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Abstract

In this paper we introduce a programming language/system DK_Parlog** which is an experimental
testbed for distributed applications, particularly distributed AI and distributed knowledge base appli-
cations. The language is designed to have the concurrent computation ability of the Concurrent Logic
Programming(CLP) languages, the knowledge representation and problem solving ability of Prolog, both
enriched with the program and knowledge structuring capabilities of Object' Oriented programming.

The basic building blocks of an application are a collection of classes and servers which can be
distributed over a network of machines. The location of a class or server is specified in its definition.
Classes and servers have unique public names, such as student, department and dbmanager. Classes
can be linked using single inheritance. Servers are like classes except they have no instances (which is
why we don not call them classes) and no inheritance links. They are used to implement publically
named interface processes; for example, an interface process to a dialogue handler, or to an external
data base.

This paper introduces the key features of the language illustrated through the progressive development
of part of a distributed knowledge base for a University. Finally we show how a server could be used
as a query manager for the knowledge base, and how the system could be extended to interface with
an external object oriented data base. Via such servers the language could be used as a harness for
distributed heterogeneous knowledge base systems.
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1 Introduction

DEK_ Parlog*™ is a programming language/system built on top of IC-Prolog II [Chu and Clark 1993],
which is a combined Parlog and multi-threaded Prolog system. The new language is an experimen-
tal testbed for distributed applications, particularly distributed Al and distributed knowledge base
applications. The language is designed to have the concurrent computation ability of the Concur-
rent Logic Programming(CLP) languages, the knowledge representation and problem solving ability
of Prolog, both enriched with the program and knowledge structuring capabilities of Object Oriented
programming. DK Parlog*t was inspired by Davis’s Polka [Davison 1989] 0O extension of Parlog
[Clark and Gregory 1986 | and McCabe's L&O [McCabe 1992] extension of Prolog. Crudely character-
ized, it is a significantly modified and distributed version of Polka relatively seemlessly integrated with
an extended and distributed version of L&O.

Classes and servers The basic building blocks of an application are a collection of classes and
servers which can be distributed over a network of machines. The location of a class or server is
specified in its definition. Classes and servers have unique public names, such as student, department
and db_manager. Classes can be linked using single inheritance. Both state variables and methods are
inherited. That is, an instance of a subclass automatically has all the state components and methods
of the instances of its super classes. Servers are like classes except they have no instances {which is why
we do not call them classes) and no inheritance links. They are used to implement publically named
interface processes; for example, an interface process to a dialogue handler, or to an external data base.

Default methods and state components A class must have a create method for generating in-
stances. If none is given in the class definition, the DK_ Parlog** system adds a default one. It also
adds an extra class state variable which holds the current list of unigue identifiers for all the created
instances of the class.

Unique object identifiers A newly created instance can have a system generated identifier, or a
program assigned identifier, such as doc106. Both class and instance methods are invoked by sending
a message to the class or instance identifier. A system name server automatically routes the message
to the machine on which the object resides. Every object, be it class, instance or server, has a unique
identifier. A program assigned name that is not unique will be rejected.

Reply mechanisms Messages sent between objects can contain variables. Typically answers are
given by binding these variables. A network wide distributed unification scheme implements this answer
return method. Alternatively, a reply to a message M can be given by explicitly sending a reply message
to the object:that sent M. The sending object’s identity iz antomatically attached to every message as
it is sent and:can be accessed using the sender keyword inside the method that handles the message.
This reply mechanism does not need distributed unification.

Two kinds of methods That DK _Parlog*t has classes which have state variables and methods,
and the ability to reply to a message by sending a message to the object identified as the source of
the message, makes it significantly different from Polka and the other Q0 extensions of concurrent LP
languages such as Vulcan[Kahn et al. 1987] and A’UM|[Yoshida and Chikayama 1988]. However, the
feature of DK_ Parlog™ which makes it significantly from these other languages, is that both class and
instance methods can be of two kinds: procedural methods and knowledge methods.

