&

Using Reflection as a Means of Achieving Cooperation

David Edmond, Mike Papazoglou and Zahir Tari
School of Information Systems, (QQueensland University of Technology
GPO Box 2434 Brisbane QQueensland 4001 Australia
email: {davee mikep,zahirt }@icis.qut.edu.an

Abstract

We view cooperating systems as being a set of systems that are distributed over a common communi-
cation network and that work towards solving a common task. This is achieved by coordinating and
exchanging information and expertise. Such systems exclude conventional database systems since the
knowledge these systems contain is buried within application code. In this paper, we overcome this
problem by introducing a layer of special reflective, i.e. metalevel, objects which surround each local
database system. These objects are used to capture domain and operational knowledge, and to de-
scribe, at least in part, remote systems and to monitor task-oriented activities. In this way, we can turn
interconnected conventional database systems into a set of cooperating knowledge-based systems.

1 Introduction

How often, when wsing an information system, do we ask ourselves: “T wonder why it did that? or
“How on earth did that happen?”. Unfortunately, the questions are rhetorical. We do not have the
answers, and none will be forthcoming from the system. But, surely, the power of any data or knowledge
modelling system does not merely depend upon the immediate properties of its representational strue-
tures. It also depends upon how well such a system may represent and reason about its own structures
and functionality. The capability of self-representation is known as reflection, and has been particu-
larly successful in object-oriented settings. There, it has been employed as a novel methodology for
constructing flexible, large-scale complex systems such as (1) programming languages [MaeB7, Mae88],
[KRB91), [S5F92], [MM+92], (2) the developing the next generation of operating systems so that they
provide open-ended and self-extending facilities [Yo+91, Yo02] operating systems, and (3) window sys-
tems [Rao81].
The major characteristics of a reflective system are:

e The clear separation of domain knowledge from conérol knowledge [Dav80].
* The ezplicif representation of that knowledge.

Domain knowledge is what a system knows of its domain, and is encoded within the application system.
Control knowledge is how that knowledge is or should be applied, and is encoded in the metalevel.
The KADS methodology [BR+90, BB+91, WSB92] emphasises the importance and complexity of this
kind of knowledge by further refining three forms of control knowledge. In a database system, we
would say that (roughly speaking} the domain knowledge is encoded by the applications programmer

*This research is partially funded by a grant from the Australian Research Council.

17

following specifications of end-user knowledge captured by a systems analyst; and the control knowledge
is supplied, in a domain-independent way, by the database management system, using its knowledge of
internal data structures to optimise the retrieval of data. There are two major reasons for explicitly
representing control knowledge[vHa91):

s A systemn with separate representations is simply easier to build, debug and develop.

* The system is then able to explain why it took the actions it did, why it used domain knowledge
in a particular way.

Reflection provides ezplicit mechanisms for expressing user-specified policies and requirements within

an object-oriented system. It offers a clean adaptable interface through which users can customize
systems according to their requirements. For example, reflection can be used to particularise individ-
ual object properties in situations where class-based inheritance is too cumbersome. Object-oriented
database systems are rather rigid in their approach to modelling in the sense that they attach to all
objects originating from the same class a single set of semantics and propertics. These limitations of
object-oriented database systems may be overcome by the provision of appropriate metaobjects in ad-
dition to the conventional objects. In general, conventional objects may be interpreted as carriers of
domain information, whereas metachjects define the semantics of object actions and overall behaviour.
For example, each object may have its own group of metaobjects which provide a set of descriptions
and metaoperations that define the object’s semantics.
* Not only does reflection help in applying domain semantics, it can also be used to provide the means
to alter the dynamic, run-time behaviour of a language. For example, the reflective language 3-KRS
[Mae87, Mae88] provides a meta-object per object. This meta-object is used to control the execution
of messages that are sent to its referent object by dispatching an appropriate method. This facility can
be used in situations where two objects originating from the same class may need to respond differently
to the same message. CLOS [KRB91] is another object-oriented language that provides sclf-describing
facilities whereby a collection of classes, the meta-object classes, represent all the major building-blocks
of the language. The CLOS meta-object classes constitute the core facilities of its meta-object pro-
tocol (MOP). The MOP can be used to describe operations and interactions among instances of its
meta-object classes in a way that allow extensions or modifications of the CLOS implementation. For
example, the PCLOS system [Pae80] has added database persistence to CLOS objects by subtyping
meta-object classes and selectively shadowing methods that operate on their instances. These imple-
mentation changes come into effect without requiring any modifications to the existing system code of
CLOS.

