in speech recognition ([15]), but.also.in a number of
other applications, such as single channel kinetic modeling ([5]) and optical char-
acter recognition ([13]).. HMMs and the related EM (Expectation-Maximization)
algorithm ([9]) have also been applied to several problems in computational biology
including the modeling of coding/non-coding regions in DNA ([8]), of protein bind-
ing sites in DNA ([12]). Recently, the HMM approach has been extensively applied
to model, align and recognize entire protein families using primary sequence infor-
mation only ([4], [2] and [10]). Examples of families modeled with this approach
include: globins, kinases, immunoglobulins, aspartic proteases, HIV membrane pro-
teins, EF-hand and G-protein-coupled receptors. In related work, HMMs have also
been applied to the problems of finding and parsing genes ([1], [11])

A first order discrete HMM can be viewed as a stochastic production system
defined by a set of states S, an alphabet A of M symbols, a probability transi-
tion matrix T = (#;;), and a probability emission matrix E = (e;x). The system
randomly evolves from state to state, while randomly emitting symbols from the
alphabet. In the case of protein modeling, the alphabet has M = 20 symbols, one
for each amino acid (M = 4 for' DNA or RNA 'models). When the system is in a
given state i, it has a probability #;; of moving to state j and a probability e;x of
emitting symbol X. Biological primary sequence modeling requires the introduc-
tion of particular states for possible insertions and deletions. The model is called
hidden because only the output string of symbels is observable. One of the goals is
precizely to gather information about the possible underlying random walks. One
of the main-properties of HMMs is that they are adaptable: given a set of training
sequences, there exist algorithms to adjust the transition and emission parameters
s0 as td optimize the fit'of the model to the data, for instance by maximum like-
lihood methods. It is this property, combined with the rapidly increasing amount
of available training data, that is essential for the application of HMMs to protein
families and other problems in computational molecular biology.

In our oral presentation, we plan:

1. Togive a brief review of the application of HMMs to immunoglobulins, followed
by an in-depth study of the G-protein-coupled receptor superfamily.

2. To derive several analytical results (asymptotic behavior, standard deviation
and normality of HMM scores for random sources) that are useful in data base
searches and other tasks.

3. To discuss some of the limitations of HMMs and what can be done to overcome
them. In particular, we will present a broad new class of hybrid HMM /Neural

Network architectures.

4. To give, if time permits, an overview of the results on the application of HMMs
to the problem of human gene parsing.

-0

Background material for 1,2 and 4 can be found in the references quoted above.
Here, in the next sections, we review the HMM technique for protein families, discuss
some of its limitations, and then briefly present the HMM /NN hybrid architectures.

2 HMMs and Learning for Protein Families

As in the application of HMMs to speech recognition, a family of proteins.can be seen
as a set of different utterances of the same word generated by a common underlying
HMM with a left-right architecture. In addition to the start and end state, there
are three classes of states: the main states, the delete states and the insert states
with
S= {31&1":, TIE] 5 oneg TN, 5':1, rny !:N..|_1 .,,l.'f] S l.'.f-N+| » ﬂﬂd}

N is the length of the model, typically equal to the average length of the sequences in
the family. The main and insert states always emit an amino-acid symbol, whereas
the delete states are mute. The linear sequence of state transitions stari — my.—
Mg.... — my — end is the backbone of the model. Corresponding insert and delete
states are needed for each main state to model insertions and deletions with respect
to the backbone. There are no self-loops on the delete states nor on the main states.
There is, however, a self-loop on the insert states to allow for multiple insertions at a
given site. Naturally, a number of different possible architectures can be envisioned.