86



Procedural methods A procedural method is a rule that links a Parlog conjunction of calls with a
pattern for a received message, a message sent to the object vsing the message send operator =»>. Each
Parlog call in the method definition only has one sclution and it is evaluated using the committed choice
operational semantics [Clark and Gregory 1986 |. The method can comprise any mixture of sequential
and parallel computation, specified using a combination of the Parlog *,’ and "&° conjunction operators.
As soon as a procedural method is invoked, another message invoking a procedural method can be
accepted. But that method will automatically suspend if it needs o access a state component that is
changed by any previously invoked procedural method and for which the new value has not yet been
computed. A message containing variables sent to an object invoking a procedural method can have at
most one solution binding returned for its variables.

Knowledge methods In contrast, a knowledge method is a Prolog program for some predicate
p/k!. It is evaluated as a sequential Prolog back-tracking search for one or more solutions to a call,
‘plt1,..,tk), sent to the object using the message send operator :». This call can have many solutions.
As with procedural methods, the next call to a knowledge method can be accepted and executed by
an object whilst the previous call is still being processed. This is because the Prolog component of the
underlying [C-Prolog II system is multi-threaded[Chu and Clark 1993]. There are exceptions to this
immediate acceptance of the next call. Certain knowledge method calls will be delayed until all existing
calls have terminated. We discuss this more fully below.

Sending messages in methods Both kinds of methods can send messages to other objects (using
either message send operator), or, using the self keyword, back to themselves.

Atomic Transactions Both message send operators can also send a sequence of messages as in:
(msk,...,ms2,ms1) => 0 : '

This guarantees that the sequence will be preserved on arrival at the object, i.e. that the messages will

not get out order and that no other message sent from elsewhere will get interleaved with the sequence.

This is useful for guaranteeing atomicity of a sequence of access and update messages sent to an object.

Distributed backtracking A message send

p(X) :> 0
will invoke a Prolog computation which may have multiple solution paths, each resulting in a different
answer binding for X. If this message send is executed in a procedural method, only one solution binding
will be returned, that given by the first solution path. However, if it is executed in a knowledge method,
the backiracking search for a solution to that method may cause multiple alternative salutions for p (X)
to be requested and returned. When O is an object on another machine, this fetch of the alternative
solutions for p(X) is implemented by DK_ Parlog**’s support for distributed backtracking.

Finally, let us note that a parallel conjunction of knowledge method calls

p(&) > 0, q(¥) :» 0*
executed in a Parlog defined procedural method, will cause concurrent execution of two threads of
Prolog computation to find the first solution to each call. Where O and (7 reside on the same machine,
these will be time shared. Where the reside on different machines, they will be executed concurrently.

''We use the Prolog [k convention for indicating the nomber k of arguments that a message/method call should have.
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Restricted access to state variables State variables have their scope restricted to the procedural
methods. Therefore, only a procedural method can directly access a state variable. This is because
the procedural methods are implemented as the clauses of a Parlog recursive process definition? and
the values of state variables of an object are held as arguments of this process. The Prolog and
Parlog systems are coupled [Chu and Clark 1993], but only loosely via a message passing interface. A
knowledge method M that needs to access the value of a state variable S must either do this indirectly
by => sending a message to self to invoke a procedural method to access S, or, if the knowledge method
is always invoked by a message send M :> self from one of the procedural methods of the object, the
value of 5 can be passed as an argument in the message M.

State information represented as knowledge Knowledge methods can directly access state in-
formation only if it is represented as Prolog clauses. DE._ Parlog*™ has a mechanism for allowing state
information for an ohject to be represented in this way. Special system defined knowledge methods,
that are automatically added by DK. Parlog** as extra methods to every object, allow the addition,
deletion or update of a special category of dynamic knowledge methods for the object®. In addition,
when a create message is sent to a class, a sequence of dynamic knowledge methods can be attached
to the message to become the initial dynamic knowledge of the new instance. The knowledge methods
given in a class definition are the static knowledge methods. They cannot be changed.

Dynamic knowledge versus instance variables The dynamic knowledge methods of an object
can be used to record specific data about the object that would otherwise be held as the values of the
instance state variables. For example, we can record the name smith of a student instance 8 in an
instance state variable, Name, to be accessed via a call

name(N) => 8 '
to procedural method with the definition

name(N) -> N=Name
Alternatively, we can record it as a dynamic knowledge method/fact

name{smith)
to be accessed via a knowledge call

name(N} :> 8
To the other objects that need to access this instance specific data there is virtually no difference. They
just need to know that access is via a procedural method or a knowledge method, in order to invoke
the method with the appropriate message send.