We view cooperating systems as being a set of systems that are distributed over a common commu-
nication network and that work towards solving a common task. This is achieved by having systems
that coordinate and exchange information and expertise. Such systems typically exclude conventional
database systems since the knowledge these systems contain is buried within application code.

The use of reflection is particularly beneficial to multi-database systems or cooperating systems.
Cooperative tasks, carried out in an ad-hoc manner up to now, can be performed using reflective data
modelling facilities. Such reflective tasks may include transaction scheduling, object communication and
method dispatching to remote objects, object synthesis and composition, object migration (especially
beneficial for mobile computing purposes [Yo+91]), distributed object implementation policies, etc.

The work reported in this paper is based on the assumption that we have a set of essentially passive
and autonomous databases located at a number of remote sites. To enable some form of cooperation
between these sites, we extend their functionality by introducing a layer of metalevel software that

18

surrounds each local database system. This metalevel software knows about each site's capabilities and
functionality and consists of: .

s A complete metadata description, in terms of system competence,
o MMetaobjects that provide basic cooperative processing facilities.

These metaobjects are designed to capture domain and operational knowledge, and to describe, at least
in part, remote systems and to monitor task-oriented activities. The term metaobject is used only to
indicate the relation of such an object to the object it describes. A metaobject is just another object,
with structure and behaviour. However, it too has access to descriptions of itself.

In this way, we can turn interconnected conventional database systems into a set of cooperating
knowledge-based systems. Reflection not only allows descriptions of the capabilities of existing infor-
mation systems and their inter-relationships but also facilitates the specification and implementation of
a newly composed system, by drawing upon the functionality of these already existing systems.

In this paper we introduce aspects of the R-OK Model - a generic object model to support cooperative
processing activities — where every object has access to four metacbjects which, together, provide the
capabilities outlined previously. The paper is structured as follows: in section 2, we discuss the basic
ideas or constructs of R-OK; in section 3 we use these constructs to penefrate aspects of information
systems that are usually closed to us; in section 4, we look at two examples of how knowledge of
behind-the-scene actions may be used to enable cooperation; in section 5, we make some conclusions,

2 The R-OK Model

In this section, we introduce the reflective aspects of the model. In particular, we examine a group of four
special kinds of objects that may be used to describe and monitor other objects. These reflective objects
provide access to metalevel aspects of an information system that are often hidden. Using reflection in
this manner, this metalevel is revealed in object-oriented terms. To provide straightforward explanatory
examples, we will examine a database that is used by a diagnostic department within a hospital. The
system consists of a set of Patient objects. The current state of a typical patient object, Jim, is shown
in Figure 1. For each such object, such as Jim, we have the metalevel objects of the kinds discussed in
the following subsections.

2.1 The state metaobjects

These are objects that know the structure of any associated object, whether that object be a domain
or a metalevel object. According to Figure 2, the state metaobject is an object with two attributes:
(1) State which is a record type or scheme, and (2) Context which allows a name to be given to the
record type. Thus, state(Jim) is an object that knows about the structure or state of Jim, that is, its
attributes and their types,

The state metaobject shown in Figure 2 is one that is probably, but not necessarily, shared by several
domain objects. In using the term “sharing”, we mean that there may be a one-to-many relationship
between a given state metaobject and the domain objects that it describes. It is the very existence
of a state object with a context called Patient that allows us to refer to Patieat objects. In doing
so, we are making use of a shareable metaobhject. The methods associated with a state object will
allow the addition, modification, and removal of the attributes described in the State component of the
metaobject.

