A flexible facilitator-based cooperation framework

Paul-André Tourtier
INRIA, ACACIA project
2004 Route des Lucioles

F-06902 Sophia Antipolis, France
tourtier@sophia.inria fr

December 15th, 1994

Abstract

The aim of this work is the design of a flexible framework allowing distributed, autonomous, heteroge-
neous agents to cooperate through communication and interaction. We propose a practical cooperation
framework that provides a wide range of communication and cooperation methods including: peer-
to-peer and client-server interactions, data sharing, use of facilitators, etc. Based on this framework,
we present an implementation of a cooperation platform and illustrate its use for distributed problem-
solving.

1 Imtroduction

The aim of this work is the design of a flexible framework allowing distributed, autonomous, heteroge-
neous agents to cooperate through commmunication and interaction. Actually, the long-term motivation
for this work is part of a more general strategy that can be stated as follows:

1. try to understand the way humans interact and cooperate to solve problems;

2. propose a general framework for the modeling of collaborative systems;

3. propose an architecture for the design of collaborative interaction systems;

4. provide a flexible platform for the realization of multi-agent systems in distributed environments.

In the present paper, we will focus especially on the realization of such multi-agent systems.
Let us consider then an environment made of multiple software entities (agents) interacting with each
other. In the following, we will make a few assumptions on the nature of this multi-agent community:

heterogeneous. There is no restriction on the type of agents involved (knowledge-based systems,
databases, or other pieces of software such as conventional numerical programs), on the structure,
or on the implementation of such agents (architecture, programming language).

distributed. Agents may be distributed on different, possibly distant sites. It is usually pessible to
identify a site to a machine and an agent to a process, We will assume here that the sites are
connected through a communication network that can support reliable communication protocols.

101



cooperative. The agents perform a variety of tasks that lead them to interact with each other for their
mutual benefit and, in some cases, to cooperate explicitly. Although apents may have their own
interests, we will assume that they exhibit generally a benevolent, cooperative attitude,

dynamic. Agents may evolve through time and change their goals, their methods, and even their
location. New agents may be inserted within the community; other may disappear or be replaced
by newer versions. As a consequence, as the environment grows larger, agents may not have a
complete or accurate knowledge of sach others,

structured. On the other hand, we will assume that the world is non-chaotic and that the rate of
change in the environment is slow enough to allow agents to have a reasonably stable view of
it. For instance, if some agent plays a role in the community by providing some kind of service,
other agents can reasonably expect, either that it will fulfill its role for (at least) a while, or that
they will be informed of that change. For short, the main structure of the community should
be stable enough for agents to model it and unpredictable changes, although possible, should be

rather exceptional.

It has been shown that some of the issues involved in the design of collaborative systems include
namely [Marick and al., 1994]:

1. defining how and what to communicate;

2. defining, organizing, and allocating tasks to the agents;

3. controllitig the global behavior of the system;

4, allowing agents to use existing tools and bring new ones on-line as they hecorne available;

Our goal is to define a generic platform that would ease the development of cooperative multi-agent
systems.

2 Approach

Actually, cooperation can be accomplished through a variety of ways and most previous approaches have
put emphasis-on certain communication methods (asynchronous message passing, data sharing, use of
special-purpose languages) or on a specific coordination strategy (contract net protocols, joint commit-
ments, exchange of plans, etc.). Common approaches include the following[Bond and Gasser, 1988):

¢ provide protocols for registering and calling a set of public services (client-server paradigm);

» use peer-to-peer, asynchronous communication mechanisms, and favor reactive-based behavior
(actor paradigm);

* organize coordination through concurrent access to a shared body of knowledge (blackboard ap-
proach);

« provide a framework allowing transparent operations on remote objects (object broker);

e specify knowledge-level languages and protocols with well-defined semantics (knowledge sharing
approach); '

102



s define market-based protocols based on requests and offers (contract nets);

» use mediators to facilitate cooperation (centralized coordination).

Instead of trying fo enforce a particular vision of cooperation, we envision a practical cooperation
framework that would provide a wide range of communication and cooperation methods, Our approach
can be summarized as follows:

1,

Provide a flexible communication platform, allowing namely peer-to-peer and client-server inter-
actions;

- Do not impose a fixed communieation language but provide tools for the design of new communi-

cation protocols;

. Provide facilities for data sharing and cooperation by data refinement;

. Design facilitators, i.e. specialized agents whose goal is to facilitate the communication and the

cooperation of other agents;

. Favor a dynamic organization of the collective activity, made by the agents themselves;

Design man-machine interfaces allowing human users to inspect, control, and participate directly
to the activity of the software agents.