-Given a set of training sequences, the parameters of the model can be iteratively
modified to optimize the fit of the model to the data according to some measure,
usually the likelihood of the data according to the model. Since the sequences can be
considered as independent, this likelihood is equal to the product of the likelihoods of
the single sequences. Different algorithms are available for HMM training, including
the classical Baum-Welch algorithm ([6]). We have introduced a smooth algorithm in
([3]), which is particularly simple and can be used on-line, i.e. after the presentation
of each example. The mathematical properties of this algorithm, its relation to
other approaches and its advantages are discussed in ([3]).. The basic idea behind the
algorithm is simple: for each training sequence, first compute the mrrespcrndmg most
likely path through the model. This can be done efficiently in O(N?) steps using
a dynamic programming scheme known as the Viterbi algorithm. Transition and
emission probabilities along the path should then be increased, so as to increase also
the likelihood of the corresponding sequence. This requires that other parameters be
decreased accordingly, in order to preserve normalisation constrmnts on probability
distributions.

- More precisely, we first reparametrize the model using normalized exponentials
and a new set of variables w;; and v;x
eWii X
R TR S
This reparametrization 'has two advantages: (1) modification of the w’s and v's-
automatically preserves the normalisation constraints on the original emission-and

(21)

T

transition probability distributions; (2) transition and emission probabilities can
never reach the absorbing value 0. We then iteratively cycle through the set of
training sequences and, for each training sequence, through its Viterbi path. At
each step along a Viterbi path, being in a state 1, we update the parameters of the
model according to

Aw;; =n(Ty; — ;) and Aviy = n(E;x — ejx) (2.2)

where 7 is the learning rate. At each step of the Viterbi path, and for any state ¢ on
the path, Tj; = 1 (resp. E;x = 1) if the ¢ — j transition (resp. emission of X from
i) is used and 0 otherwise. In the case of a loop, as for the insert states, (2.2) must
be repeated every time the loop is traversed. The new parameters are therefore
updated incrementally using the discrepancy between the frequencies induced by
the training data and the probability parameters of the model. These update rules
must be repeated for each example until no significant variations for any of the
parameters occur. In ([3]) it is shown that this algorithm is an approximation to
a gradient descent procedure on the negative log-likelihood of the sequences given
the model. As such, it can be expected to converge to a (possibly local) maximum
likelihood estimator.

Once a HMM has been successfully trained on a family of primary sequences,
it constitutes a model of the entire family and can be used in a number of tasks.
First, for any given sequence, we can compute its likelihood according to the model
or the likelihood of its most probable path using the Viterbi algorithm. A multiple
alignment results immediately from aligning all the Viterbi paths of the sequences in
the family. By looking at the transition and emission probabilities throughout the
model, characteristic motifs and conserved regions can be identified and sometimes
structural properties inferred. The model can also be used for discrimination i.e. to
decide whether a given sequence belongs to the family based on its likelihood. This
in turn can be applied to data base searches, classification, and fragment analysis.

3 Limitations of HMMs

There are two basic problems with HMMs, as a model class, in computational molec-
ular biology: the number of parameters and the long range interactions.

3.1 Number of Parameters

The HMMs we have described have a large number of parameters that grows linearly
with the length of the model, like N[2M + 3F] (where F is the typical fan-out of the
states). For large proteins, this can easily yield models with over 10,000 parameters.
In the current early stages of genome sequencing projects, this can be a problem
whenever only a few sequences are known in a given family. This limitation can
be overcome by introducing prior knowledge in the models, when available. This
knowledge can originate from several different sources: structural (crystallographic
studies), functional (membrane protein), statistical (PAM and other substitution
matrices) and so on. A natural way for incorporating certain forms of additional

—4=

knowledge into HMMs is by the use of Dirichlet priors (for instance [10]). Another
possibility, aimed also in part at restricting the number of degrees of freedom in
HMMs, is discussed in the next section on hybrid architectures.