19

The state metaobject
Conferi: Patient
A Patient object State:

g Attrebute Type
Attribuie Value [FatientId: Integer;
PatientId 12875 Nane: CharString;
Name Jim Ward: CharString;
Ward 12) 0 DOE: Data;
DOE 23-Jan~-1965 Drugs: Sat CharString;
Drugs {} Allergies: Set CharString]
Mlergies {aspirin,albumen}

Figure 1: A snapshot Figure 2: The state metaobject for a patient

2.2 The can metaobjects

These objects know about the behaviour of any associated object - they know what it can do. From
Figure 3, we see that the can metaobject also has two attributes. It has an attribute CanDo which
pairs method names with their specifications. The attribute Context allows a name to be given to this
particular set of pairings. There are three methods in this example, MakeBooking, AddTreatment and
MoveWard. The specification of the AddTreatment operation is presented in terms of four componenis:

» requires which contains the argument(s) that will be supplied. In this -case, there is one argument,
drug which must be a character string.

* reply which says what kind of information, if any, will be returned. In this case, there is none.

= pre which is a precondition for the method. In this case, the drug must not be one to which the
patient is allergic.

= post which describes the effect of the operation upon the object. In this case, the drug is added to
the treatment set out for the patient. The convention used is that attributes with a subscript, eg
Drugsg, represent the value of the attribute before the operation. Unsubscripted attributes refer
to the value after the operation is finished.

The can metaohject
Context: Patient

CanDa:

Name methadSpec

MakeBooking -~

AddTreatment reguires: [drug: Char3trizg]
Teply: [1
pra: driug not in Allergies
poBt: Drugs = Drugsg union {drug}

Hovelard

Figure 3: The can metaohject for a patient

can(Jim) is an object that knows about Jim's possible behaviour, that is, what messages it might be
sent and the structure or pattern associated with each. In general, a can objeect is goal- or ends-oriented.

20

It describes the effect that each of the methods should have on the object concerned but not how this
effect is achieved. Like all four of these metaobjects, the can metaobject is one that may be shared
by several domain objects. In this case they would be objects that exhibit the same behaviour. The
methods associated with a can object will allow (1) the addition of new behaviour to the corresponding
domain objects, and (2) the refinement of existing behaviour through the alteration of either pre- or
post-conditions.

2.3 The act metaobjects

These objects know about the current activity surrounding other objects. act{Jim) is an object that
knows about Jim's current activity, that is, messages it is still processing, and messages it has despatched
and for which it is awaiting a response. It is possible for two or more objects to share the same act
metaohject.

The act metoobject
Contest: Patient
In:
Jrom for action C unth place
Progh Earl MoveBed bed is B10O 1
Progt Mary AddTreatment drug is penicillin 2
Pregk Angus AddTreatment drug is TLO 3
Pending:
from for aedion unth
Progh Jim AddTreatment drug is aspirin
FProgl Juna MovelWard Ward iz 99

Figure 4: The act metaocbject for patients

According to Figure 4, there messages have come in for Karl, Mary and Angus. None of these have
been processed yet.

The act metaobject is task-oriented. Its job is to supervise the activity of the one or more ohjects
within itz domain. These objects may or may not be of the same kind, that is, ones with the same
structure and behaviour. In the example given, they are, but more generally, an act metaobject may
supervise a heterogeneous set of objects that are collectively attempting to perform some task. For
example, in a building control system, we might have objects representing the lighting level and objects
representing the air-conditioning level being monitored by the same act metaobject. In general, for an
object X to have an act(X) means that X delegates responsibility for (1) the validation of a message,
(2) the timing of its execution, and (3) possibly the timing of any reply to that message. For this
reason, the act object will need to be aware of the timing of events such as the receipt and despatch of
messages. We have omitted such discussion from this paper.

2.4 The loc metaohjects

These objects know where to go to locate attributes and/or methods. They answer the question: Do you
really want to know how its done or where to find it7 They allow the particular state of an object, at
any time, to be materialised; and they allow its methods to be executed. A loc metaohject contains two
attributes. Lookup is a function that maps from a name to an object, one that may possibly reside at

21

some remote site. In Figure 5, each patient attribute is paired with an object that will handle requests
to retrieve or update the associated attribute. '

The Do attribute maps from a name to a procedure — one that should correctly implement the
corresponding method specification in the can(Jim) object. It might be thought that the distinction
between attributes and methods has been carried into this object — and so, perhaps, it should be split
in two. However, for some objects, there might be methods that are handled through remote procedure
calls = in which case, they would appear in Lookup. Conversely, there might be attributes that are
derived procedurally, in which case, they would appear in the Do function.