Maintaining consistent dynamic knowledge state When we record state information using state
variables we do have a guarantee of consistent access and update of the state. A procedural method
executed on receipt of a message M sees the set of values for the state variables that result from the
execution of all and only the procedural method messages that have reached the object before it, even
though it can start executing before these other methods have terminated. Because knowledge methods
of an object can also execute concurrently, we need a similar guarantee with respect to the dynamic
knowledge of the object. We need to know that a knowledge method, executed on receipt of some

*We use a modification [Wang and Clark], of the concorrent OO implementation method of Shapiro and Takeuchi
[Shapiro and Takeuchi 1983]. The major difference is that all the instance methods, whether inherited or not, become the
clauses of a single Parlog process definition. Shapiro and Takeuchi, and Davison [Davison 1989), have a separate process
definition for the instance methods at each level in the hierarchy.

" *The dynamic knowledge methods are the analogue of the dynamic clauses of Prolog. They are represented as such.
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message M’, sees the dynamic knowledge that results from all and only the knowledge update methods
whose execution was started before the receipt of the message M’. DK. Parlogtt guarantees this by
handling calls to the knowledge update methods in a special way. A knowledge update method is only
executed by an object if all previously invoked knowledge methods have completely terminated. (This
means that all the needed different solutions have been found.) In addition, no new message invoking a
knowledge method will be accepted by the object until the knowledge update method has terminated.

This consistency of access to state information represented as dynamic knowledge guaranteed by DK_
Parlogt is stronger than that provided by the DLP language [Eliens 1992], another distributed logic
programiming language in which all the methods are what we call knowledge methods. DLP only delays
a state update until a solution to each currently executing method has been found. So, on backtracking
to find the next solution, the method may see a different state of dynamic knowledge to that seen when
the previous solution was found. We consider this to be too weak.

Active classes and DOOD classes Classes in which instances have procedural methods we call
active classes. There instances are represented as forked Parlog processes. Active classes can be used
to program distributed object oriented applications. Classes with instances that only have knowledge
methods, are rather like classes of an object oriented data base. Their instances are not processes,
They are named sets of Prolog facts and rules that can be deductively accessed. We call these DOOD
( Deductive Object Oriented Data) classes. A collection of DOOD classes can be used to build a small
00 knowledge base, with a server process used to implement a query and update manager for the data
base. The server can enforce atomicity of transactions that access and update knowledge held in several
instances, even instances from different classes. [t can also ensure that consistency constraints that
relate dynamic knowledge held in instances of different classes are maintained.

Interface with other applications The message send and variable binding communication across
the network use TCP/IP based communication. There are even TCP/IP communication primitives that
can be called directly from a method, inherited from the underlying IC-Prolog IT [Chu and Clark 1993).
This makes it easy to link in with other heterogeneous applications.

2  Active classes in DK _Parlog™™

We shall introduce programming in DK_Parlogtt by giving a small example of the definition of an
active class. This comprises the two class definitions of Program 1. The second class, field course,
inherits from the first course. It adds an extra state component, MaxStudents ito its instances, in
addition to the state components Title, Lecturer, NumStudents, Students and Level that it inherits,
WNote that all but Lecturer and Title have default initial values specified in the class definitions. The
field course class also has an exira instance method add_an_enrollment/2 that makes use of the
add_an_enrollment/1 method defined in the course class. Notice that the inherited course instance
method iz directly called, as usual in a 00 languages, via a message sent to super.

Default class methods and state variables Neither class has any explicitly given class methods

or class state variables. In the absence of a program defined method for creating instances every class

has one automatically added. It is a method invoked with a message of the form:
create(0id,I1,I2,..,Ik)

where 0id is either a given identifier for the instance to be created, or a variable to which the system

generated identifier will be bound. FEach Ii is given value, or the Prolog anonymous variable . If it
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is value, it is the initial value for the i'th state variable of the created instance, overriding any defaunlt
value for that state variable. If it is _, the default value of that state component is given to the variable
if one was specified. If not, the instance variable is left uninitialized. It must be given a value by a
procedural method call,

lass coursa with

insl:a.%me.,definitim
states
alitéﬂ* Lecturer, NumStudsnts := 0, Students := [J, Level := 1.
methods
run_by_lecturer(LECTURER} -> Lecturser := LECTURER.
add_an_anrnlllant(STUDEllTJ -> Stud.en'ts := [STUDENT | Studemts],
HumStudente := N ddents + 1.
current_numbers(NUMBERS) —> NUMBERS = NumStudents.
title(T) -> T=Title.
conrsa_dona => suicide.