3.2 Long Range Interactions

Because proteins have complex 3 dimensional shapes and long range interactions
between their residues, it may seem surprising that good models can be derived
using simple first order Markov processes. One must however be very careful in
defining what kind of long range correlations cannot be captured by H_MMS. Long
range correlations related, for instance to folding properties, are not sufficient per
se. Indeed, HMMs can capture those effects of long range interactions that manifest
themselves in a more or less constant fashion, across a family of sequences. For
instance, suppose that, as a result of a particular folding structure, two distant
regions of a protein have a predominantly hydrophobic composition. Then this
pattern will be present in all the members of the family and will be learnable by a
HMM, with the proper local statistical variations. On the other hand, a variable
long range interaction such as: “a residue X at position ¢ implies a residue f(X) at
position j" cannot be captured by a first order HMM, as soon as f is sufficiently
complex. [Note that a HMM is still capable of capturing certain variable long ra,nge-
interactions. For instance, assume that the sequences in the family have either a
fixed residue X at pesition i, and a corresponding fixed residue Y. at position j, or
a fixed residue X’ a position ¢ with a corresponding fixed ¥’ at position j. Then
these 2 sub-classes of sequences in the family could be associated with 2 types of
paths in the HMM where, for instance, X — Y are emitted from main states and
X'—Y" are emitted from insert states.] But clearly, better models must be created to
deal with long range variable interactions and, ultimately, with the folding problem.
Higher-order Markov models, with fixed memory length, are too expensive from a
computational standpoint and unlikley to be successfull. Variable length memory
models (as in [16]) may be of some help in these matters.

3.3 Caveats

It has been our experience, however, that even in situations where the number of
sequences available for training is relatively small, HMMs seem to perform rather
well and certainly much better than what one would expect from a simple count of
the number of parameters versus the number of training examples ([4]). We suspect
this is yet another example of a more general emerging phenomena in the machine
learning literature: at least for certain tasks, there exist certain model classes (with
a lot of parameters), that are are well-conditioned, precisely in the sense that a good
fit to the data can be obtained even when the training set is small. We even suspect,
and this could easily be checked, that a HMM trained with only 2 sequences, using a
form of Viterbi gradient learning, tends to produce an alignment close to the optimal
pairwise alignment. Of course, we do not mean to imply that HMM should be used
for pairwise alignments. HMM are an efficient tool for families and for producing
multiple alignments. '

~5—

Likewise, although long range correlations are important, their effects do not
seem to have hampered the HMM approach so far. One reason described ahove
is that only subtle variable long range correlations of the type X — Y/X' — Y*
between distant positions are likely to be missed by HMMs. But how likely is it,
say in a data base search, that a sequence exist in the data base that has most of
its major properties identical to those of the sequences in the family being modeled,
but with a X — ¥’ correspondence?

For all these reasons, it seems to us that HMMs are in fact very close to being
optimal for tasks such as multiple alignments and data base searches, and that there
is little room for improvements. _

In this context, and in connection with the next section, it is also useful to notice
that there exists a simple hierarchy among statistical models for protein families.
If a protein family is to be described on the basis of its multiple alignment, then
first order models are entirely specified by the probability emission vectors at each
position. The most trivial and weakest model would be one where these emissions
are constant and set uniformly, followed by the model where they are constant and
equal to the average composition of the sequences in the family. HMM:s on the other
hand allow for position dependent emission vectors. From this point of view, HMMs
are in fact roughly equivalent to a multiple alignment since the HMM parameters can
easily be inferred from a multiple alignment, and vice versa a properly trained HMM
yields a multiple alignment. Variable long range correlations cannot be described in
the formalism of a single HMM model, since they imply emission vectors that are not
constant at a given position, but rather depend on the sequence being considered.
Either the statistical model class must be changed or, if one is to stay with HMMs,
several different HMMs are needed to represent a family, and the variability of its
long range correlations. One must find ways, in some sort, of modulating the HMM
as a function of different members of the family. Emission vectors must be variable
not only as a function of position, but also to some extent as a function of sequence.
Not surprisingly, this is also intimately related to the problem of finding sub-classes
within a family.