3 A facilitator-based framework

‘The notion of facilitator is a key point of our approach. In the next section, we present a few examples
of such facilitators and show how they can help the other agents to cooperate. Please note however that
the following list is not intended to be complete and that new kind of facilitators could be easily added
to the framework,

3.1

The communication facilitator

The role of the communication facilitator is to help agents to locate each other and to communicate for
their mutual benefits. This includes facilities such as:

yellow pages. The purpose of this service is to allow agents to locate other ones, based on a set of

indices such as name, location, function, interest, or competence. This is a general-purpose search
mechanism that can be used, for instance, to facilitate contract net protocols or other form of
subtasking. The usefulness of this facility depends, however, of the good willingness of agents to
register to their local facilitator, to provide accurate informations, and to update regularly these
informations (see below for ways of enforcing such a pelicy).

address-based routing. If there is no direct communication links between two agents, agents can use

this facility and ask the communication facilitator to route a message. For instance, the facilitator
could select a path according to its knowledge of the network and of the current traffic, and ask
the intermediate nodes to forward the message towards its destination.

103



content-based routing. Messages sent by an agent can also be routed based on interests asserted
by other agents rather according to specific, prearranged address. When relevant information is
published by some agent, it is picked up by the facilitator and forwarded on to the requesting
agent as though told directly by the publisher. This allows agents, who don’t know of each other's
existence (which is likely to happen in large and dynamic environment) but who share common
interests to establish communication [].

3.2 The blackbﬂax_'d facilitator

The role of a blackboard facilitator is to facilitate knowledge sharing among a set of agents by providing
a concurrent access to a structured body of shared data, through a consistent interface, Itz main
functions are namely:

data management. The blackboard facilitator is responsible for the storage and the management of
the shared data and for executing the operations that are requested by the agents. Classically, the
shared memory is divided in sewveral logical levels that can be redefined dynamically by agents.
Each level contains a set of objects defined by a name (an identifier), a class, a set of attributes
and, eventually, a set of links to other objects. Objectz can point themselves to data of various
nature, such as raw text, logical formulae, or hypermedia documents. The implementation details
are not known by the agents: e.g. objects can be stored in a classical database, be represented in
some high-level scheme based on first order logic, or be physically distributed across the network.

communication management. Fach agent has to declare itself in order to be provided an access
to the shared data. Agents can then send requests that will be treated concurrently by the
blackboard according to its own management priorities and to the preferences expressed by the
agents themselves. For that purpose, the facilitator manages various information on the personal
status of connected agents (name, interests, rights, preferences, statistics, etc.)

control. Objects are also associated with management information such as: creator, owner, creation
date, last modification date, allowed operations, access rights, ete. The blackboard facilitator
provides a controlled access to these objects and may decide to hide or protect some information
from unauthorized agents. An object can be defined by its owner either as public, either as shared
by a subgroup of agents, or as private to its owner. Moreover, only the operations that have been
declared for its class (e.g. read, modify, append, link, delete, execute) can be applied to an object,
and different access rights may apply for different operations.

action triggering. Agents may request that the blackboard performs some action whenever some
condition (a logical predicate) holds, e.g. ™if the state of any object of class C changes, then
inform agent X of the new state of that object”. This is the equivalent to the notion of knowledge
source rules in traditional blackboard systems. Using this feature, agents can be automatically
informed of the events that are important to them (without having the burden to check regularly
the state of the shared memory) and can react immediately to the new situation, if necessary.

3.3 The service facilitator
The role of the service facilitator is to favor agent coordination based on any kind of contracting.

bidding An agent that wants to provide or use a given service can declare itself as a server or a
client of that service to the service facilitator. Here a functionality, or service, is simply defined

104



by a protocel, some access rights, and other properties such as: purpose, usage, time needed,
constraints on input /output values, reliability, etc. The role of the facilitator is mainly to register
the offers or demands of the various agents, to facilitate protocol-based transactions (e.g. contract
net), and to answer service-related questions such as: “which agent is offering service S on machine
M and to which conditions™.

control Once a contract is engaged between two or several agents, the role of the service facilitator is to
control that the clauses of the contract (the “rights and duties” of the agents) are fairly respected:
e.g. that agents follow the rules of mutually aggreed protocols and that their commitments are
actually realized by actions. Note that some kind of contract (role, task, etc.) may exist between
an agent and the group itself; therefore, the service facilitator can also be used by the community
as a way to enforce general policies.