The loc melaokject
Context: Patient
Lovkugp:
Name CObject
PatiantId surld
Hame suriame
Ward surkWard
DB surD0B
Drugs surDrugs
Allergies gurdllergies
Do
Name FProcedura
HakeBooking S
AddTreatwent [drug: CharString]
begin
if drug not in Allergies
than
Drugs. insert (drag)
alse
error “Patient iz allergic!"
) end
MoveWard -
InProcesa:
fiame statement status
AddTreatment 12.2 pctiva
HevaWard 8.5 pending

Figure 5: The loc metaobject for a patient

When an interpreter, acting as one of the methods of a loc object, encounters an unrecognised
symbol, it looks up the symbol table provided, ie the LookUp attribute, for assistance. If the symbol
appears on the right-hand side of an assignment statement then a get message is sent to the associated
surrogate or lookup object. If the symbol appears on the left-hand side, then a set message is sent.
Obviously the interpreter executes the get(s) before the set. In its simplest form, loc(Jim) is an
object that knows how to synthesize the attributes and how to locate the methods. An attribute is
materialised by sending an appropriate message to some predetermined surrogate object and waiting
for a response.

Suppose that there is a relational database that is “substantiating” the Patient objects. The set-
valued Allergies atiribute is stored as a two-column table Allergies(PatientId,Allergy). Accord-
ing to the Loc(Patient) object, the Allergies attribute is mapped, through the Lookup function, to a

22

Lopkup:

Da:

The lociPatfant) object

Haza hiect
-i'l'ltF'Hs l::ur-ﬂ'im‘lu o+
1 ' .

Heme Procedure

fuspirin,albusen)

aspirin ...

2l buman

surrogate object surAllergies. This object, indicated as a shaded circle in Figure 6, is the object that
will deal with any requests to access the patient’s allergies. If it has been charged with retrieving patient
Jim's allergies, then it will select these from the Allergies table using SQL, gathering them individu-
ally using a cursor; then it will marshall the results and pass them back, as a set, to the loc(Patient)

object.

surAllergles

Mlergies
PatfentId Alleray

13275 aspirin
12a7E al

Figure 6: Locating and retrieving allergies

3 Further behind the scenes

The state and can metaobjects describe the structure and behaviour of Jim, where Jim is considered
as a semantic object, that is, one that corresponds to an object in the application domain. However,
this conceptual object may be composed by synthesising other pre-existing objects. The loc and act
objects deseribe the structure and behaviour of the implementation of Jim, where Jim is now considered

as an tmplementation object.

‘We have used the metacbject mappings to investigate the domain objects. According to Figure 7,
there are four metaobjects associated directly with Jim. But metaobjects may also have their metaoh-
jects. There are sixteen possible metaobjects at the next level. Figure 8 shows four of them. See
[EPT95] for a more detailed discussion. In this section, we examine two aspects and relate them to

cooperation.

Figure T: Meta-Jim

23

MM
Database

-Eﬂﬂuﬂm
- Dru

-Alglaa
- Bookings
- Scans

Figure & Meta-Meta-Jim

3.1 Instantiation and Materialisation

The four objects represent a gateway from any object into the metalevel. Each of them represents a
different act of reflection. What is required to make an object? In a typical object-oriented language,
we could make a declaration like the following:

p: Patient

This not only declares the structure and behaviour of the object p, it implicitly declares how and where
the object is to be constructed and located. In a C+4+ program, for example, a suitable chunk of
memaory is allocated from the heap and initialised appropriately.

In R-OK, we may make a declaration like the one above, but in doing so, we are declaring the
particular metaobjects to be used, each of which plays a role. Through this declaration, we are saying
that:

= The object has atiributes of the kind specified in the state object with Context = "Patient".
» Its behaviour by referencing a can object with context "Patient".

» Iis atiributes may be located, and its methods executed, in the way found in the loc object with
context "Patient”.

o It iz to be monitored by an act object with the context "Patient",

These latter two aspects of a declaration differentiate R-OK from more conventional systems. They
are essential for wrapping pre-existing application systems. We must able to state how the objects are
implemented, and to say how these objects are monitored.

Alternatively, we may refine that declaration. Suppose we have another patient database that we
want to merge with the existing one. We provide a suitable loc metaobject which maps to this new
database, one with a context NewSource say. We may declare a patient object as follows:

p: Patient except loc(p).Context=NewSource

The object will share all the features of Patient objects except that it is located somewhere else.