4 HMM/NN Hybrid Architectures

To overcome some of the previous limitations, we are going to introduce a class
of HMM/NN hybrid architectures and learning algorithms. Although these archi-
tectures are presented in the context of protein family modeling, they are readily
" applicable to other language tasks, and in fact to all problems where HMM tech-
niques are applicable. It is of course not the first time HMMs and NNs are combined.
Hybrid architectures have been used both in speech and cursive handwriting recog-
nition ([7]). In many of these applications however, neural networks are used as front
end processors to extract features, such as characters. HMMs are then used in the
higher stages of the algorithms for word and language modeling. The HMMs and
NNs components are often trained separately. Here, on the other hand, we assume
that all the features have already been extracted and that we are given the exact

-6—

final sequences in digital format !. Thus the NN component of our architecture
follows the HMM component. Or, more precisely, the two are intimately blended.
‘This yields unified training algorithms where the HMM and the NN component are
trained simultaneously.

4.1 Basic Idea

We are going first to derive one of the most simple HMM/NN hybrid architectures,
and subsequently show how the basic ideas can be extended in many directions. For
this first architecture, the basic idea is to combine the temporal-sequential structure
of HMMs with the representational power of NNs, by having a NN on top of the
HMM architecture for the computation of the HMM parameters. For simplicity, we
shall begin with the emission parameters of the main states only.

If we look at (2.1), we can consider that each main state has its own independent
little NN attached to it, consisting of 1 on/off input unit fully interconnected to M =
20 weighted exponential output units. The next natural step then is to link these
little networks to take advantage of dependencies and to make them more complex
by introducing hidden units Notice that for now, the underlying probabilistic model
remains the HMM. Long range correlations and parameter compression is achieved
through the NNs. R

More formally, let us consider a NN for the emission of the ‘mains states that
consists of:

® Input layer: N input units, one for each main state I = (i,...,ix). To
caleulate the emission vector of main state #: 4 = 1 for k = i and 0 otherwise.
‘Such ‘an input will also be denoted just by i.

¢ Hidden layer: H hidden units indexed by A, each with transfer function fn
(logistic by default) with bias by (H < M). M is the size of the alphabet.
Here M = 20. For parameter compression purposes, the number of hidden
units must not exceed the size of the alphabet. The case of 0 hidden units
corresponds to what we had in section 2.

¢ Output layer: M softmax units or weighted exponentials, indexed by X, the
letters in the alphabet. It is possible to introduce a bias bx parameter for the
output units, as well as a gain factor, if desired.

¢ Connections: a = (a;) connects the :-th input position to the A hldden unijt
and # = (fJx) connects the h hidden to the X output unit.

Notice that with the proper choice of initial biases on the output units and with
iniital weights close to 0, the emissions can easily be initialized uniformly across the
mﬂdel to the average composition of the family.

'It may be possible to use NN to interpret the analog output of various sequencing machines,
but this is definetely not our focus here.

—7=

For input i, the activity in the hidden layer is given by:
Sulani + bp) = falen +) (3.1)
The corresponding activity in the output layer is

e 22 B fufoeni+bu)+bx]
Yye 2 Bynfulani+bn)+by]

ey =

5 Training Algorithms

This simple architecture can be trained by combining any of the HMM training
algorithms (EM or gradient descent, likelihood or Viterbi likelihood or MAP) with
any of the NN training algorithms (backpropagation). Indeed, let us assume that
there are K sequences in the training set {J),,...,0x. Two possible classical target
functions to be optimised are the likelihood

K K
==3"Qr==-3"1nP(O}) (4.1)
kEI kzl
and the Viterbi likelihood
K K
Q=-)Y Qr=-)_ lnP(n(O)) (4.2)
k=1 ’ k=1

where 7{0) denotes the Viterbi path of sequence O, Learning can be on-line or off-
line. Here we give the on-line equations (batch equations can be derived similarly).
So, for a sequence O, we need to compute the partial derivatives of In P(Q) or
In P(w(0)) with respect to the parameters o, § and b of the network.