4 RACE, a multi-agent platform

Based on the previous approach, we have designed and implemented a prototype of a multi-agent
platform that we have christened RACE. Technically, our framework offers:

s a low-level communication plaiform that allows software agents running on distant sites to ex-
change informations through the network;

* an agent-oriented language (based on a C+4+ interpreter) used to program new software agents,
either from scratch or by wrapping around existing applications;

a predefined set of facilitator agents specialized in some aspects of inter-agent coordination (com-
munication, data sharing, security);

a set of libraries (with a C/C++ software interface) providing various communication and coor-
dination facilities, including functions for communicating with the local and remote facilitators;

» a set of fools for compiling communication and data sharing protocols and for debugging purposes.

In the following, we will take a practical viewpoint and describe the framework from a programming
perspective, i.e. by considering the tasks that have to be completed by an application engineer to design
a multi-agent system.

4.1 Agent Identification

The first task is to identify the various agents involved and the nature of the communication protocals
that they use.

Each agent is given an address defined by a name and by a location (a machine). For instance, an
agent foo on a machine bar can be referred to by remote agents as foo@bar and by local agents as
foo@localhost, or simply as foo. By convention, an agent can have different names but two agents that
are located on the same machine cannot share the same name.

Each agent can react to, and send certain kinds of messages. Here, a type of message is defined by a
name, a set of input parameters and, optionally, a return parameter {for synchronous communications).
Messages that participates to the same functionality can be grouped into a protocel. Sender and receiver
of these types of messages are respectively called clients and servers of that protocel. Therefore, an
agent can be defined by a set of input or output communication ports, where each port is characterized
by a given protocol that the agent uses either as a client, either as a server, or as both.

105



4.2 Communication Platform

The next job of the programmer is to define the very nature of the data that are exchanged between
the agents. In the current framework, various protocols can be easily defined thanks to:

* a C-based specification language (a subset of the C language) used to describe the types of data
that are exchanged between the agents. A protocol is defined by a set of functions, each function
representing a type of message (name and input-output parameter types). Basic data types are
provided (void, string, float, integer) but it is also possible to define complex new types (array,
structure, pointer, ete.);

s a generation tool that compiles such protocols into three pieces of code that have to be linked with
an agent’ s own code: a client interface (used to receive messages), a server interface (used to send
messages) and a communication stub (that supports encoding, transmission, and decoding of the
message across the network). This implementation is based on the XDR protocel for maximum

portability.

 a shared library of C/C++ functions that applications must be linked with. Written in C/C++,
our implementation is based on efficient state-of-the-art system features such as sockets, RPC,
and otheriinter-process communication facilities so as to ensure reliable communications.

® a set of specialized portmapper agents, distributed on each site, that will manage the low-level
aspects of the communication (registering agents, remembering ports, creating UDP or TCP
connectiens) and provide basic mechanisms such as forwarding and hroadcasting.

4.3 Agent:programming

The art of agent programming is to design and implement the different components of an agent, and
to assemble the pieces of the puzzle. It is to be noted that some of these elements, although defined at
design time, may evolve at runtime.

From a programmer’ s viewpoint, an agent is composed of:

* an interface, used to communicate with the other agents. This part is automatically generated
from the compilations of the protocol specifications;

® & body of code, that implements the agent’ = basic skills, i.e. the set of automatized operations
that an agent is able to perform: actions, perceptions, computations, inferences, etc. This part
is usnally composed by a set of pieces of code (programs, object files), written in a conventional
programming language and available in a compiled form;

* a controller, that take decisions, send and receive messages, and monitors the body of code.

