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Abstract

Finite quasigroups in the form of Latin squares have been extensively studied in design
theory. Some quasigroups satisfy constraints in the form of equations, called quasigroup iden-
tities. Numerous open problems of the existence of quasigroups of particular size that satisfy
particular identities have been solved by antomated theorem-proving methods (such as the
Davis-Putnam procedure) that are complete over a finite domain. In this note, we illustrate
how other kinds of questions comcerning quasigroup identities can sometimes be answered
by the alternative equality-based automated theorem-proving method of term rewriting and
completion.

1 Introduction

This note discusses problems in quasigroups, whose multiplication tables are Latin squares. The
information on Latin squares provided here is mainly drawn from a survey paper by Bennett and
Zhu [2]; the interested reader may refer to that work for more information on Latin squares, their
mmportance in design theory, and some other related applications.

Recently, automated model-generation programs have been used to solve the existence problem
of quasigroups with specified size and properties. Several dozen open cases were first solved by
these programs (12, 4, 6, 10, 5, 9, 8]. The finite enumeration methods used did not employ
equality reasoning and were limited to finding quasigroups of specific (small) size. This note
presents a complementary line of research: using rewriting techniques to prove general properties
of quasigroups. For example, we might wish to show that if a quasigroup satisfies an equation, one
of its conjugates will satisfy a second equation, regardless of size. This may help mathematicians
to gain insights in attacking open problems in quasigroups.

In {11], we listed some problem areas for possible investigation of quasigroups using equational
reasoning. This paper presents the first results of applying rewriting techniques to quasigroups,
and the results are already promising. We were able to verify the theorem that all short conjugate-
orthogonal identities are conjugate-equivalent to one of a list of seven identities. We conducted
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the first thorough investigation of which conjugates are orthogonal for each of these identities and
found a previously unknown orthogonal pair.

2 Quasigroups and Conjugates

A quasigroup is simply a cancellative groupoid. That is, a quasigroup is an ordered pair (S, #)
where S is a finite set and = is a binary operation on S such that

ap*b=az%xb = a; =a
a*xbhy=axhs = b =b

The cardinality of S, [5], is called the order of the quasigroup. The “multiplication table” for
the operation * forms a Latin square, of which each row and each column is a permutation of S.
Many classes of quasigroups are of interest, partly because they are very natural objects in their
own right, and partly because of their relationship to design theory.

People are interested in Latin squares that satisfy a set of constraints. These constraints are
often expressed in terms of the quasigroup operator # plus some universally quantified variables.
For example, idempotent Latin squares are those that satisfy z # 2 = 2. The constraints we
consider here involve the notion of “conjugate-orthogonal Latin squares”.

Evidently, whenever (5, #) is any quasigroup, given values of any two variables in z#y = z, we
can uniquely determine the value of the third variable. For example, we may therefore associate
with (5,+) a function * such that z + 2z = y iff 2+ y = z. It is easy to see that (5,4) is also a
quasigroup. {5,*} is one of the six conjugates of {5, +}. These are defined via the six operations
#;;1 where i, 7, and k are distinct members of {1, 2,3}:

{xi Figk Lj = Ty) = {.'171 ¥ Ty = _-1.'3)

We shall refer to (5, ;) as the (i, j, k)-conjugate of (S, ). Where § is understood to be common,
we will simply refer to +;;; as the (4, j, k)}-conjugate of . Needless to say, the (1,2, 3)-conjugate
is the same as the original quasigroup.

Example 1 Here are the six conjugates of a small Latin square:

(a) (b) (c) (d) (e) ()
1423 1243 1324 1243 1342 1324
2314 4312 2413 3421 3124 3142
4132 2134 4231 2134 2431 4231
3241 3421 3142 4312 4213 2413

{(a) a Latin square; (b) its (2, 1, 3)-conjugate; (c) its (3,2, 1)-conjugate; (d) its (2, 3, 1)-conjugate;
(e) its (1,3, 2)-conjugate; (f) its (3, 1, 2)-conjugate. O