Eﬂsa field_course isa course with

instance_definition
atates

ﬁxg‘:udants 1= 20,
:l.at
dd_an_enrcllment(Student, Ans) : NumStudents < HaxStudents ->

Ans=ok, ndd_m_nnrollnont(ﬁtudnnt) => super.

add_an _enrollment (Student, Ans) Hu.mStu.dantx »=HaxStudents —>
} “Ans='The cnursc is over crowded!’

instance create(doci0&, 'Assembler Programming', _, _, ., 1) =2 fiald course.

Program 1. A two class active object DK _Parlog*™* program

Tha last line of Program 1 is an example of an instance creation using the system provided create
method. It creates an instance of the field_course class with object identifier doc105 and with default
values for its NumStudents and Students state variables, The Lecturer state variable will be initially
unbound and will have 1o be bound by sending & mmua,ge to instance docl105 such as:

run by _lecturer(clark) => doci05

The run by lecturer/1 method can also be used to later update the identity of the lecturer. The
operator := used in a procedural method will change the current value of a state variable. But the new
value will only be visible by the nest procedural method to be invoked. The current method sees only
the value it had at the start of execution of the method. So :=is not conventional assignment. It is just
the way that a procedural method indicates any change of values for the state variables to be passed to
the next method invocation. If there is no use of := in a method, there is no change to the values of
the state variables for the next method invocation. Access to the value of a state variable is via use of
the unification operator =,

A class also always has an undeclared state component, jmtla.]ued to [1 which holds a list of all the
names of its instances, The value of this state variable is automatically updated by the system as class
instances are created and destroyed. Inside a class procedural method the current value of this variable
can be accessed using the keyword members. This membership list can also be accessed from outside
the class by sending a members/1 message to the class. This is another method automatically added to
every class. Thus, if we now execute;

members(L) => field course
with L an unbound variable, the answer binding returned would be L=[doc105].

The class course also has the members/1 method and the same message sent to it will give the same

answer., Superclasses have on their membership lists all current members of their subclasses. This
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is useful if we want to send a message to every course. We do not have to separately retrieve the
membership lists for course and field course. We do not even have to know about the subclasses of
course.

Instances also have some antomatically added state components and methods. They have a state
component that holds their own identity, accessed in any method via the keyword self Another holds
the identity of their class, accessed in a method using the keyword cless, for example, as in a message
send:

msg =* class
It can be also be accessed by sending a class/1 message to the instance.

class(C) => doclOs
will bind C to field course. Thus, by sending it a class message the “type’ of any instance to be
determined. Another default method of a class is the destroy(0id) method which kills an created
instance with identity 0id. It also deletes it from the membership list of its class and all that class’s
superclasses.

To get rid of the instance doci08 we would execute;

destroy(doc105) =» field. ceourse.
This will also delete dec105 from the members lists of course and field_coursa. Notice that course
also has an instance method:

course_done =»> suicida
This is an alternative, less abrupt way to terminate an instance. suicide is another keyword. When
used in a method it causes the object to terminate after the method terminates. The object will accept
no more messages. If the object is an instance, it also causes a destroy(self) message to be sent to
its class.

Procedural method rule The general form of a procedural method rule is:

Pattern [: Guard ] -> Method '
where :Guard is optional. (The -> is not optional.) If present, any message matching the pattern invokes
Method only if Guard succeeds. The field course instance definition has two method definitions for
add_an-enrollment/2. One for the case that the current value of instance variable NumStudents is less
than the allowed maximum number of students for this course, held as the value of instance variable
MaxStudents. The other method is for the case where this maximum has been reached.