5.1 Gradient Learning on Full Likelihood

Let Q(O) = 1n P(O). If m;x is the count for the emission of X from i for O derived
using the forward-backward algorithm, then we have ([3])
dP(0) _ mix(0)

eix Eix

(4.3)

so that
04 1 mix0)
—— 4.4
Beix g P(O) eix (44)
The partial derivatives with respect to the network parameters @, # and b can be

obtained by the chain rule, that is by back-propagating through the network for
each 7. A simple calculation gives, for each sequence O and each main state i:

aQ(0)

9Bxn ——(1) = P{D}[msx(ﬂ} eixm:]fh{ﬂﬁi'l'bh} (4.5)

-8~

where, as usual, m;. = 3}y myy. A similar equation holds for the biases by, by
replacing fi,(eep; + by) with 1.

m f(ﬂtl"l'bJ[E (miy (0) — ey .131’] ifi=j .
aﬂihj({P{Eﬁjh;)y (may y h Y (4.6)

This equation can also be rewritten in more compact form:

3@' [G] — eiy mi)By) (4.7)
ﬂgﬁf;l(P(G}ﬂ:{ﬂ'ht + hh}[Z[m,y — &y mi-)ﬁl"h] (48}

The full gradient is obtained by summing over all sequences (J; and all main states
. Thus, for instance,

ZZ 29s (4.9)

and similarly for 7 and the bias b. Sl}, the on-line learning equations, are (for each
tand O):

(ABxn = ﬂpfm[mix(ﬂl — eix] fu(an: + bn)

Aby = Ti'p-{laj[mzx'[ﬂ} —ejxm;]

| Aani = 05157 filan + b6)[Ly (miy (0) ~ eiymi)y (4.10)
Aap; =0 - forj#i

| Abw = 3oy fi(@hi + 01)[Ty (may (0) — enym.)Bya]

It is worth noticing, as in ([3]), that these learning equations are slightly different
from those that would result by back-propagating on the local cross-entropy error
measure between the emission distribution e;x and the target distribution m;y Jm;.
derived from the forward-backward algorithm.

5.2 Viterbi Learning

At least in the case of protein models, the use of Viterbi paths is best viewed as
an algorithm in its own right rather than an approximation to the likelihood case.
Here, let Q(0) = In P(w{0)). The component of this term that depends on emission
from main states, and thus on @, § and b, along the Viterbi path = = 7(0) is given

by
- Z Inejx = — z I.,,;r{l]l —‘—ZZTFIH C(4.11)

(i,X)ex (i, X)en gr ¥

where T;x is the target, namely T;x = 1 if X is emitted from main state i in
7(0), and 0 otherwise. Thus to compute the gradient of @(0) = ~ In P((0)) with
respect to o, F and b is equivalent to computing the gradient with respect to the
cross entropy

H(T,B)= -} H(Tie)= -3 Y Tl v (4.12)

= wer ¥ oo
=G-

between the target output and the output of the network over all i in +. This cross
entropy error function combined with the softmax ouput unit is the standard neural
network framework for multinomial classification (see, for instance, [17]).

In summary, the relevant derivatives can be calculated on-line both with respect
to the sequences Oy, ..., Ok and, for each sequence, with respect to the Viterbi path.
For each sequence O, and for each main state i on the Viterbi path # = n(0),
the corresponding contribution to the derivative can be obtained by standard back-
propagation on the cross-entropy error function H(T,e;). For (i,X) € 7, a simple
calculation gives:

OH(Ti,ei) {(1 = eix) faleni +bp) HY =X and (i,X) € (4.13)
By | —eiv fulom + by) otherwise)
This equation can also be rewritten in more compact form:
aH(T; €;
—;'L} = (Tiy — eiy) fulani + by) (4.14)
By h

and similarly for the biases by, by replacing fy,(cxh; + bs) with 1. Next,

ﬁﬂéji;ﬁ) _ { a"ﬂahs'+ bi)lBxn(1 —'eix)~ Ly zx Praciv] gj : i (4.15)

This equation can also be rewritten in more compact form:.