We say that constraint C' is a conjugate-implicant of constraint C if whenever a quasigroup
satisfies C, one of its conjugates satisfies C'. We say two constraints are conjugate-equivalent
if they are conjugate-implicants of each other. For example, the identity z* (z+y) = y+z is
conjugate-equivalent to (y#x) * ¢ = z #y, since the latter can be obtained by taking #a13 for # in
the former. A constraint is said to be conjugate-invariani if whenever a quasigroup satisfies the
constraint, every conjugate satisfies the constraint. For example, the idempotency law, z+z =z,
is conjugate-invariant.
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#3231 #1332 *213 * ¥231 *312
312 | QG QGU QGV QG2 QG2"
=3 | QGO QG1" QG1 QG? —_

# GE1 QG QG0 —
*a213 QGE’ QGE —_— QGﬂ QGI QG].:
*132 | QG2 — QG2 QGY QG1" QGO
%391 - QGE" QGZ’ QGI QGGF QGI"

QG2"
QG2 QG2

Table 1: Conjugate-Orthogonality Constraints

3 Conjugate Orthogonality

Two quasigroups (5, +} and (5, #) over the same set S are said to be orthegonal iff for any two
elements u, v of S, the set {{z,y} | +y = u, z*y = v} is singleton, or equivalently, for all elements
z,y,z,wof §

((zry=zrwlr(zxy=zxw)) 2> (z=2Ay=w).

It sometimes happens that one conjugate of a quasigroup is orthogonal to one of its other
conjugates. Following convention [2], we refer to a Latin square (quasigroup) of order v that is
orthogonal to its (i, 7, k)-conjugate as an (i, , £}-COLS(v) (one that is also idempotent is referred
to as an (¢, 7, k}-COILS(v)). For example, the Latin square (a) in Example 1 is both a (1,3,2)-
COLS(4) and a (3,1,2)-COLS(4) since it is orthogonal to (e) and (f), its (1,3,2)- and (3,1,2)-

conjugates.

Thus, (2,1,3)}-COLS, (3,2,1)-COLS, and (3,1,2)-COLS are those quasigroups that satisfy
QG0, QG and QJG2, respectively.

QGO: (zry=zrwATrpay=z%3w)=>(z=2zAy=w)
QGL: (zry=zrwAzsmpny=zanw)=>(z=zAy=w)
QG2: (z*xy=zruwAzxpy=z+2w) = (T=2Ay=w)

These constraints can be rephrased uniformly in * as:

QGO: (zry=zruwAyrz=w*z)=>(z=2Ay=w)
QGL: (z*ry=z+whvsy=zAvsw=z)=(z=zAy=uw)
QG2 (zxy=zxwAysv=zAwsv=2z)=>(cz=z2Ay=uw)

The orthogonality of a pair of conjugates can be logicaily equivalent to, or conjugate-equivalent
to, orthogonality of other pairs of conjugates. For example, @Gl and QG2 are conjugate-
equivalent to the definitions of (1,3,2)-COLS and (2,3, 1)-COLS, respectively. These relationships
are summarized in Table 1.

Each table entry is a code name for a constraint that is defined to be logically equivalent to
the orthogonality of its row and column labels. For example, Q@1 is defined by orthogonality
of = and %331, but could have been defined equivalently by orthogonality of #2135 and #23,. The
constraints QG0, @G0, and QG0" are conjugate-equivalent; so are QG'1, QG1’, and QG1"; and
so are QG2, QG2 and QG2", ' '
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4 Formulation of Quasigroups for the Knuth-Bendix Procedure

Quasigroups can be characterized by six mutually defined functions #, %132, #3213, *231, *312, and
#3271 in the following way. For each equation z #;j ¥ = z, solve for y in terms of z and z and solve
for x in terms of y and z to produce the following twelve equations:

I: z#(z#*gez)=2 T zxgz(r*ey z) ==z
2 (y#amz)xy=2z 8 (ywmmz)*nay=2z
3 zHpmafzez)==z 9: Tz (zam z) =z
4 (z#my)*i2y=2 10: (y*z)*aey=z
5: T4y (z#z)=2 11: z gy (z%gz0z) =2
6: (z*i2y)*amy=2z 120 (zxy)sany=z

Applying the Knuth-Bendix completion procedure to this set of equations results in the dele-
tion of 7-12 above and the addition of 7-9 below:

T (THmz) =2z T ZTwgay=y#zx
(y#em 2}y =z 8 Ty =yrimsc
3*132(3*2}=Z & zegmy=yrm

(z#am ¥) #1329 =2
Toy (zex) =2

{z *142 y]l ==

g~ e

This set of equations is terminating and confluent when read as a set of lefi-to-right reductions.
This set of equations was used in the present study.