3.2 Message Processing

Message processing is closely related to the activities of the act objects. Their behaviour is specified
in the can(act) object shown in Figure 9. This object describes the behaviour of the act object which
receives messages, validates them and, at a time of its own choosing, despatches them. A message
consists of the following basic components, examples of which may be found in Figure 4:

¢ From: identifies the source of the message.

s For: identifies the destination or target object.

s Acticn: is the action to be taken in regard to the previous object.
s With: confains any arguments or information supplied.

The steps in passing a message M from object A to object B are as follows:

24

s The interpreter, which is a method of loc (4), encounters a request to send a message M to object
B. It will find such a request within the body of some procedure associated with A, and will send
a message to act(B) asking it to deal with M. .

» act({B) receives this message, stores it, and eventually despatches it to loc(B).

s loc(B) receives this message, locates the corresponding procedure and commences executing that
code. Alternatively, it may find somewhere to forward the message.

e As the interpreter works through the code, it uses the Lookup attribute of loc(B) to to determine
how to handle unknown symbals that it encounters. Typically, these will be attribute names, and
there will be a surrogate object associated with that attribute.

e loc(B) sends messages to these surrogates, asking them to get or set the value of the corre-
sponding attribute.

» Once loc(B) has finished, it will return any reply to message M to act(B) which will, in turn,
pass it back to Loc(A).

Here is an example of a simple message for Jim:

From For Action With
Prog Jim AddTreatment [drug is aspirin]

where Prog is some program. The hidden message, so to speak, is slightly different. Tt is as follows:

From For Action With

loc(Prog) act(Jim}) Receive [from is Prog, for is Jim,
action is AddTreatment,
with is [drug is aspirin]]

The message comes from loc (Prog) because it is there that the program code is interpreted. The target
object is act(Jim) because that object receives messages on behalf of Jim. The action is receive, and
the argument is the whole of the original message.

An act objeet may take the following actions (see Figure 9):

s Receive: it may receive a message msg. This will be one that wraps some other message in the
way shown in the above example, ie the component msg. With will itself be another message. The
precondition is that the action specified in that inner message, msg.With.Action, is one that is
named in the CanDo attribute of the can object of the object for which the message was originally
targetted, msg.With.For. The CanDo attribute is a relationship, in the form of a set of pairs. The
set, expression involved in the precondition is of the form:

{x: Bat = Exp}

This lets x range over the set Set and forms a set based on the value of the expression Exp. In
this case we have {m: can(msg.With.For).CanDoem.Name} which forms a set consisting of the
names of message actions that the target object will handle. The postcondition is:

In = Inp~<msg.With>

This requires that the original message be turned into a singleton sequence, <msg.With>, and
added (") to the end of the input queue, Ing.

23

The can{act) metaohject
Contest: ActPatient
canlio:
Name methodSper
Receive requires: [m=g: Messagel
reply: [1]
pre: pug.With.Action in
{m: can{mag.With.For},CanDo em.Name}
post: In = Inp™<msg.With>
Daspatch requirea: [1]
raply: [meg: Messagal
pra: #Ia > O
post: msg.For = loc{msg.With.For)
wag.Action = “do"
mag.With = head Ing
In = tail Ing
Pending = Pendingp union {msg.With}

Figure 9: The can metacbject for an act metaobject

e Despatch: it may despatch a message, but only if there is one in the input queue. The precondition
checks the size of the input queue using the set cardinality operator. #In represents the size of
the queuve. The message is sent to the loc metaobject of the object to which the message was
originally sent. The action is to "do" the procedure associated with the message at the head of
the input queue. The new input queue is formed from the tail of the existing queue.

Of course, the activity surrounding a given object could be dramatically affected by altering either of
these methods, as just specified. We could change the Receive method so that it always placed certain
messages at-the head of the queve. For example, if there was a message Emergency that was to be
expedited, we could alter the postconditions of Receive to be:

msg.With.Action = "Emergency" => In = <msg.With>"Ing

In this way, we require that such a message be placed at the front of the queue. Alternatively, we could
require that messages from certain objects always be placed at the head of the queue. We could alter
the Despatch method so that it never despatched a message for an object if there was already one
pending for that object. We could specify this by adding an additional constraint in the postconditions
for that method:

meg.With.For not in {p:Pending; ep.For}

The object involved in the despatched message does not appear in Pendingy which is the before version
of the set of messages currently being processed.

