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Abstract

The support for automatic interoperation of software components can reduce cost and provide greater
functionality. This paper describes a novel approach to software interoperation based on specification
sharing. Software components, called agents, provide machine processable descriptions of their capa-
bilities and needs. Agents can be realized in different programming languages, and they can run in
different processes on different machines. In addition, agents can be dynamic - at run time agents
can join the system or leave. The system uses the declarative agent specifications to automatically
coordinate their interoperation. The architecture supports anonymous interoperation of agents, where
each agent has the illusion that the capabilities of all the other agents are provided directly by the
gystem. The distinetive feature of this approach is the expressiveness of the declarative specification
language, which enables sophisticated agent interoperation, e.g., decomposing complex requests into
a collection of simpler requests, and translating between the interface of a requesting agent and the
interface of an agent that can service the request. The agent-based interoperation scheme relies on a
shared vocabulary, and it is our thesis that more effective software interoperation is made possible by
agreeing to a shared declarative vocabulary, than by agreeing to shared programming constructs (e.g.,
subroutine names and their argument types).

1 Introduction

Computer uzers operate in highly heterogeneous software environments. Programs are written by dif-
ferent people at different times in different languages and in different styles. Programs run on machines
produced by different manufacturers and located at different sites. Taken together, these programs pro-
vide a wide variety of information and services in a variety of domains. While most programs provide
their users with adequate value when used in isolation, there is increasing demand for programs that can
interoperate - to exchange information and services with other programs and thereby solve problems
that cannot be solved alone.

Unfortunately, getting programs to work together often necessitates extensive work on the part of
the users of those programs or their programmers — to learn the characteristics of completed programs
and to negotiate communication formats and protocols for programs under development. What’s more,
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Figure 1: Manual and automated coordination.

the resulting systems are usually very rigid — components often cannot be modified or replaced without
subsequent rounds of negotiation and programming.

In order to-deal with these problems, the systems community has developed various pieces of tech-
nology to transfer much of the burden of interoperation from the creators and users of programs to the
programs themselves, including such things as standard communication languages, subroutine libraries
to assist programmers in writing interoperable software, and system services to facilitate interoperation
at runtime. Unfortunately, the current technology is too limited to support the ideal of automated
interoperationy Existing standards are not sufficiently expressive to allow the communication of the
definitions, theorems and assumptions that are often needed for systems to interoperate. Current sub-
routine libraries provide little support for increased expressiveness. Directory assistance programs and
brokers are limited by inexpressiveness in the languages used to document programs and by their lack
of inferential capability.

Recent progress by researchers in the ARPA-sponsored Knowledge Sharing Effort suggests that it
may now be possible to remedy these deficiencies through the use of knowledge sharing technology. The
basis for this approach is a highly expressive communication language, called ACL (for Agent Commu-
nication Language). Programs (called agents) use ACL to supply machine-processable documentation
to system programs (called facilitators), which then coordinate their activities. The agent-based ap-
proach to interoperability is based on the notion of shared abstraction. In this approach, the burden of
interoperability is placed on the agents and facilitators rather than the programmers or users. Individ-
ual programmers can write their programs without knowledge of the data structures and algorithms of
other programs, without knowledge of the hardware configuration in which those programs are going
to be run. Computer users can avail themselves of the services of different programs by asking their
systems to coordinate their interaction. The contrast between manual and automated coordination is
illustrated in Figure 1.

In this paper, we examine various aspects of agent-based technology. We discuss language issues,
handling legacy software and in particular we describe the implementation of a facilitator and how it
is used for distributed and anonymous problem solving. We also discuss several ontstanding issues and
identify some areas of future research and development.
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Figure 2: Three approaches to agentification.

2 Agents

In the approach to interoperation described here, application programmers write their programs as
agents. An agent is obliged to communicate in the Agent Communication Language (ACL) (described
in the next section). Upon start-up, an agent informs the system of its capabilities and needs. Tt then
enters normal operation — it makes requests of the system when it is incapable of fulfilling them itself,
and it acts to the best of its abilities to satisfy the requests the system makes of it.

The criterion for agenthood is behavioral. An entity is an agent if and only if it communicates
correctly in ACL. This means that the entity must be able to read and write ACL messages, and that
the entity must abide by the behavioral constraints implicit in the meanings of those messages.