That these equations suffice to characterize quasigroups can be shown by proving the cancel-
lation laws, i.e., a; = ay and b; = by can be proved from a; b = az + b and a*x b, = a = by,
respectively.

5 Short Conjugate-Orthogonal Identities

The Knuth-Bendix procedure! can be applied to constraints in the form of equations, called
quasigroup identilies. A guasigroup identity is said to be nontrivial if it is consistent with the
specification of a Latin square. A quasigroup identity is called a shorl conjugate-orthogonal
identity in [3] if it is of form a(z,y) * b{z,y) = =, where a,b € {*, %213, %132, #3192, #2131, #321 }. The
a and b conjngates of * are orthogonal.

tActually, we use the unfeiling Knuth-Bendix procedure to cope with the problem of some derived equalities
being unorientablea.
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*121 ¥122 *213 ¥ #2131 312
w2 | @GY QG8 QGS QG5 QG5 —
*3 | QG8 QG6 QG8 QGT — —
x |QG8 QG8 QG3 — QG& —
s23 | QG5 QGT — QG4 QG5 —
f132 [ QG5 — QG4 QG5 QGT —
*321 | —  — — — - —

Table 2: Short Conjugate-Orthogonal Identities

Identity | Conjugate-Implicants | Orthogonal Conjugates
QG3 QG0 * L #:13,  *eg L #gm1,  *132 L #a12
QG4 QGU, QG2 * L*ng, #a; L#g12, *132 L #am;
QG5 QG1, QG2 # 1 w93y L #oy3 Lo#gey L%, * L 2370, #1390 L #2013
QGE QG]. # 1 #7132 A #099) 4 L TE] 1 #3512 1 %301 A #
QG? QGI, QGE # 1 #3321 1 #1302 1 *213 _L #391 1 *312 d =
QG8 QG0,QG1 # L #130 | %93y Lo #ap) L #3921 %933 L #
QGS QG1 # L gy, #*ma L *om

Table 3: Conjugate-Orthogonality Results for QG3-QG9

Theorem 2 ([3, 1]) Any nonirivial short conjugate-orthogonal identily is conjugate-equivalent
to one of the following:

Code Name? Identity

QG3 (z+y)*(y*z) = =

QG4 (y*z)*(z+y) = =

QG5 (yxz)*y)sy = =

QGﬂ {I*y}*'y = ;g#(;p*y]
QGT (yez)2y = z+(y+*z)
QG8 zx{z+y) = y=z
QGY ((z*y)*y)*y = =

Theorem 2 can be verified easily by the Knuth-Bendix procedure with the results in Table 2.
Each location in the table corresponds to a short conjugate-orthogonal identity; its value is either
the code name “QG4" of the identity that is conjugate-equivalent to it or “—" if the identity
is trivial. For example, the identity (x #3512 9) * (z #321 ¥) = = is conjugate-equivalent to QG9.
Construction of this table required 57 proofs using the Knuth-Bendix procedure (none took more
than 5 seconds of CPU time). Each trivial identity required the derivation of 2 = y from the
quasigroup axioms plus the short conjugate-orthogonal identity. Each nontrivial identity required
two proofs: that QGi is a conjugate-implicant of the identity, and that the identity is a conjugate-
implicant of Q4.

Superimposing Tables 1 and 2, we can determine which of QG0-QG2 are conjugate-implicants
of QG3-QG9 (Table 3).

