Lemmas with Matching over PTTP:

Efficiency and Limitation
(A Research Memo)

K. Iwanuma, Y. Chino, H. Ashizawa

Department of Electrical Engineering and Compuler Science
Yamanashi Universily

Takeda {-3-11, Kofu-shi, Yamanashi, 400, Japan.

e-mail: iwanuma®esi.yamanashi.ac. jp

In this paper, we study an elliciency and a limitation of lemmas with matching through
experiments with a simple first-order compiler implemented over PTTP (Prolog Technol-
ogy Theorem Prover) technology proposed by Stickel [6, 7).

PTTP is a compilation technology which enables an extremely efficient implementation
of Loveland’s ME (Model Elimination) procedure [5]. It made top-down theorem provers
be pretty attractive, and so far, is followed by several theorem provers (e.g. METEOR |[1],
SETHEOQ [4]). However top-down theorem provers unfortunately have a well-known dis-
advantage [6] that same goals may quite often be proved more than once during the search,
which must cause a large amount of redundancy.

In order to avoid such a recomputation, it has been pointed out that support of lemmas
within top-down theorem provers is very important (2, 6, 8]. Lemmas are extra clauses
derivable in the proof search. Using lemmas as additional axioms makes it possible for a
top-down theorem prover both to find a shorter proof and to avoid duplicate computations.
However a simple straightforward use of lemmas increases the breadth of the search space,
and must result in the loss of efficiency of provers in almost cases.

Caching proposed by Astrachan and Stickel [2] is a modified mechanism of lemmas,
which replaces the search of solutions by cache-table lookup. It is applicable to Horn-
problems, and succeeds in drastically reducing the search space. Schumann [8] studied a
bottom-up preprocessor DELTA for combining lemmas with top-down theorem provers.
DELTA generates a moderate number of easily derivable lemmas, which are later used
in SETHEQO as additional unit axioms. The growth of search space caused by lemmas
is overcome both by a filtering of lemmas e.g., a subsumption test, in the preprocessing
phase, and by some pruning operations efficiently implemented in SETHEO.

In this short paper, we investigate a simple idea, called lemmas with maiching. It
performs a restricted use of unit lemmas, dynamically generated during ME-derivations,
such that a unil lemma is adopted as a input clause at each stage only when it subsumes
a target goal to be solved. In such a case, the goal can be solved in one step without any
instantiation for all variables appearing in the goal. [f means that all other alternatives
can be cut immediately if a goal is solved by such a restricted use of lemmas. The search
space is never broadened as long as lemmas are used with this subsumption criterion. It
implies no need of extra pruning operations which must usunally be necessary in order to
delete the redundancy introduced by lemmas.

24

The biggest concern to be confirmed is about the rate of satisfying such a rather strict
criterion for lemma adoption. If this rate is low, the overhead of a newly introduced
subsumption check between goals and lemmas is never compensated. We investigate this
rate and the efficiency of lemmas with matching through a experiment, using slightly
difficult problems picked up from TPTP problem library [9].

The kernel Prolog codes, for ME-derivations without lemmas, used in this experiment
are almost same as the ones produced by a version of PTTP implemented in Prolog
described in [7], except for no use of zero-cost subgoal mechanism. An additional pruning
method in ours, not adopted in the PTTP, is only a cutting off alternatives of a goal,
which is involved if the goal is solved by 2 unit clause without instantiation. '

The running Prolog codes must dynamically construct and maintain a table consist-
ing of unit lemmas during the search of ME-refutation. We here consider two filtering
operations, which generated lemmas must pass for its entry in the lemma-table: One is a
maximal term-complexity restriction. In this experiment, we uniformly restrict the depth
of each term in generated lemmas to be less than or equal to 3, because the maximal depth
of terms occuring in axiom formulas attacked here is less than or equal to 2. The other fil-
tering is a forward subsumption test over the lemma-table, while a backward subsumption
test is not performed here.

The experiment was done on SUN SPARC 2 with 64M byte memory. We quitted trials
at 5,000 cpu sec. The results are shown in the table.