The specific constraints associated with a message derive from the content of that message and
general principles of agent behavior. For example, veracity (an agent must tell the truth), autonomy
(an agent may not constrain another agent to perform a service unless the other agent has advertised
its willingness to accept such a request), commitment (if an agent advertises a willingness to perform a
service, then it is obliged to perform that service when asked to do s0), and so forth.

For our purposes here, it is sufficient to say that the use of ACL brings with it behavioral constraints.
However, this leaves open a wide range of possibilities. At one extreme, we can imagine “perfect” agents
that retain all of the information they receive and act in accordance with the logical consequences of
this information. At the other extreme, we can imagine simple agents, like calculators, that answer
arithmetic problems and ignore everything else. More powerful agents utilize a larger portion of ACL;
less powerful agents use a smaller subset. All are agents, so long as they use the language correctly.

Given a clear statement of the language and the behavioral principles that agents must satisfy, it is
straightforward to write programs that behave correctly. But what about all of the programs that have
already been written, our so-called “legacy” software? Are there any standard techniques for converting
such programs into software agents? In work thus far, a number of different approaches have been
taken. See Figure 2.

One approach is to implement a transducer that mediates between an existing program and other
agents. The transducer accepts messages from other agents, translates them into the program’s native
communication protocol, and passes those messages to the program. It accepts the program’s responses,
translates into ACL, and sends the resulting messages on to other agents.

This approach has the advantage that it requires no knowledge of the program other than its com-
munication behavior. It is, therefore, especially useful for situations in which the code for the program
iz unavailable or too delicate to modify.
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A second approach to dealing with legacy software is to implement a wrapper, i.e. inject code into a
program to allow it to communicate in ACL. The wrapper can directly examine the data structures of
the program and can modify those data structures. Furthermore, it may be possible to inject calls out
of the program so that it can take advantage of externally available information and services.

This approach has the advantage of greater efficiency than the transduction approach, since there is
less serial communication. It also works for cases where there is no interprocess communication ability
in the original program. However, it requires that the code for the program be available.

The third and most drastic approach to dealing with legacy softwareis to rewfite the original program.
The advantage of this approach is that it may be possible to enhance its efficiency or capability beyond
what would be possible in either the transduction or wrapping approaches.

The best examples of this approach come from the engineering domain. Many automated design
programs work to completion before communicating with other programs. For example, the output of
a logic synthesis program is passed as input to a printed circuit board layout and routing program; its
output is passed to an assembly planning program; and so forth. Recent work in concurrent engineering
suggests that there is much advantage to be gained by writing programs that communicate partial
results in the course of their activity and that accept partial results and feedback from other programs.
By communicating a partial result and getting early feedback, a program can save work on what may
turn out to be an unworkable alternative.

3 Agent Communication Language

Communication language standards facilitate the creation of interoperable software by decoupling im-
plementation from interface. So long as programs abide by the details of the standards, it does not
matter how they are implemented. Today, standards exist for a wide variety of domains. For exam-
ple, electronic mail programs from different vendors manage to interoperate through the use of mail
standards like SMTP. Disparate graphics programs interoperate using standard formats like GIF and
JPEG. Text formatting programs and printers interoperate using languages like PostScript.

Unfortunately, problems arise when it becomes necessary for programs that use one language to
interoperate with programs that use a different language. To begin with, there can be inconsisiencies
in the use of ayntax or vocabulary. One program may use a word or expression to mean one thing while
another program uses the same word or expression to mean something entirely different. At the same
time, there can be incompatibilities. Diflerent programs may use dilferent words or expressions to say
the same thing.

ACL attacks these problems by mandating a universal -:.ommumca,tmn language, one in which incon-
sistencies and arbitrary notational variations are eliminated. ACL is based on the idea that commu-
nication can be best modeled as the exchange of declarative statements (definitions, assumptions, and
the like). To be maximally useful, a declarative language must be sufficiently expressive to communi-
cate information of widely varying sorts (including procedures). At the same time, the language must
be reasonably compact; it must ensure that communication iz possible without excessive growth over
specialized langnages. As an exploration of this approach to communication, researchers in the ARPA
Knowledge Sharing Effort [11] have defined the components of ACL that satisfy these needs.

