High Performance Reasoning Systems: Some
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John Slaney?

1 Introduction

The notion of reasoning comprises several activities not all of which have received
the same degree of attention from those of us whose approach is from logic. Three
of these activities occupy my attention today. They are deduction or the proving of
theorems, its dual model generation or the satisfaction of constraints, and planning
or the transformation of one model of a theory into another through a series of
intermediate states linked by an action relation. These three fields have grown up to
be the professional concern of three rather different intellectnal communities. It has
long been part of my purpose, and is so again today, to attack the barriers between
these communities in the interests not only of cross-fertilisation at the peripheries
but of significant advance in the heart of each enterprise.

I want to examine several examples of fruitful or potentially fruitful interactions
between aspects of reasoning. Along the way, I want to urge that we direct energies
both into exploring what research in one kind of reasoning can offer to another and
into implementing our ideas in such a way that we strive for performance, aiming
the best code we can write at the best hardware available. By doing this we may
take advantage of real opportunities for achievement which stand before us at this
stage of deve]apment of the discipline.

In choosing case studies to illustrate there themes, I have no wish to slight
other examples which could have been used. For instance, I say nothing about
constraint logic programming, although that is the most oustandingly successful
application of constraint satisfaction techniques in deduction. I also say nothing
about nonmonotonic reasoning, nor about inductive reasoning. The reason is that I
prefer to illustrate from research in which [ have been actively involved, and in any
case | expect to be more entertaining on the subjects which excite me today than
those which did so last year or may do so next.

2 Constraint Satisfaction

My first example is the use of propositional satisfiability techniques from the world
of theorem proving to solve pure constraint satisfaction problems in finite algebra.
The problems in question concern the existence or non-existence of quasigroups {(in

"The ideas in this talk were first presented at the “Auntomated Reasoning Day” mini-conference
at Bribie Island, Queensland in Sepfember 1994, The present account js another attempt to explore
the relationship between aspects of our field. Thanks are due to the participants in the Automated
Reasoning Day for their comments and suggestions,

2 John.Slaney@anu.edu.an. Automated Reasoning Project, Australian National Unwers:t_v Can-
berra, ACT 0200, Australia.
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effect, Latin squares) satisfying certain simply specified conditions. This work, which
began in a serious way at [COT in 1992, using MGTP-G, and has continued to the
present with the involvement of a number of researchers elsewhere.

I shall not detail the quasigroup éarnblema or the methods applied to them, since
they have been described elsewherel: 9 and other speakers in today's workshop are
best able to supply the most recent information concerning them. I shall merely
say briefly that by bringing methods from one area of automated reasoning to bear
on problems in what has been regarded as a different one we were able to achieve
significant results, and that high performance implementation has enabled us to
extend our work far enough into the field to solve a large number of open problems.
Some of the solutions have been published in the mathematics literature, and others
will certainly follow.

3 Theorem Proving

The second case study is the theorem prover SCOTT (Semantically Constrained
Otter) described in [7]. This was made by linking together the existing theorem
prover OTTER®! and the existing model generator FINDER®!. In 1992-3 my
colleagne Dr Mark Grundy and I spent time at ICOT working on the idea of a
similar system using MGTP-G to generate the models and MGTP-N to find the
proofs.

There are several ways in which a bottom-up prover can use semantic information
to help guide its proof search. In SCOTT, two of these are exploited. The first is
model resolution, and the second is the false preference strategy whereby in choosing
parent clauses for inferences the prover gives some preference to those which are
false in a guiding model. In each case the model is not given in advance but found
dynamically as the search progresses. The model is generated by the constraint
satisfaction module, attempting to model formulae deduced during the proof search.
The model may from time to time be replaced by a better one as more information
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becomes available. In this way prover and modeller work together to explore the
search space.

On a range of the problems for which OTTER and MGTP-N are very suitable,
SCOTT speeds up OTTER by about a factor of 2, though in certain cases it wins by
three orders of magnitude and of course in other cases it allows the user new ways
to fail altogether. Since it has OTTER as a sub-program and can run with all else
disabled, SCOTT need never lose in comparison with OTTER.

4 Planning

The last case study concerns classical planning problems. It is well known that
such problems may be solved by theorem provers, and indeed that the search for a
plan may be cast as a search for a proof. A plan in the sense considered here® is a
sequence of actions, each of which suffices to convert a state into the next state in
the sequence. From a description of the initial state and an axiomatisation of the
conditions and effects of the actions, it follows that successive states, including the
goal, are all reachable. A plan may be read off a proof of reachability.

Also obvious is that a classical planning problem may be represented as a demand
not for a proof but for a model. If states and actions are objects of a domain, along
with the objects on which the actions operate (e.g. the blocks in Blocks World),
then a plan is a structure made up of those objects satisfying the axioms of state
transition by actions, the first and last states in which are the initial and final states
of the problem. Both backtracking methods such as the Davis-Putnam algorithm
and non-backtracking methods such as GSAT have been applied with some success
to small prnhlems-[5]

The outstanding feature of these experiments in planning by logic, however, is the
extremely poor performance of the systems. The example used is (as ever) Blocks
World, and the largest problems examined in [5] have only nine blocks! Finding
optimal (shortest) plans in Blocks World is NP-completell: 3] but it is rather easy
to find algorithms which produce “good” solutions in polynomial time.[4: 101, These
go close to optimality with far more blocks than nine.

What is better is to find more imaginative ways of using automated reasoning,
and constraint solving in particular, to augment methods already seen to be powerful
in classical planning. In contrast to the cases noted above, here I have no proven
solutions but only suggestions. The key is a theorem from [10] that the problem of
generating Blocks World states is tractable. Standard algorithms like Davis-Putnam
or arc consistency never backtrack when searching for such states, so generating
models of Blocks World is @(n?®) and cheap compared with generating [near] optimal
plans.

One suggestion for using model generation in planning is to devise states “inter-
mediate” between the initial and goal states of large planning problems. Such ideas
are of course common in Al. Now by iteratively adjusting the intermediate state, it

*Planning is not a field consisting of a single problem type. There are many other sorts of plan
and other sorts of planner. Ouce again, [ wish to point out that I am not attempting to talk about
everything.

29



may be possible to arrive at a subgoal which is in some sense * not too far” from the
initial one and “not too far” from the goal. We can use this to break an impossibly
big planning problem into two more manageable ones. The resulting overall plan
will not be optimal in general, but with large problems, as already pointed out,
optimality is not attainable.

A second suggestion is a way of reducing certain non-classical planning problems
to classical ones. Sometimes we are given a goal not as a conjunction of positive
literals but just as a first order condition. Algorithms such as those in [4] and [10]
cannot be used with such a formulation, but a finite domain constraint solver can
generate models of the non-atomic description. By generating such a model and
then refining it to make it “closer to” the initial state it is possible to turn such a
generalisd planning problem into one suitable for standard methods.

5 And Finally...

The cases noted in this talk are meant fo stand as instances of what can be done
if the fragmentation of our research field is overcome to some extent and if we care
about the quality of our implementation work. ICOT, with its ready interchange of
ideas between sub-projects and its emphasis on leading edge technology, has been
an exemplar in this regard. Let us see to it that this example is followed.
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