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Abstract

The diffusing inference is a generic cooperative inference scheme which can be applied for
heterogencous distributed knowledge-bases (agents) to find a solution by cooperation of
agents. A property of communication of the diffusing inference is characterized by nondeter-
ministic communication by which we mean all the communication requeats are not always
required to be satisfied. In nondeterministic communication, there ig a tradeoff between
advantages such as solution quality or inference speed-up gained by sending many messages
concwrrently and disadvantages such as communication overhead. It is needed hence to send
messages selectively to improve the total performance.

We propose, in this paper, local and global communication control schemes. In the local
scheme, agents control their communication based on their local information. In the global
scheme, the total amount communication in the whole system can be under control by using
tokens which permit communication to agents. We evalnated these schemes by using a
distributed maze problem from a standpoint of a tradeoff between inference speed-up and
conununication overhead, It is shown that the local scheme is ineffective once the inference
spreads out among many agents and, on the other hand, the global scheme is superior to
the local scheme and effective even when the communication cost is high.

1 Introduction

By advances in computer and communication technologies, our use of computers is changing from
centralized use of a single computer to decentralized use of multiple computers. Currently we need
our intervention to use distributed computers effectively, but in the future computers will have abilities
to solve large-scale, distributed, and/or complex problems effectively cooperating with one another.
Cooperation among computers, therefore, is one of key technologies for the next-generation computer
systems built on wide-area and/or high-speed networks.

The diffusing inference [3] is a cooperative inference scheme to deduce a solution from distributed
knowledge-bases, which can be viewed as a collection of agents. In the diffusing inference, an agent with
a problem initiates an inference process. The agent solves the problem as far as it can. When it cannot
solve the problem completely, it decomposes the problem into subproblems if it is possible, and sends a
request message to one or more available agents for each of subproblems. The requested agents continue
to solve or request the subproblems recursively likewise, so the inference processes diffuse among agents
until a solution is found.
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This kind of cooperative inference scheme is not only prerequisite for distributed knowledge bases but
alse an advantage of inference speed-up by making the computational load shared by multiple agents
in cases the communication cost is small. On the other hand, the diffusing inference has a drawback
because of its communication overhead. If we use this scheme naively, the amount of communication
increases combinatorially as the inference spreads out among agents. Of course, this communication
overhead can be viewed as a trade-off against advantages of the diffusing inference such as solution
quality or inference speed-up.

In this paper, we propose and evaluate local and global communication control schemes to effectively
share a common communication resonrce, which causes communication overhead in the diffusing infer-
ence, among agents and improve the total performance balancing inference speed-up and communication
overhead.

Conventional AT problem sclving involves nondeterministic procedures, for example ‘trial-and-error’,
which may lead to combinatorial explosions of computation, and hence the inference control has been
a major research issue. In the distributed environment, we face not only combinatorial explosions of
computation but also those of communication. Considering the actual performance of computation and
commmunication in curvent computer systems, coping with the latter comes to be another important
research issue for building practical distributed knowledge-bases.

2 Diffusing Inference on Distributed Knowledge-Base

2.1 Distributed Knowledge-base

A distributed knowledge-base system is composed of multiple local knowledge-bases connected by a coni-
puter network. One way to build a distributed knowledge-base system is by extending a distributed
database system [7], but this approach is possible only when all the local knowledge-bases are ho-
mogeneous in the sense that they use the same data model, for example the relational model. This
proposition is not realistic when we make a large-scale distributed knowledge-base system by integrat-
ing local knowledge-bases which are designed independently.

For heterogeneous distributed knowledge-bases, we take an agent-oriented approach and show our
model in Figure 1. An agent consists of a local knowledge-base, a cooperation module, and a com-
munication module. The local knowledge-base of each agent can be designed independently and the
cooperation module absorbs the difference and offers a common interface to other agents. For a global
problem solving, agents cooperate through their cooperation module.

2.2 Problem and Its Decomposition

In this paper, we use a Prolog-like notation to represent problems and knowledge to solve problems. A
problem is represented as a goal,

g(X)

with an arbitrary number (> 0) of arguments. An argument can be a constant or a variable. A
problem g(X) is solved if a fact g(a), which is unifiable with g{X), is found. The fact is said to be a
solution of g(X). Facts may be stored in a local knowledge-base just like a database or may be obtained
through inferential or computational processes like an expert system, depending on the design of local
knowledge-base.