ACL can best be thought of as consisting of three parts - its vocabulary, an “inner language” called
KIF (short for Knowledge Interchange Format), and an “outer” language called KQML (short for
Knowledge Query and Manipulation Language). An ACL message is a KQML expression in which the
“arguments” are terms or sentences in KIF formed from words in the ACL vocabulary.

The vocabulary of ACL is listed in a large and open-ended dictionary of words appropriate to common
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application areas [9]. Each word in the dictionary has an English description. for use by humans in
understanding the meaning of the word; and each word has formal annotations (written in KIF) for use
by programs. The dictionary is open-ended to allow for the addition of new words within existing areas
and in new application areas. .

Note that the existence of such a dictionary does not imply that there is only one way of describing
an application area. Indeed, the dictionary can contain multiple ontologies for any given area. For
example, it contains vocabulary for describing three-dimensional geometry in terms of polar coordinates,
rectangular coordinates, cylindrical coordinates, etc. A program can use whichever ontology is most
convenient. The formal definitions of the words associated with any one of these ontologies can then
be used by system programs in translating messages using one ontology into messages using other
ontologies.

3.1 KIF

KIF [4] is a prefix version of first order predicate calculus with various extensions to enhance its expres-
siveness, - .

First and foremost, KIF provides for the expression of simple data. For example, the sentences shown
below encode 3 tuples in & personnel database. The first argument in each is the social security number
of an individual, the second argument is the department within which the individual works, and the
third argument is the individual’s salary,

(salary 015-46-3946 widgets 72000)
(salary 026-40-9152 grommets 36000)
(salary 415-32-4707 fidgets 42000)

More complicated information can be expressed through the use of complex terms. For example, the
following sentence states that one chip is larger than another.

(> (* (width chipl) (length chip1l)) (# (width chip2) (length chip2)))

KIF includes a variety of logical operators to assist in the encoding of logical information (such as
negations, disjunctions, rules, quantified formulas, and so forth). The expression shown below is an
example of a complex sentence in KIF. It asserts that a number?x raised to another 7n is positive if n
is real and even.

(<= (> (expt 7x Tn) 0) (real-number Tx) (even-number 7n))

One of the distinctive features of KIF is its ability to encode knowledge about knowledge, using the
and , operators and related vocabulary. For example, the following sentence asserts that agent Joe
is interested in receiving triples in the salary relation. The use of commas signals that the variables
should not be taken literally. Without the commas, this sentence would say that agent 1 is interested
in the sentence (galary 7x 7y 7z) instead of its instances.

(interested joe ‘(salary ,%x ,7y ,7z))

KIF can also be used to describe procedures, l.e. to write programs or scripts for agents to follow.
Given the prefix syntax of KIF, such programs resemble Lisp or Scheme. The following is an example of
a three-step procedure written in KIF. The first step ensures that there is & fresh line on the standard
outpul stream; the second step is to print Hello! to the standard output stream; the final step is to
add a carriage return to get to a new line.
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(progn (fresh-line t) (print "Hello!") (fresh-line t))

The semantics of the KIF core (KIF without rules and definitions) is similar to that of first order
logic. There is an extension to handle nonstandard operators (like * and ,), and there is a restriction
to models that satisfy various axiom schemata (to give meaning to the basic vocabulary in the format).
Despite these extensions and restrictions, the core language retains the fundamental characteristics of
first order logic, including compactness and the semidecidability of logical entailment.

3.2 KQML

While it is possible to design an entire communication framework in which all messages take the form
of KIF sentences, this would be inefficient. Because of the contextual independence of KIF's semantics,
each message would have to include any implicit information about the sender, the receiver, the time
of the message, message history, and so forth. The efficiency of communication can be enhanced by
providing a linguistic layer in which context is taken into account. This is the function of KQML.

As used in ACL, each KQML message is a list of components enclosed in matching parentheses
[3]. The first word in the list indicates the type of communication. The subsequent entries are KIF
expressions appropriate to that communication, in effect the “arguments”.

Intuitively, each message in KQML is one piece of a dialog between the sender and the receiver, and
KQML provides support for a wide variety of such dialog types.

The expression shown below is the simplest possible KQML dialog. In this case, there is just one
message — a simple notification. The sender is conveying the enclosed sentence to the receiver. In
general, there is no expectation on the sender’s part about what use the receiver will make of this
information. .

