Implementing Bottom-up Procedures with Code
Trees

(abstract of the invited talk)

Andreir Voronkov

Computing Science Department
Uppsala University
(email voronkov@csd.uu.se)*

Research on automated reasoning is one of the topics developed inside
the framework of the Fifth Generation Computer Systems project. Develop-
ment of automated reasoning systems is important because such systems can
be embedded in various applied intelligent systems. Research on automated
theorem proving always supplied important ideas for other parts of com-
puter science, maybe because automated reasoning has always been aimed
at solving extremely hard (and even unsolved) problems. In order to solve
such problems, one needs both research in computational logic and research
on the implementation of logic. This talk discusses code frees: an implemen-
tation technique for bottom-up procedures. Code trees are implemented in
our theorem prover Vampire.

Most automatic theorem proving systems can generally be divided in two
parts by their mode of evaluation (or clause generation). Top-down systems
start from a goal, reducing it to subgoals, until all subgoals become axioms.
Bottom-up systems usnally deal with a database of clauses (or facts, literals,
tuples, sequents etc.) and generate new clauses by applying inference rules
to clauses in the database. There are also systems which can combine top-
down with bottom-up.

Surprisingly or not, bottom-up and combined systems show a superior
performance when dealing with problems involving large search spaces. This
has been widely recognized in the deductive database community. There

*Supported by a TFR grant

39



are two main reasons bottom-up systems become more efficient on hard
problems:

1. Top-down algorithms retain no information and must often do the
same job on different branches of the search tree.

2. In bottom-up algorithms one can implement major operations on the
“set at a time” basis, opposite to “tuple a time” or “clause at a time”
procedures used by e.g. Prolog.

Bottom-up procedures have been traditionally used in automated de-
duction, since its very beginning. Recently, the need for such procedures
has been recognized in logic programming and deductive databases. In logic
programming, it has been noted that tabulation can both speed up evalu-
ation and give more declarative treatment of some subgoals. In deductive
databases, where the databases can be very large, the old “tuple at a time”
methods are not adequate any more. In logic programming and deductive
da.ta.ba.ses the systems that make use of previously ganera.ted clauses (or
goals) are usually considered as bottom-up procedures.

There are certain specific features of bottom-up systems which pose a
challenge to people who implement them:

1. There is usually a small number of operations which must repeatedly
be applied to clauses in the database (for example, resolution).

2. The database may be very large and dynamically changing.

. 3. The number of calls of these operations is so big that it is practically
impossible to implement them on the “clause at a time” basis.

The main problems faced by bottom-up procedures are based on the ne-
cessity to efficiently handle large dynamically changing databases of clauses.

In our talk we deal with an implementation technique for bottom-up
systems, which can be used to speed up many important algorithms. The
technique is demonstrated on the forward subsumption problem for arbitrary
clauses. The idea of code trees is very general and may as well be applied to
various concepts of resolution. It can also be used for the implementation of
equality reasoning procedures, like paramodulation and rewriting. In areas
outside of automated reasoning the most natural candidates are deductive
databases, logic programming, expert systems and parsing.

40



Our technique is based on two main ideas which we shall illustrate on
forward subsumption. The first idea is to compile specialized subsumption
procedures for kept clauses. It can be-considered as a run time specialization
of a general subsumption algorithm. This technique has much in common
with the technique of WAM-based Prolog implementations. We call it the
abstract subsumpiion machine. It gives a very efficient subsumption algo-
rithm for the problem of subsuming a clause by a clause. A specific feature
of the use of this approach is that the compilation must be performed at
run time.

When the set D of kept clauses is large, the implementation of subsump-
tion on the “clause at a time” basis becomes inefficient. The second idea of
this paper is to perform subsumption on the “set at a time"” basis via code
trees which merge several specialized algorithms into one.

The structure of the talk is as follows.

1. Implementation of theorem proving systems and bottom-up algorithms
in general.

2. Subsumption.

Survey of traditional implementation techniques. Indexing.

&

. Code trees.

5. Experimental results,

References

[Grag4] P. Graf. Extended path-indexing. In A. Bundy, editor, Aute-
mated Deduction — CADE-12. 12th International Conference
on Automated Deduction., volume 814 of Leciure Notes in Ar-
tificial Intelligence, pages 514-528, Nancy, France, June/July
1994,

[Lus92] E.L. Lusk. Controlling redundancy in large search spaces:
Argonne-style theorem proving through the years. In
A. Voronkov, editor, Logic Programming and Automated
Reasoning. International Conference LPAR’92., volume 624
of Lecture Notes in Artificial Intelligence, pages 96-106,
St.Petersburg, Russia, July 1992,

41



[McC92]

[Vor 94]

[WOL91]

William W. McCune. Experiments with discrimination-tree
in indexing and path indexing for term retrieval. Journal of
Automated Reasoning, 9(2):147-167, 1992,

A. Voronkov. Implementing bottom-up procedures with code
trees: a case study of forward subsumption. UPMAIL Tech-
nical Report 88, Uppsala University, Computing Science De-
partment, October 1994 (also to be published in Journal of
Automated Reasoning).

Larry Wos, Ross Overbeek, and Ewing Lusk. Subsumption,
a sometimes undervalued procedure. In Jean-Louis Lassez
and Gordon Plotkin, editors, Computational Logic. Essays in
Honor of Alan Robinson., pages 3-40. The MIT Press, Cam-
bridge, Massachusetts, 1991. '

42