4 Cooperation through reflection

The R-OK model, through its metaobject mappings, provides access to the core of an information system,
and to the behaviour of that core. This kernel includes such basic activities as (1) the instantiation

26

of an object, and (2) the assignment of a new value to some attribute of an existing object. Through
this model, we have access to these activitics because they are embodied by the metaobjects and so we
are able to modify the expected behaviour. In this section, we will investigate two examples of how
cooperation may be achieved through the reflective adjustment of the default behaviour.

4.1 Cooperative Instantiation

Nuclear Medicine is one of a family of related diagnostic services known as medical imaging that are
available at most medium to large hospitals. It is an aid that is concerned with physiology, that is, the
functioning of organs and bones. Other diagnostic aids, such as cat scans, ultrasound and X-rays are
concerned with anatomy, that is, the shape or structure of the organs and bones. The most common
types of diagnosis performed by a nuclear medicine department within a hospital are liver, bone, lung,
cardiac and renal (kidney) scans.

Booking a scan: Typically, a general practitioner will refer a patient for a scan. That person will
contact the department directly to arrange an appointment time. The receptionist will ask the person
for information such as the type of scan, the patient’s name, address, phone number, sex, date of birth,
any drugs used or allergies, and the referring doctor.

Pre-injection: At this stage it is important that the technologist responsible for taking the scan have
access to certain aspects of the patient's medical record or history. These will include whether or not
the patient is pregnant, whether they are on medication, what allergies they may have, any related
scans that they might have undergone, either within this department, or within others, such as X-rays
or CAT scans. : ;

Post-scan: It is quite common for a scan to raise further guestions, ones that were not anticipated.
For example, does the patient only have one kidney because of a car accident or because they were born
with only one? Or, what is the norm for a person of this age and sex? This latter question may be
answered by accessing a number of “Teaching Files” which have been built up by the hospital over a
number of years.

The state(Booking) mefaobject
Contert: Booking
State: g Time
tiribute
Lm'kup {PatientId: CharString;
ScanType: CharString;
‘-m-‘ ScanDate: Data;
Mm!l‘hh L * DR ScanTime: Time;
(I\) AdmitInfo: [On:Date; AtDept:CharStringl;
- ¥rayInfo: [On:Date; Pic:Image];
— CatInfo: {On:Date; Pic:Image];
I 5 =
¥ - BH AdmitHelp: [On:Date; AtDept:CharString];
AdmifHelp B DB XrayHelp: [On:Date; Pic:Image];
— CatEelp: [Dn:Date; Pic:Image]l
Figure 10: Getting AdmitInfo Figure 11: The state(Booking) metaobject

Suppose patient 117895 is scheduled to have a lung scan on 27-Oct-1995 at 11:30am, and the Nuclear
Medicine Department would like to have, by that time, as much relevant information as the hospital

27

can supply. This might include details of previous admissions, recent chest X-rays, and so on. We may
imagine that a message of the form:

Help [id is 117895, scan is lung, on is 27-D0ct-1996, at is 11:30:00]

is to be sent out. The message supplies the patient’s Id, the type of scan he or she is to have, and when
the scan is to take place. The overall intention is to broadcast the message as quickly and as widely as
possible across the various database sites within the hospital. In general, whenever a booking is made,
a request for cooperation is issued. Effectively, this involves the transmission of a message of the form:

“What do you know about patlent PatientId who is scheduled for a ScanType scan? We need to
know by Date and Time.”

The request for assistance and information is, essentially, a request to copy information from one
site to another; see Figure 10. To effect this copying, we define a Booking object of the form shown in
Figure 11.