A to B: (tell (>3 2))
The following dialog iz a little more interesting. In this case, the first message is a request for the

recelver to execute the operation of printing a string to its standard ifo stream. The second message
tells the sender that the request has been satisfied.

A to B: (perform (print "Hello!" t))
B to 4: (reply done)

In the dialog shown below, the sender is asking the receiver a question in an ask-if message. The
receiver then sends the answer to the original sender in a reply message.

A to B:: (ask-if (> (size chipl) (size chip2)}))
B to A:: (reply true)

In the following case, the sender asks the receiver to send it a notification whenever it receives
information about the position of an object. The receiver sends it three such sentences, after which the
original sendér cancels the service.

A to B: (subscribe (position Tx 7r %c))
B to 4: (tell {position chipl 8 10))

B to A: (tell (position chip2 & 46))

B to A: (tell {positiom chip3 & &4))

L to B: (unsubscribe (position 7x ?r %c})

In addition to simple notifications, commands, questions, and subscriptions, as illustrated here,
KOQML also contains support for delayed and conditional operations, requests for bids, offers, promises,
and so forth.
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Figure 3: Federated System.

4 Federation Architecture

The previous sections defined the requirements for an agent, including the restriction that all agents
communicate in ACL. These requirements place no restrictions on the possible connectivity of agents,
and agents are free to coordinate their activities by communicating with each other directly. Instead of
leaving the burden of interoperation to the agents, the Federation Architecture provides a collection of
services to support these activities. An important feature of the Federation Architecture is the support
for anonymous interaction between agents. In return for these services the agents must relinguish
some of their autonomy to the system and agree to abide by additional constraints. To each agent it
appears that there is a single system agent that handles all requests directly. This system agent, called
a facilitator,' realizes a virtual agent with the capabilities of all the other agents.

Figure 3 shows a picture of a Federation Architecture in the simple case where there are three
machines, with one facilitator per machine, one machine with three agents, and the remaining with two
agents each. Agents are restricted to communicate directly with facilitators. There can be an arbitrary
number of facilitators, on one or more machines, and the network of facilitators can be connected
arbitrarily.

The Federation Architecture provides assisted coordination of other agents based on a specification
sharing approach to interoperation. Agents can dynamically connect or disconnect from a facilitator.
Upon connecting to a facilitator an agent supplies a specification of its capabilities and needs in ACL.
In addition to this meta-level information, agents also send application-level information and requests
to their facilitators and accept application-level information and requests in return. Facilitators use
the documentation provided by these agents to transform these application-level messages and route
them to the appropriate agents. The agents agree to service the requests sent by the facilitators, and
in return, the facilitators manage the requests posted by the agents.

"The concept of a facilitator is a generalization of mediators, as described in [16).
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4.1 Facilitators

Facilitatoras are the system-provided apents that coordinate the activities of the other agents in the
VFederation Architecture. The network of facilitators keep each other informed of the agents connected
to them and the facts communicated by the agents.

Facilitators provide a collection of services including:*

e white pages— finding the identity of agents by name, e.g., “What agents are connected?,” or “Ia
agent x connected?.”

» yellow pages— finding the identity of agents capable of performing a task, e.g., “What agents are
capable of answering the query x?”

» direct communication- sending a message to a specific agent.

e Content-Based Routing (CBR)- the facilitator is given the responsibility of handling a request. It
makes use of the specifications and other information provided by the agents to do this, thereby
giving the illusion that it is the sole provider of all services,

s problem decomposition— handling a complex request may require breaking it into sub-problems,
getting the answers to the sub-problems, and then combining these answers to obtain the answer to
the original request. Similar to CBR, the facilitator makes use of the specifications and application-
specific information provided by the agents to accomplish this.

# translation— agents may use different vocabulary. In order to interoperate, the facilitator may
have to translate the vocabulary of one agent into the vocabulary of another.

& monitoring- when an agent informs the facilitator of a need, the facilitator monitors its knowledge
to determine if the need can be satisfied. For example, an agent may specify the need I am
interested in facts about the position of chips in design x.”

The interoperation of agents in a system is independent of their implementation. This is similar to the
abstraction capability provided in traditional object-oriented programming languages. The translation
capability of facilitators extends this significantly by making interoperation independent of the agent
interface (the KQML expressions the agent can handle). An agent can be replaced with a more capable
implementation with a different interface. By providing translation rules to map the old interface to
the new, the agent can provide its old functionality in addition to the new and improved one.