Default parallel evaluation The Method code is a Parlog conjunction. In this, the ', separator
indicates parallel execution. To force a sequential execution we can use "%’ to conjoin the calls of the
method. Finally, by default, as soon as Method starts to execute the instance ‘recurses’ to accept the
next method invocation method. To stop this, we can use "&." instead of *." as the method terminator.
This convention, derived from Polka, means that the next message will only be accepted when all the
calls of the method has terminated. Note that this does not necessarily mean when all the activities set
off by the method have terminated. Suppose that the method causes activity to be started in another
object via the sending of a message to that object. The '%. will not cause the object to suspend
message processing until this activity has terminated. It oaly waits for the message send and the other
calls of the method to terminate. The message send will terminate almost immediately. What we can
do, and this is often the only delay that we need, is make the method suspend (hence not terminate)
until some variable in the sent message has been bound by the activity that the message initiates. We
do this by using the Parlog data/1 primitive. We give an example below.
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3 Dynamic knowledge versus state variables

To illustrate the trade of between using state variables and using dynamic knowledge consider Program
2. It uses instance variables. After briefly discussing certain aspects of the program we will replace two
of these with dynamic knowledge (actually Prolog facts) attached to instances.

Program 2 is a two class program with the undergraduates class inheriting from the student class.
Note also that the student class header specifies a machine location, lactzu for the class. This is the
name of the workstation in our department at Imperial College where the student class process will
reside. By default, its subclass, and all the instances of both classes, will also reside on that machine,
However, we could locate the subclass, and hence all its instances, on another machine,

The program assumes that there is a department class with instances that are college departments,
and that the class has an procedural instance method, enrell for_a coursa(Courseld,Ans). The
method will try to enroll the sender of the message, some instance of the undergraduate class, in
course Courseld, an object identifier, such as dec105. Remember that the sender identifier does not
need to be included in the message. DK _Parlog™ automatically adds the sender identifier to every
message and this can be accessed in the receiving method using the sender keyword.

The enrcll for_a course message might have been sent to the undergraduate instance by an
enrollments server that interfaces with real students. They would perhaps use dialogues displayed by
the server to enroll in courses, find their grades etc.

Elas:':tudant at laotzu with

instance_definition
states
ama, Dept.
methods
department (DEPT) -> DEPT = Dept.
name () -> N=Name.

%
class undergraduate isa student with

instance_definition
states ]
Year := 1, Subject, CurrentCourses := [], PreviousCourssszs := []

methods
enroll_for_a_course{Courseld, Ama) ->

enroll for_a_course{Courseld, Reply) => Dept,

(Reply == yeas ->
Anz = yes, CurrentCourses := [Courselo | CurremtCourses] ;
kne = no

final;gra.dafﬂ.‘muraa]d, Grade) ->
remove{Courseld,CurrentCourses, NCurrentCourses),
CurrentCourses := Hmurent.ﬂﬁurﬂﬂg
CoursesTaken := [{Courseld,Grade)|CourseTaken].

yaar(¥) > ¥ = Year.
next_year —> Year := Year +1.

Yiother methods

Program 2. Student active classes

An undergraduate instance is created with a message send:
creata(StId,2,ai,.,_,Bill Smith’,’'Computing’) => undergraduate
5tId will be bound to a unique name for the new instance.
Let us now consider a modification of this program in which we use dynamic knowledge in instances
of the undergraduate class in lien of the instance variables, Year and CurrentCourses. In this case,
there is not much advantage. We do it to exemplify the knowledge manipulation facilities.
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Let us suppose that these two state components of an undergraduate student instance will be
recorded by dynamic knowledge methods, actually Prolog facts. The year will be recorded by a fact of
the form, yr(N) and the CurrentCourses by a sequence of facts course(Idl). course(Id2).
course(Idk).

The create message now takes the form:

create(StId, Bill Smith',cemputing,.,’Computing’) with {yr(1)} => undergraduate.
where {yr(1)} is the dynamic knowledge/data attached to the new instance in place of the value for the
instance variable Year.

The new class definition for undergraduate is given in Program 3.

class undergraduate isa student with

instance_definition
states ) )
Hame:=unknawn,3uhject := unknown, PreviousCourses := [].

methods
enroll_for_a_course(Courseld, Ans) ->

enroll_for_a_course{Courseld, Raply} => Dept,

(Reply == yes) =>
acquire_knowledge(course(Courseld)) :> self ;
ins = no

Y.

final_grade(Courseld, Grade) ->
remove_knowledge{course(Courseld)) :> salf,
CoursesTaken := [{Courseld,Grade)|CourseTaken] .

year{¥) ->» (yr{Z) :> self -> Y=E ; ¥=1).