The attributes of this object fall into two groups. The first group contains four attributes that are
supplied directly from the booking process itself. The other group comtains three pairs of attributes
which arise as follows. Suppose that there are three remote databases that have the potential to help the
department: (1) the Patient History Database will have information on the date on which the patient
was first admitted to the hospital, and the department involved. (2) the X-ray Database might contain
images of that patient, ones related to the type of scan the patient is to undergo; we would like the most
recent of these, if any. (3) The CAT Database might also have relevant images. Each of these databases
gives rise to two attributes, In the following discussion, we will only consider information on patient
admissions. The attribute AdmitHelp is linked to the Patient History Database and will contain any
information the database can supply. This information will be copied across to the AdmitInfo attribute
which will be linked to the Nuclear Medicine Database. The instantiation of a booking object is, by
itself, enough to trigger off requests for information.

The instaptiation process is described by a create procedure that is stored in the loc(Booking)
object that is shown in Figure 12. As discussed in subsection 2.4, when the interpreter emcounters
an unrecognised symbol, it uses the LookUp attribute as a gymbol table. If the symbol appears on
the right-hand side of an assignment statement then a get message is sent to the associated surrogate
object. If the symbol appears on the left-hand side, then a set message is sent. Whilst executing the
create procedure, the interpreter must not be blocked by any of the last three assignment statements.
It must somehow pass to the next assignment as soon as it has fired off processing on tl:u: previous one,
The || sign indicates this. Thus the three-part statement:

AdmitInfo:=AdmitHelp || XrayInfo:= XrayHelp | CatInfo:=CatHelp

triggers three parallel processes. These are monitored by (the interpreter, acting as a method of) the
loc(Booking) object.

From Figure 13, we see that the cry for help, in the form of a request to instantiate a Booking
object, is received by act(Booking). This is passed on to loc(Booking) as a "do Create" request.
The create procedure is executed, causing gat messages to be sent to each of the three Lookup objects,
shown as shaded circles.

These objects have knowledge of the physical siting of the three databases and will send remote
procedure calls which are received by act objects defined at each of the sites. Each of these will then
activate the corresponding loc objects which will perform the necessary retrieval(s).

28

The loc{Booking) metaobject

Context: Booking

Lookup:
Name Ciect
PatientId surld
ScanTypa surScan
ScanDate surjcanlate
ScanTime gurScanTime
AdmitInfo surhdmitInfo
ErayInfo surkrayInfo
CATInfo surCATInfe
AdmitHelp surAdmitHelp
XrayHelp surirayHelp
CATHalp surCATHalp

Da:

Neme Procedure
Create [id:CharString; scan:CharString; on:Date; at:Tima]
begin ’
PatientId :=id;
ScanType i=scan;
ScanlDate :=on;
ScanTime :=at;
(AdmitInfo:=AdmitHelp(id, scan, on, at) ||
XrayInfo :=KrayHelp(id, scan, on, at} ||
CATInfo 1=CATHelp(id, scamn, onm, at}};
end

Figure 12: The loc(Booking) metaobject

4.2 Triggers

The second example of cooperation through reflection is one where the raising of the value of an attribute
above a given threshold triggers an emergency action in some related object.

Suppose we have a patient object Patient with an attribute Temp that contains the patient’s tem-
perature. Suppose, also, that there are a number of activities which may or may not alter the value
of this attribute, and it is difficult to tell, merely from the invocation of a patient method, that the
temperature attribute is going to be changed. A more direct approach is to monitor activity involv-
ing the surrogate object associated with the Temp attribute. In the Lookup attribute of loc(Patient)
there will be a pairing, say (Temp, surTemp), which redirects any actions involving Temp to the object
surTemp. Such actions will typically involve gets and sets, as previously explained. We can monitor
this activity by constructing an act (surTemp) object which will receive every action relating to patient
temperature and which, in particular, can preview all set actions, testing the new value to see if it is
above the threshold. If it is, then the act(surTemp) object can send a message to an Alarm object
which is awaiting such notification. (An alternative iz for act (surTemp) to notify Alarm every time the
temperature changes and for Alarm to decide whether the threshold has been reached.)

The situation is a little more complex because we do not want Alarm to wait until it receives a signal
before it invokes some Emergency action. Rather, we want a situation where the Emergency procedure
is as advanced as it can be without taking precipitate and unwarranted action. We accomplish this in
the following way:

29

act PH m]—-%—»m

Booking * act Booking || loc Booking & udxm—m—@HXE'g?

act CAT |— loc —@e——{ CAT

Figure 13: Cooperation through instantiation

» We introduce, into the loc(Alarm) object, the same (Temp, surTemp) pairing that was found in
loc(Patiant),

» The Emergency procedure that activates the alarm devices includes a statement:
wait until Temp > 40

The interpreter, when it encounters such a statement, finds Temp in its Lookup table and sends a
get message to surTemp. The value of Temp is returned and, if the value is not greater than 40,
then the interpreter sends a wvakemewhen message to surTemp and suspends itself.