Specifying Agent Capabilities

In order to provide services to other agents, an agent must communicate its capabilities to the facilitator
in ACL. An agent specifies its capabilities by transmitting “handles” facts to its facilitator. For example,
an agent capable of answering questions about the dealer of a vendor may transmit the following
specification to its facilitator:

(handles business-agent °(ask-one ,Tvariables (dealer ,?dealer ,?vendor)))
(handles business-agent °({ask-all ,?variables (dealer ,?dealer ,7vendor)}))

These facts state that agent business-agent is capable of answering queries about a single dealer
for a vendor, or all the dealers for & vendor. The actual capability is a quoted KQML expression, e.g.,
*(ask-cne ,7variables (dealer ,7dealer ,?vendor)) in the first example. This specification is
similar to the object interface specifications in IDL (as used in CORBA).

If some other agent A; wants to know the dealers of NEC, it may communicate the following request
to the facilitator:

#The examples are in English for clarity.
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(ask-all 7x (dealer ?x nec))

The facilitator examines its knowledge base, and determines that the business-agent can handle
the request. The facilitator sends the request to the business-agent, gets the answer, and passes this
to A;. Agent A4, is completely unaware of the sequence of steps performed in servicing its request.

Capabilities can be more complicated, e.g., as in the following conditional specification:

(<= (handles business-agent ‘(ask-all ,?variables (dealer ,?dealer ,7vendor)))
{= ?vendor 'ibm})

This states that the business-agent can only answer queries about the dealers of ibm. In general,
the specifications can have arbitrarily complicated preconditions.

Specifying Agent Needs

An agent specifies its needs by transmitting “interested” facts to its facilitator. For example, the fal-
lowing states that the agent cs—manager is interested in all facts regarding the release of PC compatible
computers,

(interested cs-manager ‘(tell (released ,?manufacturer PC ,7model)))
Similar to “handles” statements, “interested” statements can be conditional:

(<= (interested cs-manager ‘(tell (released ,?manufacturer PC ,Zmodsl)))
(member ?manufacturer ‘{ibm toshiba nec micro-internatiomal)}))

This states that the cs-manager agent is only interested in the release of PC compatible computers
from IBM, Toshiba, NEC, and Micro-International.
If another agent transmits the following fact to the facilitator:

(tell {released micro-internaticnal PC 6500D))

then the facilitator will examine its knowledge base and find that the agent cs-manager is interested
in expressions of this form, and it will send the same KQML expression to the ca-manager.

Processing Messages

Each facilitator is connected to a set of local agents, and some number of external facilitators. It is the
responsibility of facilitators to process the information communicated on its connections. There are two
types of KQML messages: requests and announcements.

Facilitators use their knowledge base to service requests, which may involve one or more of: identifying
a single agent that can handle the request, translating the request into the vocabulary understood by
the receiving agent, decomposing a request into simpler sub-requests, etc. For announcements, the
facilitator examines its knowledge base to find out which agents are interested in the announcement.
This may require translating the vocabulary of the original announcement to a form understood by the
interested recipient.

Facilitators use automated inference to reason about agent specifications and application specific
facts. The inference procedure, based on model-elimination, is an extension of the familiar backward
chaining inference rule used in Prolog [7, 13]. The extensions permit the inference procedure to be
complete for first-order logic.
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For a request, the facilitator uses backward inference to find an answer. For example, if the request
is {ask-one ?x (dealer 7x Apple)), then the facilitator finds a single proof for the query (dealer
7x Apple), and returns the binding of the variable ?x for a successful proof (if one can be found). It
uses the facts in its local knowledge base and the specifications of the capabilities of the other agents in
trying to find a proof. For this example, the facilitator does not have any facts about Apple Computer
dealers in its local knowledge base. The facilitator next examines the agent specifications to see if an
agent can handle the quoted query *(ask-one 7x (dealer ?x Apple)). The business-agent can
handle this request, and the facilitator forwards the request to it.