A problem can be AND- or OR- decomposed as specified by the following rules.
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Figure 1: Model of heterogeneous knowledge-base system.

AND-decornposition rule: g(X):-a(X),b(X).
OR-decowposition rule: g{X) :=alX) ;b(X).

When a problem is AND-decomposed, it is required that all the sub-problems are solved. Moreover, if
there are constrains among variables in the sub-problems, the constraints have to be satisfied. Namely,
if there are identical variables in the sub-problems, they are required to be unifiable. When a problem
is OR-decomposed, one sub-problem is sufficient to be solved.

2.3 Diffusing Inference

When an agent has a problem, it either (1) can find a solution in its local knowledge-base. (2) can decom-
pose the problem by applying a rule, or (3) cannot solve the problem. In the distributed knowledge-base
gysteny, an agent (4) can cooperate with other agents by sending a request message to solve the problem
when the agent cannot solve it by itself. Only when an agent with a problem cannot find & solution nor
decompaose the problem by itself and cannot find any other agent which can solve the problem, we say
the agent cannot solve the problem. If agent o send a request message to agent 5, we say « is a parent
agent of 3 and 7 is a child agent of o.

We assume every agent knows the location of facts and facts are not redundant in distributed
knowledge-bases for our convenience of the following discussion®. For any single problem, hence, every
agent can specify a single apent at most which can handle the problem.

When an agent decomposes a problem into sub-problems including some are unsolvable by the agent,
it requests other agents to solve them and composes a solution from sub-solutions by other agents. When
a problem is OR-decomposed, the parent agent just selects one from sub-solutions by child agents. When
a problem is AND-decomposed, however, there may be constraints among variables in the sub-problems
and the composition of a solution is more complicated than that for OR-decomposition becavse the
sub-problems may be solved independently by different child agents. For example, let us assume agent
a has a AND-decomposition rule g(X):-a(X),b(X). and facts concerning a and agent [ has facts
concerning b. There is a constraint between the argument of a and that of . As a(X) and b(X)are

'"We assume each agent has o meta-database which stores the location information of facts or can nse n protocol among
agents to know it. [8]
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solved independently by child agents o and 3 respectively, the agents need to coordinate to solve them
satisfying the constraint.

The diffusing inference [3] is a cooperative inference scheme based on distributed search [1] to deduce
a solution from distributed knowledge-bases (agents). An agent with an initial problem initiates an
inference process. The agent solves the problem as far as it can. If it encounters an unsalvable problem,
it sends a request message to an available agent if one exists. The descendant agent continues to solve
the problem and/or request the sub-problem(s) likewise until a solution is found.

When an agent OR-decomposes a problem, the agent sends recuest messages for unsolvable sub-

problems to solve them in parallel. When AND-decomposition, to deal with constraint satisfaction
among variables in the sub-problems, the agent sends a request message to the agent which can handle
the first nusolvable sub-problem. .
For example, let us assume agent v has a problem g(X) and an OR-decomposition rule g(X) :-a(X); b(X).
agent o has facts concerning a, and agent A has facts concerning b. In this case, agent v sends two
individual request messages for sub-problems a(X) and b(X) to child agents o and & respectively to
solve them in parallel. For a solution of g (X)), agent v takes the earliest solution, a(x1) from & or b(x2)
from 7, if no other requjremeﬁt i= apecified.

In the case where the above OR-decomposition rule is replaced by an AND-decomposition rule
g(X) :~a(X},b(X) ., agent -y sends a request message for { a(X),b(X) } to agent a. If agent o finds a
solution a(x1); then it sends a request messages to verify b(x1) to agent §. If it is verified, agent o
sends back a solution { a(x1),b{x1) } to agent .

The diffusing inference guarantees the completeness of inference. In other words, it guarantees to
solve a problem if there exists a solution [3]. For OR-decomposition, it gains OR-parallelism by sharing
efforts to find ‘a solution among agents [4].

For AND-décomposition, there has been centralized and decentralized approaches to make sub-
problems solved in parallel, satisfying constraints among variables. In a centralized approach such
as distributed database [7], every child agent which solves sub-problems sends sub-solutions to the par-
ent agent. The parent agent collects sub-solutions and composes 4 whole solution satisfying constraints.
A drawback of .this approach is that child agents do not use the constraint information, so they may
gend a number of useless sub-solutions which do not satisfy constraints.