*This extends the nomenclature QG1-QGT introduced in [4].
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These relationships had not been exhaustively studied before and two of these results are
noteworthy. The fact that a conjugate of QG4 satisfles QG2 was observed by Stickel in 1994.
This observation lead to the positive solution of the previously open problem of the existence
of (3,1,2)-COILS(12)—an idempotent quasigroup of order 12 that satisfies QG2. Bennett then
proved the hitherto unnoticed theorem that QG2 is a conjugate-implicant of G4, which we have
now verified by the Knuth-Bendix procedure. The fact that a conjugate of QG7 satisfies QG1 is
a new result, which was discovered by the Knuth-Bendix procedure in this study.

The third column of Table 3 shows the situation in more detail. It lists for each identity
which pairs of conjugates we found to be orthogonal. The expression a; L --- 1 a, means a; is
conjugate orthogonal to a;4; (1 <1 < n).

Let |t| denote the number of variable occurrences in term {. We call (|u)|,]v]) the fype of the
identity u = v. For example, four identities in Theorem 2 are of type (4,1), one of type (3,2),
and two of type (3,3).

It is natural to inguire about existence of conjugate-equivalent identities of various types. For
example, is each of QG3-QGY conjugate-equivalent to a type (4,1) identity?

Here is the classification of some type (4, 1) identities proved by the Knuth-Bendix procedure:
(zxy)*(y*z) ==z is QG3

(yrx)*({z=+y) =2 is QG4
(z*(y *z))*y =z is conjugate-equivalent to QG4
y#* ((z*y)*x) =2 is conjugate-equivalent to QG4

((v*ez)*y)+ry =2 is QG5

(y#(z *y)) * y = = is logically equivalent to QG5
y* ((z+y) *y) = = is logically equivalent to QG5
(y#(y *z)) #+ y = = is conjugate-equivalent to QG5
y*((y * =) *y) = = is conjugate-equivalent to QG'S
y*(y=(z*y)) =z is conjugate-equivalent to QG5
y*(z* (x+y)) =z is conjugate-equivalent to QG5
{({y * )+ z) * y = z is conjugate-equivalent to QG5

((z *y)* z) * y = T is conjugate-equivalent to QG7T
y® (z % (y *z)) = 2 is conjugate-equivalent to QG'T

(x#(x *y)) *y =z is conjugate-equivalent to QGS
y* ((y* ) = z) = z is conjugate-equivalent to QG8

((zey)*y)+y =1z is QGY
y#* (y * (y * )} = z is conjugate-equivalent to QG9

We believe that none of this is significant since Q)G3-QG'9 have been extensively studied. The
possibility that QG3-QG9 are equivalent or conjugate-equivalent to additional type (4, 1) iden-
tities cannot be ruled out by our results so far, since the search spaces were not always fully
explored (and may be infinite). We were disappointed at not finding a type (4,1) identity for
()G6, the only exception.

So far, we have just studied short conjugate-orthogonal identities. The following theorem
describes an infinite set of identities that guarantee orthogonality of at least one pair of conjugates.
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Theorem 3 ([3]) Lel #;;: and #q. be conjugate operations on S. Then = is orthegonal to
*abe 1f and only if there is a quasigroup word w(u,v) such that w((x #iji ¥), (T *abe ¥)) = = holds
identically.

Short conjugate-orthogonal identities are those for which w(u,v) = uv (i.e,, # # v). The nexi
ones to try might be u(uv), u(vu), etc.

Just as we were able to verify properties of short conjugate-orthogonal identities, and even
discover minor new properties, automated term rewriting techniques should be valuable for dis-
covering properties of large numbers of identities not previously examined.

6 Conclusion

We have demonstrated the applicability of automated term rewriting techniques to reasoning
about guasigroup identities. We verified the theorem that reduced all short conjugate-orthogonal
identities to a list of seven conjugate-equivalent identities. We explored in more detail than ever
before which pairs of conjugates are orthogonal for each of these identities. This process verified
a recently discovered relationship (that QG2 is a conjugate-implicant of QG4) and discovered a
new one (that QG'1 is a conjugate-implicant of QG7). We can often prove logical or conjugate-
equivalence among identities allowing us to search for eguivalent identities of a desired form.
We are encouraged to believe that automated term rewriting techniques will allow us to usefully
explore classes of identities not previously considered.
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