This example illustrated a simple scenario where a fact was either available in the facilitator or from
a remote agent. In general, servicing a request can require a complicated sequence of inference steps
going back and forth between agents. For example, if the query is to find a local dealer, then the
facilitator will first find a dealer and then confirm that the dealer is located in Santa Clara county. It
is the responsibility of the facilitator to give the illusion of a virtual theory, which includes the facts in
the facilitator knowledge base and the facts the agents can provide. Instead of recording all the facts
of the agents locally, the facilitator makes requests of the needed facts from the agents at run time in
the process of finding a proof.

A similar sequence of inference steps is followed in handling an announcement.

4,2 Scalability

An important-concern in the design of the Federation Architecture is its scalability. There are three
important issues: consistent vocabulary, inference cost, and knowledge base size.

Interoperation in the Federation Architecture relies on the assumption that all agents agree to a
shared ontology. For example, two agents should not use the relation apple to mean different things—
one using it to mean fruits, while the other using it to mean a computer manufacturer. In a small
setting, with only a few agents, it is possible to agree to a shared vocabulary by direct communication
between the agent writers. In a large system, however, this is impractical, especially if the agent writers
are from different communities which have specialized languages with conflicting vocabularies, e.g.,
architects and electrical engineers disagreeing on the meaning of the word “column”. The Federation
Architecture provides a mechanism for supporting multiple ontologies. A collection of agents can define
a new ontology for their use. Each ontology provides a dictionary of terms and their definitions, which
all agents must be consistent with. The definitions include an English deseription for humans, and a
formal KIF specification for facilitators and agents.

In order not to require ontologies to be defined from seratch, it is possible to build ontologies using
other existing ontologies. The ontologies are related in a directed graph, where each ontology can
incorporate some or all the terms/definitions of its parent ontologies and it can override those that it
wishes to define differently.

The zecond scalability issue concerns inference cost. As the number of agents increases, the number
of facts about'agent capabilities, needs, and application-specific facts increases. However, the perfor-
mance of the system should not degrade due to irrelevant facts. Ontologies help address some of the
complexity. All requests are relative to an ontology, and the graph structure of the ontologies partitions
the knowledge into smaller relevant sets. In addition, the facilitator controls the inference process by
selecting the cheapest agent to handle a request (conjunct and/or disjunct ordering}, and avoids infinite
loops (with identical-ancestor pruning and/or iterative-deepening) [14, 10].

It is possible to guarantee desirable performance properties by placing restrictions on the rules a
facilitator accepts. For example, if all facts are ground atomics (similar to IDL in CORBA), then
inference is simplified to database lookup, and the cost is logarithmic in the number of facts. If the
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facts are stratified (no recursive definitions), then it is possible to compute time bounds on inference.
It is important to note that inference is only expensive with complex rules, and it possible to enforce a
policy of only accepting simple rules.

The third scalability issue deals with managing the size of the knowledge base. There are two aspects
to this: application-specific facts, and meta-level specifications. Facilitators run continuously, and it is
not possible to put a bound on the number of application-specific facts it may be told. The maintainer of
each facilitator can enforce a policy for deciding what information to record. For example, a facilitator
may only record ground atomic facts, or it may only record facts in a given ontelogy. There may be a
limit to the number of facts that a facilitator records — it may flush some facts when a space limit is
reached. Throwing away information may lead to incompleteness, but this may be unavoidable due to
storage limitations.

Similarly, it is not possible to put a bound on the total number of agents in the system. A sys-
tem can have a network of facilitators, with different agents connected to different facilitators. Each
facilitator must be capable of transmitting a request to any agent that can handle it (independent of
its location). To minimize the number of capability and interest specification facts, each facilitator
summarizes the capabilities /interests of its directly connected agents, and passes on this summarization
as it capability/interests to the neighboring facilitators. The summarization reduces the number of
facts and may involve generalization, e.g., if one directly connected agent can answer questions about
the dealers of Apple computers and another directly connected agent can answer questions about the
dealers of IBM, then the facilitator may summarize this by informing its neighboring facilitators that it
can answer questions about the dealers of all personal computers. There is a space/time tradeoff here
~ fewer less-precise specifications, or a larger number of more precise specifications. It is acceptable for
an agent to handle a request by indicating that it cannot answer it (e.g., if its specifications are too
general), however, this has the disadvantage of wasting ellort.

5 Example

This section presents a simple example of the Federation Architecture. Instead of facusing on the details
we present a broad picture of the types of software interoperation made possible.