In a decentralized approach such as distributed constraint satisfaction [10], agents exchange messages
to coordinate their local problem solving to satisfy constraints. A large number of messages, however,
may be required to be exchanged depending on how the variables are constrained. Generally speaking,
the efficiency of distributed constraint satisfaction depends on the sequence of fixing variables and the
appropriate sequence depends on the problem. In the diffusing search, the sequence is modifishle by
changing the order of sub-problems in the AND-decomposition rule. The diffusing inference tries to
reduce the overhead of distributed constraint satisfaction by sacrificing AND-parallelisn. When a prob-
lem is AND-decomposed into independent sub-problems, it is easy to extend the diffusing inference to
gain its AND-parallelism by defining independent sub-problem solving processes as individual diffusing
inference processes.

3 Nondeterministic Communication in Diffusing Inference

There is a difference in communication property between conventional distributed processing systems
and diffusing inference systems. In the former systems, all the communication requests are prerequisite
to be satisfied. Once a message is generated, it must be transferred safely to its destination. We call this
kind of communication deferministic. On the other hand, in the latter systems, all the communication
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requests are not always required to be satisfied, and we call this kind of communication nondelerministic.
For example, let us assume a case that we make a travel plan. There are many travel agents which
can help us to make itineraries and estimate their costs. The more travel agents we consult, the better
plan we can get probably. On the other hand, if the travel agents take the consulting fee, the more we
consult, the more we have to pay. What is worse, many of plans we get may look similar. We therefore
decide the number of travel agents we consult considering the advantage of plans and the cost (money
or time) to collect them.

We have a similar case in the diffusing inference, of which communication is nendeterministic, where
an agent has a problem which is OR-decomposed into n sub-problems and cannot solve them without
requesting the other agents. If the parent agent sends request messages for all the sub-problems at once
as the original algorithm of diffusing inference, all the sub-problems will be processed in parallel at the
cost of n messages and, consequently, the parent will be able to get the earliest solution from n agents
or select the best one from many. On the other hand, if the purpose of the problem solving is just to
find a single solution, n request messages are not always necessary to_be sent. (In the worst case, n
messages ave still needed.) When the communication cost is not negligible, the more messages are sent,
the more the network is congested and messages are delayed to be transferred. The total performance
of diffusing inference therefore is affected by a trade-off between advantages such as inference speed-up
and/or solution quality and disadvantages such as communication overhead, so each agent needs to
control the amount of conumunication by selectively sending request messages according to their effects
or importance. In a broad sense, since mauy agents are incorporated in a diffusing inference, the agents
need to share the conunon commmunication resource effectively for one another.

4 Communication Resource Sharing

In the original diffusing inference algorithm, as soon as an agent encounters an unsolvable problem,
it sends a request message. Hence, as the inference spreads out among many agents, the network is
going to be congested delaying the message communication among agents. As we discussed, the request
message comunmication in the diffusing inference is an instance of nondeterministic communication and
we anticipate the performance of diffusing inference is affected by controlling the communication, In
our new version, each agent controls to send request messages before they flow into the network as
shown in Figure 2. Namely, each agent once stores generated request messages in its Message Queue
and selectively sends them following the control strategy in NCCM.

We here define a term ‘concurrent request’. We say rvequest A is concurrent with request B if the
request message for A is sent after the request message for B is sent and before the result message for
B i3 received, or vice versa.

In this paper, we propose two control schemes; local and global. In the loeal scheme, each agent
limits its maximm mumber of coneurrent requests based on its local information only. In the global
scheme, the total munber of concurrent requests in the all agents are limited by using tokens.

4.1 Local Scheme

In the local scheme, each agent individually limits the maximum number of concurrent requests. We
can further elassify this scheme into the static and the dynamic ones. In the static local scheme, the
maxinmum number is fixed, and in the dynamic local scheme, it dynamically varies according to the
congestion of network.
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Figure 2: Communication module of agent.

Static Local Scheme: Each agent has a counter R(_C which shows the number of concurrent requests.
When an agent sends a request message, RQ.C is increased by 1, and when it receives a result message
which shows a termination of a requesting problem solving, it is decreased by 1. In the static local
scheme, we limit the maximum number of concurrent requests by setting a constant rqmax as the
upper limit of RI.C. Hence, when RQ.C > rg max, agents suspend to send request messages but stores
them in their message queues. And, after when R(_C < rq.max, agents restart to send request messages.

