Two Approaches for Finite-Domain Constraint
Satisfaction Problems

Yasuyuki Shirai
Ryuzo Hasegawa
Institute For New Generation Computer Technology
{shirai,hasegawa}@icot.or.jp

Abstract

We have developed two types of systems; CP and CMGTP, for finite-domain constraint
satisfaction problems. CP is based on the constraint logic programming scheme, and is
written in SICStus Prolog. CP has achieved high performance on quasigronp {QG) existence
problems in terms of the number of branches and execution time. CP succeeded in solving
a new open quasigroup problem. On the other hand, CMGTP is a shightly modified version
of our theorem prover MGTP {Model Generation Theorem Prover [1]), enabling negative
constraint propagation and is written in SICStus Prolog and KL1 {paral'le] logic programining
language). CMGTP has exhibited the same pruning ability as CP for QG problems. CMGTP
can be used as a general constraint solver for finite-domains on which we can wiite down
constraint propagation rules with CMGTP input clauses directly. '

1 Introduction

We present an CLP based system CP and an extension of the MGTP system called CMGTP
(Constraint MGTP), both of which can solve finite-domain constraint satisfaction pmhlems'
efficiently such as quasigroup (Q() existence problems [2] in finite algebra.

In 1992, M. Fujita and J. Slaney(5] first succeeded in solving several open QG pmblems by
using FINDER and MGTP. Later, it was shown that other systems such as DDPP or CHIP
could solve QG problems more efficiently. Such research has revealed that the original MGTP
lacks negative constraint propagation ability. This motivated us to develop an experimental
system CP based on the CLP (constraint logie programming) scheme.

We found that the constraint propagation mechanism used in CP can be realized by the
slightly modified MGTP system., called CMGTP.

2 Quasigroup Problems

A Quasigroup is a pair {(}, o} where { is a finite set, o a binary operation on Q and for any
a,b,ce @,
aobh=aocce=b=r-
goc=hoc=a="0L
The multiplication table of this binary operation o forms a latin square (shown in Fig.1).
In a quasigroup, we can define the following inverse operations o;;; called (1jk)-
conjugate:

Loy =2z < TOoY=2
ToOMY=2 S Yezr==x
Togay =z = zox=Yy

34

o

—
2]
L=
(=]

FHW#MID’.‘I

L= - R B
nh.l-lhh:l@i

0 B -TEO U
L= N -
en | e | 2 | | W

Figure 1: Latin square (order 3)

@ 1 2 3

S—square : 1 Vi Viz Via
(123)- (A1 Az As) | (By Bz Bs) | iC1 Cy Ca)

) 2 Va1 Vaz Vas
conjugate (Dy Dz D3) | (By Ex Ei) | (FL o Fy)

3 Vo Viz Vas

(7 G Ga) | (Hy Hs Hy) | (h Iz Ii)

Figure 2: The variables in a third-order latin squares

Multiplication tables of the inverse operations defined above also form latin
squares. .

We have been trying to solve T categories of QG problems (called QG1, QG2,...,
QGT), each of which is defined by adding some constraints to original quasigroup
constraints. For example, QG5 constraint is defined as Vab € Q. ({ba)b}b = a.

3 CP

While in CLP languages, domain variables are used to represent constraints, in CP,
domain element variables are introduced as well as domain variables. Fig.2 shows
the variables in a third-order latin square used in CP where domain variables Vj;
range over {1,2,3} (1 <4,7 < 3) and domain element variables Ay, By, ..., ;. range
over {yes,no} (1 <k < 3).

Let V be a domain variable whose domain is {1,2,...,n}, and (A1, As,..., A,) be
a vector of domain element variables w.r.t. V. The value of A; determines whether
V =i{A; = yes) or V # i(A; = no).

For QG problems, we maintain three squares according to (1,2,3)-, (2,3,1)- and
(3,1,2)-conjugates. Domain element variables in these'd squares can be linked (uni-
fied) with each other. (shown in Fig.2 and Fig.3).

Using shared (unified) variables facilitates constraint propagation like :

Vabe: (aojpab=ce boggre=a cogina=5) (1)
Yabe. (acipab#F e bogmc#a cogpa#b) (2).

Ordinary CLP does allow constraint propagation like (1), but (2) is not possible
in general becanse domain element variables cannot be handled directly. By this uni-
fication, CP can propagate negative information which can be overlooked in ordinary
CLP systems.

35

a L 7 3

I-square : 1 W Wi W

(231)- _ﬂf*“i Dy Gi) | (A2 D &5) | (A3 D3 @)
2

] Way Waz Wz
conjugate (By By Hi) | (Ba Bx Hy) | (Bs Ey Ha)
3 Way Waa Waa
(Cs Ay L) | (C: B2 L) | (Cy Fy Is)
e || 1 2 3
R—SQMI‘E : 1 IFyy P 3
(312)- A«H'n By,) {(Dy By) [(Gy Hy Iy)
. 2 Uz Lzg Uszy
conjugate (A2 By C3) | (D3 By F3) | (G2 Ha D)
3 || Un Uiz Uss
{As Ba Ca) | (D3 Bz Fy) | (G Hy I3)

Figure 3: The variables in (231)-, (312)-conjugate latin squares

Model candidate sat

Az extending
candidate

Model

Ref(NewUnit MU{AY) extension

Simpl(MU{A},NewDisj) Simpl({A},D)
/ /
New Unit
New Disj

Figure 4: CMGTP model generation processes

Geaneration of
nevy atoms/
disjunctions

Model extending
candidate set

4 CMGTP

Fig.4 shows the structure of CMGTP model generation processes which is basi-
cally the same as MGTP. The detail algorithm of MGTP is described in [1]. The
differences between CMGTP and MGTP lie in the unit refutation processes and the
unit simplification processes with negative atoms, introduced in CMGTP. We can
use negative atoms explicitly to represent constraints in CMGTP. If there exist A
and —~A in M then false is derived by the unit refutation mechanism. If for a unit
clause ~A € M(A € M), there exists a disjunction which includes A(~A), then
A(—A) is removed from that disjunction by the unit simplification mechanism.