First, a brief overview of the scenario. There is a computer systems manager in a publishing company
who wants to upgrade the computers used by the sales staff to portable Pentium-based machines. The
computer systems manager informs the facilitator of his interest in Pentium laptops. Some time later,
the computer product agent notifies the facilitator of the availability of a Pentium laptop, and this
information is passed on to the computer systems manager by the facilitator. The computer systems
manager asks the meeting scheduling agent to set up a joint meeting with the managers of the sales and
finance department to discuss the purchase of the new machines. The meeting acheduling agent gets
the available times from the calendar agents for the sales and finance managers to schedule a meeting.
We fill in some of the details below.

The computer systems manager sits at his terminal with a graphical user interface (GUI) and tells
the facilitator that he is interested in being told of the availability of PC compatible Pentium laptops.
The GUI commands are translated into the following KIF fact, which is transmitted to the facilitator:

(<= (interested cs-manager ‘(tell (available ,?manufacturer ,7model-name)})
(= {denctation 7model-name) 7model)} ; the medel from its nams
(computer-family 7model PC)

(laptop 7model))
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There is a product agent that can answer queries about the computer family of a product (PC, Apple,
etc.), and which computers are laptops. It has specified its capabilities by transmitting the following
facts to the facilitator:

(handles product-agent
‘(ask-one ,7variables (computer-family ,7computer ,7family}))
(handles product-agent ‘(ask-if (laptop ,Tcomputer)))

Whenever a new piece of information is added to the product agents knowledge base it notifies the
facilitator of it. A new Micro-International 36000 computer is announced, and information about it
is added to the knowledge base of the product agent. The product agent communicates the following
KQML message to the facilitator:

{tell {available Micre-International 3&00D))

The facilitator performs inference to see if any agent is interested in this fact. It finds that the
ce-manager agent is interested, but only if the computer family of the 3600D is PC, and if the 3600D
is a laptop. The facilitator cannot answer these questions locally, however, it forwards the queries to
the product-agent who can answer them. The product agent responds positively to both queries, and
the cs-manager is notified of the previous availability of the 3600D. A message indicating this pops up
on the GUI of the computer systems manager.

The computer systems manager uses his GUI to ask the facilitator to schedule a one hour meeting
with the managers of sales and finance during the week of December 12tF to 16'". The GUI transmits
the following KQML message to the facilitator:

(schedule-meeting (listof sales-manager finance-manager)
- {interval 12-12-94 12-15-94)
80)

There is a scheduling agent that can schedule meetings. It previously transmitted the following fact
to the facilitator:

(handles scheduler ‘(schedule-meeting ,?pecple ,7interval ,7meeting-duration))
ng ng

The original meeting request is passed on to the scheduler agent by the facilitator. ‘T'he scheduler
is not able to schedule a meeting directly, since it does not have access to the calendars of the sales and
finance managers. Therefore, the scheduling agent passes on the following query to the facilitator:

(ask-one 7x (calendar sales-manager (interval 12-12-94 12-16-94) 7x))

There is a Datebook agent for the sales manager that records his calendar. It had previously notified
the facilitator of it capability with the following fact:

(handles sales-manager-datebook
‘(ask-one ,7x (calendar sales-manager ,7interval ,7x)})

Similarly, there is a Synchronize agent that can answer queries regarding the calendar of the finance
manager,

The facilitator passes on the two queries of the scheduler to the sales-manager-datebook agent
and the finance-manager-synchronize agent. The calendars returned by these agents are sent to
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the scheduling agent, who schedules the earliest possible meeting. The first available meeting time is
transmitted to the facilitator, who finally forwards the results to the cs-manager.

This example illustrates a collection of points: anonymous interaction {all agents communicate di-
rectly with a facilitator), interoperation of a variety of program types, different types of agentification
of legacy code, and the dual nature of agents as both clients and servers.

Some programs in the example are legacy code, e.g., the product agent which utilizes an SQL database
for recording computer information, the Datebook calendar program, and the Synchronize calendar
program. Other programs are custom written, for example the scheduling agent which computes the
intersection of the available times for a group of participants.