For the realization of the controller part, we have designed a special agent-oriented langnage whose
main features.are described below:

The language is based on a C/C++ interpreter and offers all the power of a good classical pro-
gramming language, namely simple types (string, integer, float, boolean, enumerate), type constructors
(array, list, structure, union, pointer), and control structures (sequence, branch, loop, call). Some
syntactical facilities are also provided, such as the ability to define operators, to overload function
definitions, or to use macros (thanks to the C preprocessor).

Interfacing to the C/C++ world is then extremely easy and efficient, due to the syntactical and
sernantic proximity of the languages. For instance, one can write things like:

106



extern 'C+e?? {
#include <some_header.H>

}

and use directly the types or the functions defined in the header. Even more interestingly, it is possible
to load an object code dynamically “on the fly". It is then easy to design wrappers around existing
applications or to write heavily-used functions in a conventional language, and to link these pieces of
code either at design time or at runtime.

Moreover, the language has been extended so as to provide a fully object-oriented language, with a
meta-object protocol directly inspired from CLOS, including: objects, classes (which are themselves also
objects), class inheritance, generic functions, methods, and daemons. At runtime, objects are defined
by an interface part and by an implementation part (a pointer to a data structure).

Finally, the language, which is interpreted, offers meta-level features such as: meta types (type, class,
procedure, expression), quotes and backquotes (e.g. the expression “z=1+2%%") and a set of built-in
functions (parse, eval, load, declare, define, ete.). In particular, any expression can have a textual
form (a character string that can be parsed), an interpreted form (a tree-based structure that can be
evaluated), or a compiled form (a piece of object code that can be executed). It is therefore possible
for an application to represent, reason about, and even to change its own code, e.g. by building a new
procedure from scratch and by compiling it.

5 Application: an architecture for collaborative problem-solving

Let us consider a composite system composed of one or several human agents, various pieces of software,
and a set of devices (screens, robots, whatever). Let us suppose that we want these agents (human or
software) to accomplish a set of tasks requiring some kind of collaboration between them.

Let us first try to analyse the nature of that collaboration. Collaborating means namely contributing
to the activity of a group: we can then view the collaborative activity as the result of a sum of
individual contributions. Moreover, for the purpose of this work, we will assume that such contributions
can be categorized given their rhetorical nature (proposition, critic, explication, evaluation, decision, -
application) and the level at which they occur. We have identified the following levels:

data: basic informations, observations;

interpretation: hypotheses, models, viewpoints on the situation;
arientation: objectives, high-level strategies;

commitment: intentions, contracts, tasks;

organization: plans, task allocation;

results: products of a task, partial solutions,

Consequently, if the structure of a collective activity is compatible with this model, then we can define
a set of elementary collaboration acts, or operators, characterized by: an agent, an object (e.g. an
hypothesis), a level (e.g. interpretation) and a type (e.g. proposition).

Using the previous platform, we have therefore designed a flexible, multi-level architecture for collab-
orative problem-solving. Each level is defined by:

107



* A working memory, representing the current state of the collective activity, and which is intended
to become the real “living heart” of the community. The role of such a structure is to become
an open interaction space where agents can express general-purpose opinions, exchange points of
view, make propositions, offer and request services, transmit results, ete. At design time, the
memory is originally partitioned into different levels (data, situation, objectives, tasks, plans,
results) and can contain informations, models, propositions, eritics, explanations, decisions, etc.

® A knowledge base collecting information about the domain, the group, or the way to solve problems:
schemes, ontologies, task models, methods, procedures, conventions, policies, ete. These data can
be used e.g. by classical knowledge-based systems to infer new information, generate hypotheses,
propose a plan of actions, etc.

» A set of man-machine or software interfoces, giving agent-friendly access to the shared memory
and offering a set of basic actions such as: visualize, query, criticize, explain, inform, reguest,
command, etc. Tdeally, these interfaces should be customizable to agent’s needs and offer facilities
like data filtering (present only informations that match agent’s foci) and dog watching (trigger
some action, e.g. inform the agent, whenever some condition oceurs).

* A set of public-spirited facilitators, i.e. specialized software agents devoted to the well-being of the
community in general and to the cooperation of its members in particular. The set of facilitators
includes individual assistants (attached to a specific user) and inter-agent coordinators (acting as
mediators between two or several agents). '

Using the range of facilities described in the previous section, users can decide for instance to change
the structure of the shared memory, to add facilitators, or te integrate new agents into the framework,
Therefore, thanks to the flexibility of the underlying platform, this framework can be considered as an
open system [Hewitt and de Jong, 1983]. '

Such an architecture can be used, for instance, to support various coordination strategies used by
human beings, such as iterative model refinement [Bond and Ricei, 1992).