» Henceforth, every set message sent to surTemp is examined and, if the new value is above 40,
then a resume message is sent to loc(Alarm) which causes the interpreter to resume at the first
staternent after the wait command.

5 Summary

In this paper we have introduced the concept of using reflection to support cooperation processing
activities between a number of internetworked autonomous database systems. Funetional and opera-
tional reflection is manifested in a handful of special purpose meta-level objects which surround each
individual database, turning hitherto conventional databases into a set of cooperating processes.

In particular, we mtrnduced R-OK, a reflective model for distributed database systems, which employs
a group of four special kinds of meta-objects to describe, synthesize and monitor the state and activities
of objects originating from discrete database systems. The model, through its meta-object mappings,
provides access to to the core functionality of a cooperative information system, and to the behaviour
of that core. Through the R-OK model, one can gain access, and may tune, activities found in any
modern distributed environment, such as instantiation of distributed objects and distributed method
despatching.

References

[BB+91] Bartsch-Sporl B., Bredewig B. et al. (1892). Studies and Experiments with Reflective Problem
Solvers, ESPRIT Basic Research Project P3178 REFLECT, Document RFL/BSR-UvA/T1/2/1

30

[BR+90] Bartsch-Spéirl B., Reinders M. et al. (1990). A Tentative Framework for Knowledge-level
Reflection, ESPRIT Basic Research Project P§178 REFLECT, Document RFL/BSR-ECN/13/1

[Dav80] Davis R. (1980). Metarules: Reasoning about Control. Artificial Intelligence, 15, 179-222.

[EPT95] Edmond D., Papzoglou M. and Tari Z. (1995) “R-OK: A Reflective Model for Distributed
Object Management”, to appear in Procs of RIDE'95 (Research Issues in Data Engineering), Taiwan.

[vHa91] van Harmelen F. (1991). Meta-level Inference Systems, London, England: Pitman.

[HY88] Honda Y. and Yonezawa A.(1988). “Debugging Concurrent Systems Based on Object Groups”,
Procs of ECOOP'88: European Conference on Object-oriented Programming, Oslo, Norway.

[KRBY1] Kiczales G., des Riviéres J. and Bobrow D.G. (1991). The Art of the Metaobject Protocol.
Cambridge, Mass., USA: The MIT Press.

|Mae87] Maes P. (1987). “Concepts and Experiments in Computational Reflection”, OOPSLA’ST.

[Mae88] Maes P. (1988). “Computational Reflection”, The Knowledge Engineering Review, 3(1), 1988,
1-19.

[MM+92] Masuhara H., Matsucka S. et al. (1992). “Object-Oriented Concurrent Reflective Languages
can be Implemented Efficiently”, OOPSLA2,

[Paef0] Pacpcke A. (1990). “PCLOS: Stress Testing CLOS", OOPSLA'90.

[Rao91] Rao R. (1991). “Implementation Reflection in Silica”, ECOOP'91, Lecture Notes in Computer
Science 512, Springer-Verlag.

[SSF92] Stemple D., Sheard T. and Fegaras L. (1992). “Linguistic Reflection: A Bridge from Program-
ming to Da.taha:sa Languages”, Procs. of the 1992 Hawaii Conf. on Systems and Sciences, Koloa,
Jan. 1992.°

[WSB92] Wielinga B., Schreiber A. and Breuker J. (1992). “KADS: a modelling approach to knowledge
engineering” Knowledge Acquisition, 4, pp 5-53.

[Yo+91] Yokote Y. et al “Reflective Object Management in the Muse Operating System”, Procs. 1991,
Int’l Workshop on Object-Orientation in Operating Systems, also in Selected Technical Reports,
Sony Computer Science Lab. Inc., May 1992.

(Yo92] Yokote Y. (1992). “The Apertos Reflective Operating System: The Concept and its Implemen-
tation”, OOPSLA92.

3l