The example is realized using different techniques for agentifying legacy code.. The product agent
utilizes an SQL data base for recording facts, and it is agentified by providing a transducer to converting
ACL into SQL commands and vice-versa. The Datebook calendar program is agentified by a wrapper—
the source code is modified to support ACL communication. The meeting scheduling component of the
Datebook and Synchronize programs was rewritten in the scheduling agent to support a more general
notion of time.

Finally, the example also illustrates the dual nature of agents as both providers and consumers
of services. For example, the meeting scheduling agent can handle a request to schedule a meeting,
However, in order to service this request the scheduling agent must ask the facilitator for the calendars
of the participants of the meeting.

6 Related Work

The agent-based approach to software interoperation is often compared to object-oriented program-
ming. Like an “object”, an agent provides a message-based interface independent of its internal data
structures and algorithms. The primary difference between the two approaches lies in the language
of the interface. In general object-oriented programming, the meaning of a message can vary from
one object to another. In agent-based software interoperation, agents use a common language with an
agent-independent semantics. :

The concepts of system services in support of software interoperation is not new here. For example,
directory assistance programs facilitate software interoperation by providing a way for programs to
discover which programs can handle which requests and which programs are interested in which pieces
of information. Distributed object managers (like CORBA, OLE, DSOM, OpenDoc) provide location
transparency for object-oriented systems, routing messages to objects without requiring senders to
know the locations of those objects. Automatic brokers (like the Publish and Subscribe capabilities
on the Macintosh, DDE, BMS, Tooltalk, etc.) combine these capabilities — they not only compute the
appropriate programs to receive messages but forward those messages, handle any problems that arise,
and, where appropriate, return the answers to the original senders.

The primary difference between these approaches to software interoperation and agent-based software
interoperation lies in the sophistication of the processing done by facilitators. Using ACL, agents
can express their needs and capabilities more accurately than in pattern-based metalanguages; and
facilitators can use this added information to be more discriminating in routing messages. In order
to deal with notational incompatibilities, facilitators can translate messages from one vocabulary to
another using definitions supplied by agents or retrieved from the ACL dictionary. In so doing, they
can decompose messages into submessages and send them to different agents. When necessary, they can
combine multiple messages. In some cases, this assistance can be rendered interpretively (with messages
going through the facilitators); in other cases, it can be done in one-shot fashion (with the facilitators
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setting up specialized links between individual agents and then stepping out of the picture).

In our treatment so far, we have assumed that there is suflicient common interest among the agents
that they will frequently volunteer to help each other and receive no direct reward for their labor. As
the Internet becomes increasingly commercialized, we envision a world where agents act on behalf of
their creators to make a profit. Agents will seek payment for services provided and may negotiate with
each other to maximize their expected utility, which might be measured in a form of electronic currency.

These problems mark the intersection of economics and distributed artificial intelligence (DAI). A
number of researchers In DAI are using tools developed in economics and game theory to evaluate
multi-agent interactions [17, 8. We are currently examining extensions to the Federation Architecture
to incorporate some of these capabilities,

7 Conclusion

The agent-based approach to software interoperation described here has been developed into a practical
technology and has been put to use in a variety of applications necessitating interoperation (e.g. con-
current engineering 2], database integration, and so forth) and i being used at multiple institutions in
the construction of software for the national information infrastructure,®

In order to provide these capabilities, current implementations of facilitators take advantage of auto-
mated reasoning technology developed in the Artificlal Intelligence and Database communities. Powerful
search control techniques are used to enhance normal message-processing performance; and automatic
generation of message routing programs and pairwise translators is used for cases requiring greater
efficiency. .

Even with these enhancements, these implementations consume more time in the worst case than
simpler processing techniques (like the pattern matching method uvsed in BMS). This is sometimes
acceptable, especially when the alternative is no interoperation at all. However, in time-critical appli-
cations (such as machine control), the extra cost can be prohibitive.

In order to concentrate on the central issues in agent-based software interoperation, we have ignored
many key problems in our presentation, such as synchronization, security, payment for services, crash
recovery, inconsistencies in program specifications, and so forth, Although partial solutions to these
problems exist, further work iz needed.

In this paper, we have taken a brief look at how agent technology can be used to promote software
interoperation. Our long-range vision is one in which any system (software or hardware) can interoperate
with any othersystem, without the intervention of human users or their programmers. Although many
problems remain to be solved, we believe that the introduction of agent technology will be an important
step toward achieving this vision. '
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