6 Conclusion

We claim that flexibility and openness are major requirements for the usability of a cooperation frame-
work. The present approach emphasizes this need for flexibility and paves the way for a general approach
to the design of collaborative systems. In particular, our multi-agent platform has interesting properties,
such as:

distribution. Agents can be physically distributed on different machines, or run as different processes
on the same machine.

genericity. The approach is independent of the application domain or of specific implementation
choices;

flexibility. Different modes of communication and coordimation strategies can be implemented;

inter-operability. Heteregoneous agents and existing applications can easily be integrated within a
common framework;

reactiveness. Agents do not follow fixed plans. They can suggest, inform, criticize, explain, negotiate,
etc. In response to the actions of the others;

108



self-organizability. Roles and tasks can be dynamically allocated by agent themseves. Real collabo-
ration between agents requires a joint effort to define the organization of their collective activity.

efficiency. Communication protocols are reliable and based on efficient inter-process communication
mechanisms. Most of the code is written in C-based languages, and can be compiled for maximum
speed.

However, our current implementation is still a prototype. What is needeed is to test such a framework
on real applications, especially in the industrial world.

We are conducting preliminary experiments in the domain of car collision analysis, for the design of
a system where experts of different specialties (psychology, physics, road infrastructure) collaborate in
order to build simulation scenarios and understand the nature of collisions. We hope that this experience
will give us better understanding of the impact of such an approach on the design of collaborative
systems.

Related work

This work is to be related to recent researchs that aim at applying multi-agent techniques to the design of
generic cooperation architectures ({Gasser, 1993]), especially ARCHON [Cockburn and Jennings, 1995]
and SHADE [McGuire and al., 1993].

A few approaches have also tried to merge the techniques of distributed problem solving {(DPS)
and multi-agent systems (MAS). For instance, the TEAM architecture [Lander, 1994] is composed of
1} a common memory that represent the current state in problem solving (a blackboard portioned
into: solutions, problem specifications, coordination strategies, messages), 2) a framework manager
that manages the common memory and the communication with the agents, and 3) an agent set that
is connected to the framework. However, the current prototype does not allow to distribute agents into
separate processes.

Acknowledgments

This work was partly sponsored by the European Community under the scope of the ESPRIT working
group MODELAGE (contract EP:831%) [Shobbens and al., 1994]. Comments from Olivier Corby and
other members of the ACACIA team have helped to shape the viewpoints expressed in this paper.

References

[Bond and Ricei, 1992] Bond, A. and Ricci, R. (1992). Cooperation in aircraft design. Research in
FEngineering Design, 4(2):115-130,

[Bond and Gasser, 1988] Bond, A. H. and Gasser, L, (1988). Readings in Distributed Artificial Intelli-
gence, Morgan Kaufman Ine,

[Cockburn and Jennings, 1995] Cockburn, D. and Jennings, N. R. (1995). ARCHON: A Distributed
Artificial Intelligence System for Industrial Applications. Morgan Kaufman Inc., Wiley.

[Gasser, 1003] Gasser, L. (1993). DAI approaches to Coordination, pages 31-52. Kluwer Academic,
Deordrecht, :

109



[Hewitt and de Jong, 1983] Hewitt, C. and de Jong, P. (1983). Analyzing the roles of descriptions and
actions in open systems. Technical Report Al Memo 727, MIT.

[Lander, 1994] Lander, S. E. (1994). Distributed Search and Conflict Management Among Reusable
Heterogeneous Agents. PhD thesis, U. of Massachusetts Amhert. available as C8 technical report
04-32.

[Marick and al., 1994] Marick, V. and al. (1994)., A distributed system for CIM. In Proceedings of
DEXA '8¢, Athens, Greece.

[McGuire and al., 1993] McGuire, J. and al. (1993). SHADE : Technology for Knowledge-Based Col-
laborative Engineering. KSL WWW Server. '

[Shobbens and al., 1994] Shobbens and al. (1994). Modeldge, A Common Formal Model of Cooperating
Intelligent Agents. Kluwer Academic. B.R.W.G. proposal.

110