TPTP ME inferences matched | stored | penerated lemmas
problems | time (sec) {unit res. no inst.) | lemmas | lemmas | (term depth. < 3)
apabhp | 3485 | 325,481 (810) 0 2 212 (4)
exd 394.3 97,077 (0) 130 5 29 (26)
exd 55.7 | 52,160 (109) 538 7 47 (8)
nonob 7.0 8,554 (B} 146 17 141 {141)
wosd 1,402.0 | 785,064 (4,651) 6,351 B34 | 141,934 (113,162)
wos1h (H) 943.4 | 346,341 (1,601) 5171 | 1,406 | 142,587 (127.773) |
wos2] (H) £,562.1 | 1,415,662 (19,736) 21,913 | 1,334 | 737,745 (616.702)
wos22 (H) 2,136.1 | 784,231 (5,954) 2,368 | 1,791 | 266,313 (248,691)

NON [26,318,754 {45,079
wos31 [33.442.5] (128,477)] [14,579] |- [5] (45,079)]

NON [48,249,367 [1,830.499
wos33 [39,631.5] (1,526,526)] | [1,561.448] [19] (1,830,499}
1=36 (H) 1435.0 $53.283 (3,400) 1,773 789 | 239,424 (208,736)
1s37 (H) 300.5 | 120,565 (3,103) 1.853 465 | 57,030 (45,628)
1s112 NON [8,261.6 6,561,957 (0) [0] [38] | [24,719 (24,719)
=118 NON [7,978.7 6,011,852 {0) (0] 14 11,525 (11,525)
1s121 NON [7,183.0 5,437,684 {0) 0] [6] | [10,560 (10,560)

NON 31,618,788
EXQ2 [36,283.0] (131,569)] [28,829] [1] {64 {64)]

The simple use of lemmas through matching can, by itself, solve some difficult prob-
lems, although the required absolute cpu time is not so small, in comparison with other

*The reason is that this pruning operation is guite common in literature, for instance, which is also
used in a earlier version of PTTF in [6]. 1t can be performed with quite little over-head if lemmas with
matching has already been installed in advance,

25

advanced theorem provers. This indicates that the rate of a lemmas subsuming a goal is
not so low for a class of problems. However, this rate falls down extremely for problems
involving many variables but containing few constants or function symbols, such as Ls112,
L5118, Lsl21. This shows the system has a sufficient value as an assistant in a system
[ully supporting lemmas with unification. It seems to never lose its own value even in such
a complete lemmaizing system.

In order to increase the hit rate for those problems, an usual use of lemmas with
unification is, of course, valuable, but also a mechanism for lazy matching with lemma
and-ﬂ—hterala in ME—denva.tmnu seems to be worth while to study. An important point is
that such a use of lemmas also never enlarges the search space. A trial, with a lazy lemma
matching only with direct ancestor A-literals, has shown a good performance for wos33,
but unfortunately, the cansed over-head can not be ignored for the other problems. We
are to investigate in detail this method in near future.

Also, a huge amount of latent redundancy in the search is pointed out by the large num-
ber of lemmas dropped out by the forward subsumption test. This number is nearly equal
to the number of worthless duplicate computation. This redundancy can be decreased not
only by a pruning operation, such as anti-lernma. recently developed by SETHEO group [4],
but also be reduced by lemmas with unification. Once lemmas with unification is allowed,
a new stronger pruning method can be weaved into a system. This is also a future work.

References

[1] O.L. Astrachan and D.W. Loveland, METEORs: high performance theorem provers using
model elimination, Avtomated Reusumﬂg Essays in Honor of Woody Bledsoe, {Kluwe'r Aca-
demic Publishers, Netherlands, 1991).

(2] O.L. Astrachan and M.E. Stickel, Caching and lemmaizing in model elimination theorem
provers, Pm::eedmgs 11th Inter. Cenf on Autornated Deduction (CADE-11), LNAI 607, USA
(1992) 778-782.

[3] 8. Fleisig, D. Loveland, A.K. Smiley IIT and D L. Yarmush, An implementation of the model
elimination proof procedure. .J.. AGM 21 (1) (1974) 124- 139

[4] Chr. Ga!]er R. Letz, K. Mayr and J. Schumann SETHEC V3.2: recent developments -
system abstract-, Proceedings 12th Inter. Conf on ﬁutmmted Deduction {CADE-18), LNAI
814, Nancy, France (1994) 778-782.

[5] D.W. Loveland, A simplified format for the model elimination thmrmppmvmg procedure, J
CACM 16 (3) (1969) 349-363.

[6] M.E. Stickel, A prolog technology theorem prover: implementation by an extended prolog
compiler, J. Automated Reasoning 4 (1988) 353-380.

[7] M.E. Stickel, A prolog technology theorem prover: a new exposition and 1mp1e;|:m.—.:ntutmn in
prolog, Theoret, Comput. Seci. 104 (1992) 109-128. :

(8] JM.Ph. Schumann, A bottom-up preprocessor for top-down theorem provers —system
abstract—, Proceedings 12th Inter. Conf on Aulomated Deduction (CADE-12), LNAT 814,
Nancy, France {1994) T7T4-777,

[9] G. Sutcliffe, C. Suttner and T. Yemenis, The TPTP problem library, Proceedings 12th Inter.
Conf on Automated Deduction (CADE-12), LNAT 814, Nancy, France {1994) 252-266.

26