Dynamic Local Scheme: In the dynamic local scheme, rqmax becomes a variable and each agent
adjusts rq_max according to the congestion of network. Namely, when the network is congested, rq max
is set to be low, and when the network is not congested, it is set to be high. 'We use the turn-around
time, which iz the time interval between the dispatch of & message and the receipt of the corresponding
acknowledged message in a low-level communication protocol, to estimate the congestion of network.

4.2 Global Scheme

The goal of global scheme is to control the total number of concurrent requests in the whole system.
To embody this in a decentralized manner, we use tokens which permit concurrent requests. We limit
the total number of concurrent requests by limiting the number of tokens which are distributed in the
systen. Initially tokens are with an agent which has an initial problem. When an agent sends a request
message, it also sends one token at least with the message following the distribution rate d(0 < d < 1).
The number of tokens sent with a request message is defined as [d - number of tokens]. Hence, the
larger d is, the more tokens are sent to child agents.

As the diffusing inference spreads out, tokens are going to be distributed among agents. Concurrent
requests of each agent are permitted while the number is lower than that of tokens which the agent
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possesses. Namely, rgmax i8 set to the number of tokens.

By introducing tokens, we need to study how tokens should be distributed among appropriate agents
for they are effectively nused. In principle, only agents with a token at least can forward the inference
or, in other words, send request messages to its child agents, so tokens are flowing from the ancestor
agent with the initial problem to its descendant agents. If tokens flow too fast, when a child agent fails
to solve problems, it has to send back tokens to its parent agent to get new problems. If tokens flow
too slow, the diffusing inference may not proceed forward and useless tokens may stagnate in ancestor
agents. We therefore need to control the flow of tokens to distribute them appropriately balancing the
progress of inference and the supply of new problems in case child agents fail to solve.

We here discuss the completeness of the diffusing inference in the global scheme. Since an agent can
send request messages only when it has tokens, it is likely that a solution cannot be found ewven if it
exists because tokens may not be distributed appropriately. Especially, tokens in inactive agents, which
have no problem to solve, need to be #sigﬁﬂd to other :ig{m.tﬁ which need them. To deal with this, we
adopt a simple way that, once an agent becomes inactive, tokens are distributed randomly to its parent
and child agents. Hence, stochastically speaking, any agei‘ll: which needs tokens will obtain one.

5 Experiments

In this section., we evaluate proposed communication control schemes by using a distribuged maze
problew.

5.1 Distributed Maze

Digfributed maze problem s a problem to find a route from the entrance s; to the exit sg in a lattice
mage as shown in Figure 3 by cooperation of multiple agents under an assumption that the maze is
aplit and assigned to the agents. In the mase. there are obsiacles located randomly and the hardness
of the problem is defined by the obstacle rate. We use a 120 x 120 maze where its entrance and exit
are (1,1) and (120,120) respectively. It is possible to move right, left, up, or down and not diagenally
in the maze. The number of agents is 64 and the maze is split into 8 % 8 lattice, so each agent has the
information of 15 x 15 lattice maze in its local knowledge-base.

Each agent uses A* algorithm [6] to search routes using a heuristic to evaluate a state (x.y) as

flzy) = \/ (xg — 2)* + {1y — ¥)? where (z,,y,) is the location of the exit. We assume an agent consumes
one unit time as it expands one state.

Agents are asswmed to be connected with a single commmunication line like Ethernet, which is modeled
as Figure 4. Messages generated in agents go into a single queue and a message comes out one by one
in a time interval which is defined as the communication cost ¢. In this model, the more messages are
generated among agents in a certain time interval, the longer the queue becomes and messages delay.

Initially. an agent which knows the location of the entrance starts to solve problem route(sI,sG,R)
and tries to find a route as far as it can. When the search reaches a state sM on a border with its
neighbor, it sends a request message for problem route(sM,=G,R1) to the neighbor agent. Likewise,
the neighbor continues to solve the problem following the diffusing inference algerithm.

As the search process spreads out among agents, the efficiency of search i improved by making
agents share the load. On the other hand, the commmunication overhead increases and degrading the
performance. By using this testbed, we evaluate how efliciently agents share the common communication
FESOUICE.
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Figure 3: A lattice mage (6 x 6).
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Figure 4: Model of communication line.
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Figure 5: Performance of the local scheme.

5.2 Local Scheme

We show how the search time varies according to the communication cost in Figure 5. rgmax is set
to 1,2,4,8, or infinity. The obstacle rate is 30%. In principle, when rqmax is high, the inference easily
spreads ont in parallel, but the network becomes saturated soon, so it shows good performance while
the communication cost is low, but it goes worse as the cost increases.