OH(T;,e; _ 3
2ET%) g fifons +)lBxa(l = eix) — 3 Braesy] (4.16)
hi Y#X
For the biases in the hidden layer
OH(T;,e;
t{?b %) - Slomi + b)lBxa(l — eix) — 3 Braciv] (4.17)
= _ Y#X

The full gradient is obtained by summing over all sequences Oy and all main states
i present in the corresponding Viterbi paths 7(O). Thus, for instance,

aQ E EH[T.;,.-;,;}
o _ gl &) (4.18)
da ;fEm’[ﬂ} Oax
and similarly for § and the bias b. So, the learning equations are:
[APxk = 1(1 = e;x) fulon + by) if(i,X)er
AByp = —neiy fulani + by) ify #X
Abx =n(l —e;x) if(, X)er
J Aby = —ne;y ifY#£X (4.19)
Aapi = nfgleni + 08)[Bxal(l - eix) — Dysx Pruer] H (i, X) e
Acy; =0 forj#1
L Aby = nfy(an + b)Bxa(l - ex) — Tyax Byneiv]

In summary, unified learning algorithms can be derived for HMM /NN hybrid ar-
chitectures. The previous derivations can easily be adapted to many other variations
such as MAP target functions, or more complex NNs with, for instance, multiple
hidden layers. Simulation results will be described in the oral presentation.

=10~

6 Extensions

The simple hybrid architectures we have just described can be extended in many
directions. To mention just a few:

¢ Introduction of a NN for the insert state emissions as well as for the transition
parameters. These NN can be independent or linked. In the case of protein
models, the fan out of the states is relatively small so that litle compression
is to be gained by using a NN for the transition parameters. These may be
useful for other HMM applications. Notice also that having less hidden units
in the NN that control insert state emission is an elegant way of ensuring
predominance of main state over insert states without the need of specific
regularizers (the same holds for transition parameters).

¢ Use of more complex NN architectures, with multiple hidden layers and all
the usual connectionist tricks, such as weight sharing, weight pruning, weight
decay, mixture of experts architectures, and so on.

o Introduction of various priors (Gaussian, Dirichlet, forcing strong sparse con-
nections,...).

¢ Automatic adjustment of models to rapidly evolving genome data bases by
incremental addition of hidden units to a given HMM /NN model as more
sequences, in a given family, become available.

o Application to other domains.

To further develop these architectures, we must now return to some of our origi-
nal motivations. One of the goals was to achieve parameter reduction and to capture
long range correlation effects. It is quite obvious to see how the previous architec-
tures provide a very flexible mean of reducing the number of parameters-in a simple
and quantifiable ways. As far as long range correlations, in spite of the introduction
of NNs in the previous architectures, the final statistical model for the sequences
remains so far a single HMM (where the NN only mediates the calculation of the
HMM parameters). As discussed in the section on limitations, such a model cannot
capture subtle variable long range correlations. It can however capture long range
corrrelations which are expressed in a constant fashion and the NN parameters may
make this more explicit. (For instance, in a simple HMM a disulphide bond is ex-
pressed by two distant emission vectors having a high probability for cysteine. This
remains true in a HMM/NN architectures, but in addition there may be a high
degree of similarity between the weights of the corresponding input units).

Within the HMM framework, sequence dependent long range effects can only
be captured by using multiple HMMs or equivalently by modulating a single HMM
as a function of sequences. In the HMM/NN hybrid architecture this requires the
introduction-of additional units at the input level and/or at the hidden level and /or
at the ontput level to express multiple HMMs or to modulate a single HMM as a
function of input sequence and context. For instance, the introduction of a relatively

=11-

small number of additional input units that modulate the HMM essentially contains,
as a special case, the approach suggested in ([14]), with the added advantage of not
requiring the avajlability of a good preexisting multiple alignment. These more
general HMM/NN hybrid architecture will be discussed in the presentation.