next_year —-> year(Y) :» self & NY is ¥ +1 &
(add_knowledge(yr(NY))}, remove_knowledge(yr(¥)}) :> self.

fother procedural methods
hother knowledge methods

Program. 3 Undergraduate class with knowledge methods

The definition of the knowledge method for year/1 is worth examining.

year(Y) -> (yr(Z)} :> self -> ¥=Z : ¥Y=1).
It first checks to see if a yr/1 fact has been added to the dynamic knowledge of the instance by the
knowledge query:

yr(Z) :> self
If this succeeds, the year has been explicitly recorded and its value is returned. If this fails, it returns
the default value 1. Seo, just has when we used a state variable to record the year, if we create a student
instance without specifying the year, and then we query it for its year, we will get the answer 1. We
can be a little more sophisticated than this. Instead of just returning the default value 1, we could
try to ‘infer’ the year by looking at the courses that the student is currently taking. We could have a
definition:

year(Y) -> (yr(Z) :> self -> ¥Y=Z ; findyear(Y) :> self.
where findyear/] has a private Prolog definition in the code section for the class. A possible definition
is:

findyear(0id,Y) :- findall(C-L, (course(C):>0id, level(L)=>C), Cs),

most_frequent level (Cs,Y).

We assume that most frequent level(Cs,Y) would bind Y to the most frequently occurring level
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number appearing on the list of C-L returned in Cs. This default computation uses the university “rule’
that a student must take the majority of their courses with a level that is their year of study.

Let us also examine the method:

next_year -> year(Y) :> self & WY is ¥ +1 &
(add knowledge (yr(NY)) ,remove knowladge(yr(¥Y))) :> self.
acquire knowledge/1 and remove knowledge/1 are the dynamic knowledge manipulation methods
automatically added as instance knowledge methods to every class definition by the DE_Parlogtt
system. *

The procedural method rule uses the Parlog sequential connective "§' to sequentialize the execution
of its calls, First it uses a gelf enguiry to find the students current year in order to add 1. Then, it
sends the knowledge modification sequence

(add knowledge (yr(NY)) ,remove knowledge (yr(Y) )}
to itself. The two updates are put info a communication sequence in order to guarantee that they will
be executed atomically by the object.

4 User defined create and class level knowledge

As an example of a class with a create that overrides the system default, and which has class level
knowledge rules, consider Program 3.

class research_student is_a student at confucins with

class_definition
methods )
create(Id, Interests, Supervisor, Name, Dept) : nonvar{Superviser) ->

fork_instance(research_student,Id, (Interests, Superviseor, Name, Dept)).
create(Id, Interests, Supervisor, Name, Dept) : var(Supervisor) -»

find_a_supervisor(Interests, Dept, Supervisor) :> self,

data{Supervisor) &

fork_instancae(research_student,ld, (Interests, Supervisor, Name, Dept)).

- _— ——————— =
find_a_supervisor(Interests, Dept, Name) :-
interests{Name, Interests) :> Dept,
will_accept_student(Student,Interssts,Ans) => Name, Ams=yes.
find_a_superviser (Interests, Dept, Name) :-
. head_of_the_department(Name) => Dapt,
instance_definition

sti.tea .
nterests, Supervisor
methods

.

Program 3. Knowledge methods at the class level

There are two procedural methods for create messages. The first is for the case where the identity of
the supervisor is given in the create message. This essentially does what the system provided create
does. The wser method calls a system primitive, fork_instance/3. This will bind Id if it is was not
supplied. It also informs the class research student that Id is a new member using one of the system
methods inserted in every class.

An attempt to create an instance of the research.student class without giving the supervisor will
cause a use of a class level knowledge method for finding a supervisor. The class knowledge method will
be invoked with the call:

We can also view them as autematically inherited from a special system class,
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find.a supervisor{Interests, Dept, Supervisor) ;> self
The create method then waits until an answer binding for Supervisor is returned (the Parlog primitive
data/1 will suspend until its argument is a non_variable), When the answer is returned the instance
will be created. Let us look at the execution of the find_a_supervisor call. Notice that the class
research student is declared as residing on machine confucins. Suppose that the department class,
which we have not defined, resides on another machine with all its instances. The invocation of the
knowledge method for interests/2, assumed to be defined in the department class, with the call

intereste(Name, Interests) :> Dept
is & request to find a faculty member of instance Dept with some overlap of interests with the new
research student. Generally this will have several solutions. As each solution to the call is returned, the
enquiry and test

will_accept student(Student,Interests,Ans) => MName,

Ans=yes
will check that the identified potential supervisor will accept the student. If they will not, the next
solution to the call

interests(Name, Interests) :> Dept
will be found. This involves distributed backtracking. A query thread for the suspended Prolog call
interests(Name, Interests), on the department class machine, will be suspended waiting for a
request for the next solution. The second clanse for find_a_supervisor/3 is used to give a default
supervisor if the first rule fails to find one. Becanse find a_supervisor/3 is invoked from a procedural
rule, as soon a solution to the call is found, its execution will terminate. This will also terminate the
suspended thread for interests(Name, Interests) on the remote machine, should a supervisor who
will accept the student be found before all solutions to the call interests(llame, Interests) have
been generated. It is part of the housekeeping of the distributed backtracking implementation.

5 Using DOOD classes and a query server

We will now further change our example so that research student class has no procedural instances
methods or instance state variables. Tt no longer inherits from the student class because that had in-
stance variable holding the name and department of the student. For a research student this information
will now be held as a dynamic fact. All state information about an instance of the research_student
class is now recorded as dynamic knowledge attached to the created instances. The class is what we have
referred to in the introduction as a DOOD class. In addition, we add another DOOD class, supervisor.
The dynamic knowledge that will be held about the instances of the two classes will conform to the
schemas:

student:{ supervisor:{

id(0bjectId). id(ObjectId).

name (Name) . name{ (Nama) .

department (Dept) . interest(Interestl).

interest(Interest). interest(Interest2).

supervisor(SUP). HaDBa0 ot

}. gtudent (Studenti).
student (Student2).

.k
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However, not every instance need have facts for each predicate. The new class definitions are given in
program 4. The user defined create methods are used to create instances according to the schema. In
contrast to the fork_instance primitive used in creating an active instance, which forks a Parlog process,
the make_passive_instance adds an L&O object definition [McCabe 1992] containing the clauses given in
the third argument. It will generate a unique identifier for the object if need be, just as the fork_instance
primitive.

Strictly, we do not need to give create definitions. With them, we create a research student
instance with a call:

create(Id, ‘bill smith’,computing,distributed logic_ prugramming} =» research student
Without it we can do this using the default create and the message:

creata(ld) with {nama{’bill smith’,department (computing),

interest(distributed logic_programming)} => research_student
{ur create allows a shorthand for the latter.

class research_student with

class_definition
methods
create{0ID, Name, Dept, Interast) ->
make_passzive_instance(reszearch_stundent,0ID,
{name{¥ame) ,department{Dept),interest{Interest}}).

I

class supervisor with

class_definjition
mathods
create(0ID, Name, Interast) ->
‘ maks_passive_instance(supervisor ,0I0,{name(Name) ,intereat{Interest}} ).
1
A
server db_manager with

methods
add_knowledge(ObjectID, Enovledge) =»

acquire_knowledge(Knowledge) :> DbjectID.
guery (QueryExpression) :-
uery_converter(QueryExpression, ActualQuery),
Euuri.rﬂxpcraa siom.

codae
gquery_converter(Class-Query, (on(X, MemberList), Query) :> X) :-

members (MemberList) => Class.

query_converter( (Class-Query,RestQs),((en(X,HesberList), Query):>X),Erest} :-
members (Memberlist) => Class,
query_converter{ RestQs, Erest ).

Program 4. A DOOD classes and query server

Whether or not we have a collection of DOOD classes or active classes, it is useful to provide a data
base manager interface. This can handle queries that refer to more than one class, and it can ensure that
a sequence of updates to several classes are performed atomically. Program 4 also contains a definition
of a server, called db_manager, which acts as a simple manager for queries and updates to our two
DOOD classes, and to any other DOOD or active knowledge class. It just assumes that the queries are
to be processed by knowledge methods - Prolog rules and facts - that belong to, or are inherited by,
instances of the classes referenced by the query, :
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The guery format The query method in the db.manager assumes the following format for the
query expression is used:

{Classi-Queryl, Class2-Query2,...)
where Classi specifier confines the Queryi expression to the instances of Classi. Each Class-Query
component is actually converted into the DK_Parlogtt query:

{ on(X, MemberList), Query :> X )
where MemberList is the current membership list of Class acquired by sending a

members{(Memberlist) => Class
message. Note that the db_manager server definition has a code section containing the definition for
guery_converter. This is private to the server and cannot be called, via a message, from outside the
SEIVET. ' '
The following ferall loop embeds a query to db_manager will find each research student who does

not yet have a supervisor for whom a supervisor can be found who shares the recorded interest of
the student. In addition, for each found pair, it uses an the add.knowledge method of db_manager to
atomically update the knowledge attached to the student and the supervisor, assuming that all queries
and updates go via the db_manager,

forall( guery( student-(interest(I),id(ObjectID),nama{Name)), (not supsrvisor(_.)},
supervisor-{interest{I),name(Snama} , id(50bjectID}, (not student{_}})
} :> db_manager,
(add_knowledge{ObjectiD, supervisor(Sname},add knowledge {S0bjectlD, student(Name)

} > db_manager
Y.

6 Extension to an Heterogeneous System

The link with other systems is best effected using the TCP/IP communication facilities mentioned in
the introduction and interface servers.

6.1 Interface Servers

The main functionality of the interface server is to translate messages to the proper inputs of the
external systems and to maintain the outputs generated. For example, the interface serverto an external
ohject oriented database may include methods for translating messages to the queries of the database
system. The translation could range from simple literal rearrangement to complex query synthesis. For
instance, a simple interface to the ORION[Kim et al. 1990] database system would comprise methods
which translate messages into one of the seleet, select-any, delete, delete-object, and change
associative access messages of to the methods which manipulate the returned setf object containing
selected instances. The interface to the Jasmine object-oriented DBMS|[Ishikawa 1993], on the other
hand, is more complicated. Proper messages must be provided and translated into its set-oriented access
query of the following form:
< target part> where < condilion part>
Take an example:
[DOCTOR. Name, DOCTOR.Address] where DOCTOR.Dept="pediatrics" and DOCTOR.Age > 45
An SQL-like language synthesizer might be required for the methods to translate a message like:
all( ’DOCTOR’.(Mame, Address), (Dept = pediatrics & Age > 45))
to the above Query.
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7 Concluding remarks

DE_Parlogt® is an experimental system that is still evolving. Most of what we have described is
implemented or is very nearly implemented. We intend to explore several different kinds of applications,
including ones that require an interface to other, heterogeneous, applications.

There are two other heterogeneous applications, both of which accept and send Prolog style terms
using TCP/IP, that we definitely intend to link with. One is a Motif based dialogue server, called
Dialox, the other is a small OO0 data base system implemented in C. Both of these have been designed
and implemented by our colleague, Frank McCabe, and his students at Imperial. The interface will be
via a SeTver process. .

The instances of active classes of the language, especially if all their instance methods are defined by
purely parallel Parlog code, are very like actors [Agha 1986). The addition of our inheritance mechanism
gives extra programmability to the actor model, similar to that of [Kafura and Lee 1989].

At the other extreme, a program comprising only DOOD classes, is quite like a DLP [Eliens 1992] pro-
gram. This also allows concurrent execution of methods in an object and has distributed backtracking.
However, as we mentioned in the introduction, DLP has a weaker constraint regarding when dynamic
information can be changed. Also it lacks our Parlog procedural methods, which allow parallelism
within the method. DLP only has parallelism of alternative methods.

Orient84/K [Tokore and Ishikawa 1984] is perhaps the closest in design goals to DK.Parlng T}us
language has procedural methods implemented in a distributed version of SmallTalk with knowledge
methods implémented in Prolog. But the SmallTalk procedural methods are sequential, and the fit
between 3mallTalk and Prolog is much less homogeneous than that between Parlog and Prolog. For
example, messages sent between SmallTalk objects cannot be Prolog queries containing variables. In
DK Parlog** such messages can be sent, like those that we can send to the dbmanager server, and
evaluated by Prolog. The answer bindings are then communicated back to the sender object via 1:]1e
network widesdistributed unification scheme,

We believe that DK Parlog™ is a very expressive language ideally suited to prototyping distributed
knowledge base, or distributed Al applications. When its implementation is completed, we will be
happy to make it available to other researchers, to test its potential.
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