There are 2 refutation processes and 2 simplification processes added to the orig-
inal MGTP:

* Ref({A}, M)
o Ref(NewUnit, M U {A})
s Simpl({A}, D)
36

true — dom(1}, dom(2}, dom(3), dom(4), dem(s).

domi({M}, dem(N) —
p(M, M, 1); p(M, N, 2); p{M, ¥, 3);
}J{M, N, 4); P[M1 M, 5).

plY, X, V1), p(V1, Y, V2),p(V3,Y, V), [V = X} — false.
pE. K, V), {V= X} — lalse.

piX, ¥, V), p(X, Y2, V), {Y1\=¥2]} — falze.
p(X1,Y, V), p(X2, Y, V), {X1|= X2} - false,
pX,5,Y){X1is X-1,%Y < Xi} — false.

Figure 5: MGTP rules for (QG5.5
o Simpl(M U {A}, NewDisj)

where D) is a model extending candidale set, M is a model candidate set, A is an
atom that is picked up from D and put into M to perform conjunctive matching,
and NewlUnat and NewDisj are generated atoms and disjunctions by conjunctive
matching. -

Ref(Uy,Us), where Uy, U; are set of atoms, returns false if there exist A €
Uh, B € Uy, s.t., A and B are complementary. In this case, the branch is temﬁna.t&d
with unsat. Simpl(U, D), where U is a set of atoms and D is a set of disjunctions,
returns the simplified set of disjunctions by a set of atoms U7, If false is derived as
a result of simplification, then Simpl returns false, and the branch is terminated
with unsat. The function Ref can be considered as a special case of simpl function
where [} is restricted to a set of atoms.

As a result, these functions guarantee that for any atom A € M , 4 and —A
are not both in the current M, and disjunctions in the current D have already been
simplified by all atoms in M.

Fig.5 shows the original MGTP rules for QG5.5. These rules can be rewritten
into CMGTP rules in order to propagate negative information using negative atoms.
For example, the original MGTP rule for QG5,

p(Y, X, A),p(A,Y, B),p(B,Y,C), X # C — false

can be rewritten in CMGTP rules as follows:

p(Y, X, A),p(A,Y, B) — p(B,Y, X).
oY, X, A),-p(B,Y,X) - —p(A,Y, B).
_'P(BI KX}?I'[A! Y‘.ﬂ BJ = _"F[Yj X: AJ+

In the above rules, negative information is propagated by using the last 2 rules.
In this sense, CMGTP can be considered as a meta language for representing
constraint propagation.

9 Experimental Results

Table 1 compares the experimental results for QG problems on CP, CMGTP and
other systems. The numbers of failed branches generated by CP and CMGTP are

37

Table 1: Comparison of experimental results {(QGS5)

Failed Branches
Order | DDPP* | FINDER® | MGTE® CP CMGTP
] 15 40 230 15 15
10 50 356 TO26 38 38
11 136 1845 51904 117 117 |
1z ad3 13527 | 2749676 72 372
13 13027 13027
14 64541 G541
15 130425 130425
16 10352469

DDPP: Spare?, FINDER: Sparc?, MGTP: PIM /m-256, CP: Spareld (*: [5])

almost equal to DDPP and less than those from FINDER and MGTP. In fact,
we confirmed that CP and CMGTP have the same pruning ability as DDPP by
comparing the proof trees generated by these systems. The slight differences in the
number of failed branches were caused by the different selection functions used.

For general performance, CP was superior to the other systems in almost every
case. In particular we found that no model exists for QG5.16 by running CP on
a Sparc-10 for 21 days in October 1993. It was the first new result we obtained.
On the other hand, CMGTP is about 10 times slower than CP. The reason of this
difference is cansed mainly by the manipulation of term memory. We are now trying
to make term memory efficient in CMGTP, and also to parallelize CMGTP processes
on PIM/m and parallel UNIX machines.

References

[1] H. Fujita and R. Hasegawa. A Model-Generation Theorem Prover in KL1 Using
Ramified Stack Algorithm. Proc. of the Eighth International Conference on
Logie Fragmmmmgr, The MIT Press, 1991. .

[2] F. Bennett. Quasigroup Identities and Mendelsohn Deslgns. Canadian Journal
of Mathematics 41, 341-368, 1989,

[3] P. V. Hentenryck, Constraint Satisfaction in Logic Programming. The MIT
Press, 1989,

[4] R. Manthey and F. Bry, SATCHMO: a theorem prover implemented in Prolog.
Proc. of CADE 88, Argonne, Illinois, 1988.

[5] J. Slaney, M. Fujita, and M. Stickel, Automated Remnmg and Exhaustive
Search: Quasigroup Existence Problems. To appear in Computers and Mathe-
matics with Applications,

[6] M. Fujita, J. Slaney, and F. Bennett, Automatic Generation of Some Results
in Finite Algebra. Proc. of International Joint Conference on Artificial Intelli-
gence, 1993,

[7] R. Hasegawa, Y.Shirai, Constraint Propagation of CP and CMGTP: Experi-
ments on Quasigroup Problems. Workshop 1C (Automated Reasoning in Alge-
bra), CADE-12, 1994,

38