Figure 5 (auto) shows the performance of the dynamic scheme which adjusts rqmax automatically
according to the network mngestion“. When the commumnication cost is low, it is superior to any other
static schemes. but when the cost becomes high, it degrades the performance. A main reason is as
follows. At the initial stage when the communication line is not congested, the inference spreads out
promptly, but once many agents are involved in the inference, it is difficult to reduce the total amount
of communication even if every agent has low rqmax. We therefore need a global scheme to limit the
total amount of commmnication in the whole system.

5.3 Global Scheme

In the global scheme, an agent can send request messages while RQ_C < rgmax and rqmax is set to
the number of tokens which the agent possesses. Figure 6 shows the result when the total number of
tokens varies from 5 to 100. The obstacle rate is set to 30% and the distribution rate is set to 50%.
Compared with the local scheme (auto), the global scheme is superior if a large number of tokens are
distributed when the communication cost is low. When it is high, the difference is outstanding if we
limit the number of tokens to be low.

*We adjust rqgmax based on results of the static scheme in an ad hoc manner.
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Figure 6: Performance of the global scheme when the number of tokens varies.

Figure 7 shows the result when the distribution rate varies. The obstacle rate and the number of
tokens are set to 30 % and 50 respectively. When the communication cost is low, there is a tradeoff.
If the distribution rate is too high, the inference proceeds fast but does not spread wide, hence, the
performance is low because of its low parallelism. On the other hand, if the distribution rate is too low,
the inference does not proceed forward. When the communication cost is high, it is better to set the
distribution rate high to make the inference not spread too wide.

Figure 8 shows the effect of the distribution rate when the obstacle rate varies. The number of tokens
and the communication cost is set to 50 and 0.2 respectively. When the obstacle rate is high, local
searches fails easily. Hence, it is better to set the distribution rate low because parent agents can keep
supplying requesis to the child agents even if most of them fail in vain.

6 Related Works

Communication control schemes for deterministic communication has been studied in the field of com-
puter networks as congestion control [9). When a network is going to be congested, computers connected
to the network interrupt messages going into it and restart when the congestion is relaxed. However,
if we use this scheme for nondeterministic communication, communication among agents is just inter-
rupted. On the contrary, messages which contribute to find solutions may be stagnated.

Another approach is to facilitate priority communication. We put a priority with each message as
its importance. Since the network transfers messages according to their priority, it will be possible
to improve the performance of the diffusing inference. Howewver, this scheme is available only when
priorities are rightly specified. ’
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Table 1: A classification of communication control schemes,

f Level Comm. property | Examples
High | Nondeterministic | FA/C [5], PGP [2]
Middle | Nondeterministic | Proposed schemes
Low Deterministic Flow control [9], priority communication

For nondeterministic communication, we need to control communication at a higher level than that
for deterministic communication. In the field of DAI, some researchers are dealing with cooperation
scheme considering communication overhead. For example, FA/C model [5] for hierarchal distributed
problem solving exchange information among agent at a high level by abstracting a large amount of
low-level information to reduce the amount of communication. However, this scheme is static and fixed
when the system is designed. Partial Global Planning(PGF) [2] is a dynamic scheme to adapt to the
change of environment and make problem solving plans considering the enviromment. However, as its
communication control is done through an inference process of agent, it is not reactive enough to the
change of communication network. And as the inference is based on its local information, it seems
difficult to control communication appropriately in the global point of view as we discussed.

As shown in Table 1, we proposed communication control schemes at the middle level between the
low level control which has bee studied in computer networks and the high level control which has been
done in DAL Our schemes therefore are available for nondeterministic communication and adaptive to
the congestion of network.

7 Conclusions

We discussed comminication control for nondeterministic communication in the diffusing inference,
which is a:generic cooperative inference scheme for heterogeneous distributed knowledge-bases, and
proposed loeal and global control schemes. These schemes take an approach where messages are once
stored in message quene and selectively sent following the eommunication control strategy.

We evaluated them through a simulation testbed of distributed maze problem from a standpoint
of tradeoff between inference speed-up and communication overhead. In the local scheme, each agent
contrels corumunication locally, but it is not effective once the inferences spreads out among many
agents. To control the total amount of communication in a decentralized manner, the global scheme
uses tokens which permit communication. This scheme is shown effective even if the communication
cost is high. In the global scheme, we need to continne to study how to distributed tokens to appropriate
agents effectively.
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