7 Acknowledgement

The work of PB is in part supported by grants from the ONR, the AFOSR and a
Lew Allen Award at JPL. The work of YC is supported by grant R43 LM05780 from
the National Library of Medicine. Its contents are solely the responsibility of the
authors and do not necessarily represent the official views of the National Library
of Medicine.”

References

[1] P.Baldi, S. Brunak, Y. Chauvin, and J. Engelbrecht. Hidden markov models of
human genes. In G. Tesauro J. D. Cowan and J. Alspector, editors, Advances
in Neural Information Processing Systems, volume 6, pages 761-768. Morgan
Kaufmann, San Francisco, CA, 1994,

[2] P. Baldi and Y. Chauvin. Hidden markov models of the G-protein-coupled
receptor family: a beginning. Journal of Computational Biology, 1994.

[3] P. Baldi and Y. Chauvin. Smooth on-line learning algorithms for hidden markov
models. Neural Computation, 6(2):305-316, 1994.

~[4] P.Baldi, Y. Chauvin, T. Hunkapillar, and M. McClure. Hidden markov models
of biclogical primary sequence information. PNAS USA, 91(3):1059-1063, 1994.

[5] F. G. Ball and J. A. Rice. Stochastic models for ion channels: introduction and
bibliography. Mathematical Bioscience, 112(2):189-206, 1992.

(6] L. E. Baum. An inequality and associated maximization technique in statistical
estimation for probabilistic functions of markov processes. Inequalities, 3:1-8,
1972, :

[7] H. Bourlard and N. Morgan. Connectionist speech recognition: a hybrid ap-
proach. Kluwer Academic Publishers, Boston, 1994,

8] G. A. Churchill. Stochastic models for heterogeneous dna sequences. Bulletin
Mathematical Biology, 51:79-94, 1989.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal Royal Statistical Society, B39:1-
92, 1977.

-12-

[10]

[11]

[12]

[13]

[14]

(15]

[16]

[17]

A, Krogh, M. Brown, L. S. Mian, K. Sjolander, and D. Haussler. Hidden Markav
models in computational biology: applications to protein modeling. Journal of
Molecular Biology, 235:1501-1531, 1994,

A.Krogh,I. S. Mian, and D. Haussler. A hidden Markov model that finds genes
in e. coli DNA. Technical Report UCSC-CRL-93-33, University of California at
Santa Cruz, Computer Science, UC Santa Cruz, CA 95064, 1993. in preparation.

C. E. Lawrence and A. A. Reilly. An expectation maximization (EM) algo-
rithm for the identification and characterization of commeon sites in unaligned
biopolymer sequences. Proteins, 7:41-51, 1990,

E. Levin and R. Pieraccini. Planar hidden markov modeling: from speech to
optical character recognition. In S. J. Hanson, J. D. Cowan, and C. Lee Giles,
editors, Advances in Neural Information Processing Systems, volume 5. Morgan
Kaufmann, San Mateo, CA, 1993.

D.J.C. MacKay. Bayesian neural networks and density networks, 1994. Pro-
ceedings of Workshop on Neutron Scattering Data Analysis and Proceedings of
1994 MaxEnt Conference, Cambridge (UK).

L. R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989,

D. Ron, Y. Singer, and N. Tishby. The power of amnesia. In J. D. Cowan,
G. Tesauro, and J. Alspector, editors, Advances in Neural Information Process-
ing Systems, volume 6. Morgan Kaufmann, San Francisco, CA, 1994.

D.E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin. Backpropagation: the
theory, 1994. In: Backpropagation: Theory, Architectures and Applications,
Y. Chauvin and D.E. Rumelhart Editors, Lawrence Erlbaum Associates, New
Jersey, in press.

-13-

